mirror of
https://github.com/PurpleI2P/i2pd.git
synced 2025-05-01 05:02:29 +02:00
Reformat code
This commit is contained in:
parent
3ddb370718
commit
55534ea002
140 changed files with 46068 additions and 48277 deletions
557
libi2pd/Crypto.h
557
libi2pd/Crypto.h
|
@ -50,359 +50,406 @@
|
|||
# endif
|
||||
#endif
|
||||
|
||||
namespace i2p
|
||||
{
|
||||
namespace crypto
|
||||
{
|
||||
bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len);
|
||||
namespace i2p {
|
||||
namespace crypto {
|
||||
bool bn2buf(const BIGNUM *bn, uint8_t *buf, size_t len);
|
||||
|
||||
// DSA
|
||||
DSA * CreateDSA ();
|
||||
// DSA
|
||||
DSA *CreateDSA();
|
||||
|
||||
// RSA
|
||||
const BIGNUM * GetRSAE ();
|
||||
// RSA
|
||||
const BIGNUM *GetRSAE();
|
||||
|
||||
// DH
|
||||
class DHKeys
|
||||
{
|
||||
public:
|
||||
// DH
|
||||
class DHKeys {
|
||||
public:
|
||||
|
||||
DHKeys ();
|
||||
~DHKeys ();
|
||||
DHKeys();
|
||||
|
||||
void GenerateKeys ();
|
||||
const uint8_t * GetPublicKey () const { return m_PublicKey; };
|
||||
void Agree (const uint8_t * pub, uint8_t * shared);
|
||||
~DHKeys();
|
||||
|
||||
private:
|
||||
void GenerateKeys();
|
||||
|
||||
DH * m_DH;
|
||||
uint8_t m_PublicKey[256];
|
||||
};
|
||||
const uint8_t *GetPublicKey() const { return m_PublicKey; };
|
||||
|
||||
// x25519
|
||||
class X25519Keys
|
||||
{
|
||||
public:
|
||||
void Agree(const uint8_t *pub, uint8_t *shared);
|
||||
|
||||
X25519Keys ();
|
||||
X25519Keys (const uint8_t * priv, const uint8_t * pub); // if pub is null, derive from priv
|
||||
~X25519Keys ();
|
||||
private:
|
||||
|
||||
void GenerateKeys ();
|
||||
const uint8_t * GetPublicKey () const { return m_PublicKey; };
|
||||
void GetPrivateKey (uint8_t * priv) const;
|
||||
void SetPrivateKey (const uint8_t * priv, bool calculatePublic = false);
|
||||
bool Agree (const uint8_t * pub, uint8_t * shared);
|
||||
DH *m_DH;
|
||||
uint8_t m_PublicKey[256];
|
||||
};
|
||||
|
||||
bool IsElligatorIneligible () const { return m_IsElligatorIneligible; }
|
||||
void SetElligatorIneligible () { m_IsElligatorIneligible = true; }
|
||||
// x25519
|
||||
class X25519Keys {
|
||||
public:
|
||||
|
||||
private:
|
||||
X25519Keys();
|
||||
|
||||
uint8_t m_PublicKey[32];
|
||||
X25519Keys(const uint8_t *priv, const uint8_t *pub); // if pub is null, derive from priv
|
||||
~X25519Keys();
|
||||
|
||||
void GenerateKeys();
|
||||
|
||||
const uint8_t *GetPublicKey() const { return m_PublicKey; };
|
||||
|
||||
void GetPrivateKey(uint8_t *priv) const;
|
||||
|
||||
void SetPrivateKey(const uint8_t *priv, bool calculatePublic = false);
|
||||
|
||||
bool Agree(const uint8_t *pub, uint8_t *shared);
|
||||
|
||||
bool IsElligatorIneligible() const { return m_IsElligatorIneligible; }
|
||||
|
||||
void SetElligatorIneligible() { m_IsElligatorIneligible = true; }
|
||||
|
||||
private:
|
||||
|
||||
uint8_t m_PublicKey[32];
|
||||
#if OPENSSL_X25519
|
||||
EVP_PKEY_CTX * m_Ctx;
|
||||
EVP_PKEY * m_Pkey;
|
||||
EVP_PKEY_CTX * m_Ctx;
|
||||
EVP_PKEY * m_Pkey;
|
||||
#else
|
||||
BN_CTX * m_Ctx;
|
||||
uint8_t m_PrivateKey[32];
|
||||
BN_CTX *m_Ctx;
|
||||
uint8_t m_PrivateKey[32];
|
||||
#endif
|
||||
bool m_IsElligatorIneligible = false; // true if definitely ineligible
|
||||
};
|
||||
bool m_IsElligatorIneligible = false; // true if definitely ineligible
|
||||
};
|
||||
|
||||
// ElGamal
|
||||
void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted
|
||||
bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data
|
||||
void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub);
|
||||
// ElGamal
|
||||
void ElGamalEncrypt(const uint8_t *key, const uint8_t *data,
|
||||
uint8_t *encrypted); // 222 bytes data, 514 bytes encrypted
|
||||
bool
|
||||
ElGamalDecrypt(const uint8_t *key, const uint8_t *encrypted, uint8_t *data); // 514 bytes encrypted, 222 data
|
||||
void GenerateElGamalKeyPair(uint8_t *priv, uint8_t *pub);
|
||||
|
||||
// ECIES
|
||||
void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted
|
||||
bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data
|
||||
void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub);
|
||||
// ECIES
|
||||
void ECIESEncrypt(const EC_GROUP *curve, const EC_POINT *key, const uint8_t *data,
|
||||
uint8_t *encrypted); // 222 bytes data, 514 bytes encrypted
|
||||
bool ECIESDecrypt(const EC_GROUP *curve, const BIGNUM *key, const uint8_t *encrypted,
|
||||
uint8_t *data); // 514 bytes encrypted, 222 data
|
||||
void GenerateECIESKeyPair(const EC_GROUP *curve, BIGNUM *&priv, EC_POINT *&pub);
|
||||
|
||||
// HMAC
|
||||
typedef i2p::data::Tag<32> MACKey;
|
||||
void HMACMD5Digest (uint8_t * msg, size_t len, const MACKey& key, uint8_t * digest);
|
||||
// HMAC
|
||||
typedef i2p::data::Tag<32> MACKey;
|
||||
|
||||
// AES
|
||||
struct ChipherBlock
|
||||
{
|
||||
uint8_t buf[16];
|
||||
void HMACMD5Digest(uint8_t *msg, size_t len, const MACKey &key, uint8_t *digest);
|
||||
|
||||
void operator^=(const ChipherBlock& other) // XOR
|
||||
{
|
||||
if (!(((size_t)buf | (size_t)other.buf) & 0x03)) // multiple of 4 ?
|
||||
{
|
||||
for (int i = 0; i < 4; i++)
|
||||
reinterpret_cast<uint32_t *>(buf)[i] ^= reinterpret_cast<const uint32_t *>(other.buf)[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < 16; i++)
|
||||
buf[i] ^= other.buf[i];
|
||||
}
|
||||
}
|
||||
};
|
||||
// AES
|
||||
struct ChipherBlock {
|
||||
uint8_t buf[16];
|
||||
|
||||
typedef i2p::data::Tag<32> AESKey;
|
||||
void operator^=(const ChipherBlock &other) // XOR
|
||||
{
|
||||
if (!(((size_t) buf | (size_t) other.buf) & 0x03)) // multiple of 4 ?
|
||||
{
|
||||
for (int i = 0; i < 4; i++)
|
||||
reinterpret_cast<uint32_t *>(buf)[i] ^= reinterpret_cast<const uint32_t *>(other.buf)[i];
|
||||
} else {
|
||||
for (int i = 0; i < 16; i++)
|
||||
buf[i] ^= other.buf[i];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t sz>
|
||||
class AESAlignedBuffer // 16 bytes alignment
|
||||
{
|
||||
public:
|
||||
typedef i2p::data::Tag<32> AESKey;
|
||||
|
||||
AESAlignedBuffer ()
|
||||
{
|
||||
m_Buf = m_UnalignedBuffer;
|
||||
uint8_t rem = ((size_t)m_Buf) & 0x0f;
|
||||
if (rem)
|
||||
m_Buf += (16 - rem);
|
||||
}
|
||||
template<size_t sz>
|
||||
class AESAlignedBuffer // 16 bytes alignment
|
||||
{
|
||||
public:
|
||||
|
||||
operator uint8_t * () { return m_Buf; };
|
||||
operator const uint8_t * () const { return m_Buf; };
|
||||
ChipherBlock * GetChipherBlock () { return (ChipherBlock *)m_Buf; };
|
||||
const ChipherBlock * GetChipherBlock () const { return (const ChipherBlock *)m_Buf; };
|
||||
AESAlignedBuffer() {
|
||||
m_Buf = m_UnalignedBuffer;
|
||||
uint8_t rem = ((size_t) m_Buf) & 0x0f;
|
||||
if (rem)
|
||||
m_Buf += (16 - rem);
|
||||
}
|
||||
|
||||
private:
|
||||
operator uint8_t *() { return m_Buf; };
|
||||
|
||||
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment
|
||||
uint8_t * m_Buf;
|
||||
};
|
||||
operator const uint8_t *() const { return m_Buf; };
|
||||
|
||||
ChipherBlock *GetChipherBlock() { return (ChipherBlock *) m_Buf; };
|
||||
|
||||
const ChipherBlock *GetChipherBlock() const { return (const ChipherBlock *) m_Buf; };
|
||||
|
||||
private:
|
||||
|
||||
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment
|
||||
uint8_t *m_Buf;
|
||||
};
|
||||
|
||||
|
||||
#ifdef __AES__
|
||||
class ECBCryptoAESNI
|
||||
{
|
||||
public:
|
||||
class ECBCryptoAESNI
|
||||
{
|
||||
public:
|
||||
|
||||
uint8_t * GetKeySchedule () { return m_KeySchedule; };
|
||||
uint8_t * GetKeySchedule () { return m_KeySchedule; };
|
||||
|
||||
protected:
|
||||
protected:
|
||||
|
||||
void ExpandKey (const AESKey& key);
|
||||
void ExpandKey (const AESKey& key);
|
||||
|
||||
private:
|
||||
private:
|
||||
|
||||
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes
|
||||
};
|
||||
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes
|
||||
};
|
||||
#endif
|
||||
|
||||
#ifdef __AES__
|
||||
class ECBEncryption: public ECBCryptoAESNI
|
||||
class ECBEncryption: public ECBCryptoAESNI
|
||||
#else
|
||||
class ECBEncryption
|
||||
|
||||
class ECBEncryption
|
||||
#endif
|
||||
{
|
||||
public:
|
||||
{
|
||||
public:
|
||||
|
||||
void SetKey (const AESKey& key);
|
||||
void SetKey(const AESKey &key);
|
||||
|
||||
void Encrypt(const ChipherBlock * in, ChipherBlock * out);
|
||||
void Encrypt(const ChipherBlock *in, ChipherBlock *out);
|
||||
|
||||
private:
|
||||
AES_KEY m_Key;
|
||||
};
|
||||
private:
|
||||
AES_KEY m_Key;
|
||||
};
|
||||
|
||||
#ifdef __AES__
|
||||
class ECBDecryption: public ECBCryptoAESNI
|
||||
class ECBDecryption: public ECBCryptoAESNI
|
||||
#else
|
||||
class ECBDecryption
|
||||
|
||||
class ECBDecryption
|
||||
#endif
|
||||
{
|
||||
public:
|
||||
{
|
||||
public:
|
||||
|
||||
void SetKey (const AESKey& key);
|
||||
void Decrypt (const ChipherBlock * in, ChipherBlock * out);
|
||||
private:
|
||||
AES_KEY m_Key;
|
||||
};
|
||||
void SetKey(const AESKey &key);
|
||||
|
||||
class CBCEncryption
|
||||
{
|
||||
public:
|
||||
void Decrypt(const ChipherBlock *in, ChipherBlock *out);
|
||||
|
||||
CBCEncryption () { memset ((uint8_t *)m_LastBlock, 0, 16); };
|
||||
private:
|
||||
AES_KEY m_Key;
|
||||
};
|
||||
|
||||
void SetKey (const AESKey& key) { m_ECBEncryption.SetKey (key); }; // 32 bytes
|
||||
void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_LastBlock, iv, 16); }; // 16 bytes
|
||||
void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_LastBlock, 16); };
|
||||
class CBCEncryption {
|
||||
public:
|
||||
|
||||
void Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
|
||||
void Encrypt (const uint8_t * in, std::size_t len, uint8_t * out);
|
||||
void Encrypt (const uint8_t * in, uint8_t * out); // one block
|
||||
CBCEncryption() { memset((uint8_t *) m_LastBlock, 0, 16); };
|
||||
|
||||
ECBEncryption & ECB() { return m_ECBEncryption; }
|
||||
void SetKey(const AESKey &key) { m_ECBEncryption.SetKey(key); }; // 32 bytes
|
||||
void SetIV(const uint8_t *iv) { memcpy((uint8_t *) m_LastBlock, iv, 16); }; // 16 bytes
|
||||
void GetIV(uint8_t *iv) const { memcpy(iv, (const uint8_t *) m_LastBlock, 16); };
|
||||
|
||||
private:
|
||||
void Encrypt(int numBlocks, const ChipherBlock *in, ChipherBlock *out);
|
||||
|
||||
AESAlignedBuffer<16> m_LastBlock;
|
||||
void Encrypt(const uint8_t *in, std::size_t len, uint8_t *out);
|
||||
|
||||
ECBEncryption m_ECBEncryption;
|
||||
};
|
||||
void Encrypt(const uint8_t *in, uint8_t *out); // one block
|
||||
|
||||
class CBCDecryption
|
||||
{
|
||||
public:
|
||||
ECBEncryption &ECB() { return m_ECBEncryption; }
|
||||
|
||||
CBCDecryption () { memset ((uint8_t *)m_IV, 0, 16); };
|
||||
private:
|
||||
|
||||
void SetKey (const AESKey& key) { m_ECBDecryption.SetKey (key); }; // 32 bytes
|
||||
void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_IV, iv, 16); }; // 16 bytes
|
||||
void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_IV, 16); };
|
||||
AESAlignedBuffer<16> m_LastBlock;
|
||||
|
||||
void Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
|
||||
void Decrypt (const uint8_t * in, std::size_t len, uint8_t * out);
|
||||
void Decrypt (const uint8_t * in, uint8_t * out); // one block
|
||||
ECBEncryption m_ECBEncryption;
|
||||
};
|
||||
|
||||
ECBDecryption & ECB() { return m_ECBDecryption; }
|
||||
class CBCDecryption {
|
||||
public:
|
||||
|
||||
private:
|
||||
CBCDecryption() { memset((uint8_t *) m_IV, 0, 16); };
|
||||
|
||||
AESAlignedBuffer<16> m_IV;
|
||||
ECBDecryption m_ECBDecryption;
|
||||
};
|
||||
void SetKey(const AESKey &key) { m_ECBDecryption.SetKey(key); }; // 32 bytes
|
||||
void SetIV(const uint8_t *iv) { memcpy((uint8_t *) m_IV, iv, 16); }; // 16 bytes
|
||||
void GetIV(uint8_t *iv) const { memcpy(iv, (const uint8_t *) m_IV, 16); };
|
||||
|
||||
class TunnelEncryption // with double IV encryption
|
||||
{
|
||||
public:
|
||||
void Decrypt(int numBlocks, const ChipherBlock *in, ChipherBlock *out);
|
||||
|
||||
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
|
||||
{
|
||||
m_LayerEncryption.SetKey (layerKey);
|
||||
m_IVEncryption.SetKey (ivKey);
|
||||
}
|
||||
void Decrypt(const uint8_t *in, std::size_t len, uint8_t *out);
|
||||
|
||||
void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
|
||||
void Decrypt(const uint8_t *in, uint8_t *out); // one block
|
||||
|
||||
private:
|
||||
ECBDecryption &ECB() { return m_ECBDecryption; }
|
||||
|
||||
ECBEncryption m_IVEncryption;
|
||||
CBCEncryption m_LayerEncryption;
|
||||
};
|
||||
private:
|
||||
|
||||
class TunnelDecryption // with double IV encryption
|
||||
{
|
||||
public:
|
||||
AESAlignedBuffer<16> m_IV;
|
||||
ECBDecryption m_ECBDecryption;
|
||||
};
|
||||
|
||||
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
|
||||
{
|
||||
m_LayerDecryption.SetKey (layerKey);
|
||||
m_IVDecryption.SetKey (ivKey);
|
||||
}
|
||||
class TunnelEncryption // with double IV encryption
|
||||
{
|
||||
public:
|
||||
|
||||
void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
|
||||
void SetKeys(const AESKey &layerKey, const AESKey &ivKey) {
|
||||
m_LayerEncryption.SetKey(layerKey);
|
||||
m_IVEncryption.SetKey(ivKey);
|
||||
}
|
||||
|
||||
private:
|
||||
void Encrypt(const uint8_t *in, uint8_t *out); // 1024 bytes (16 IV + 1008 data)
|
||||
|
||||
ECBDecryption m_IVDecryption;
|
||||
CBCDecryption m_LayerDecryption;
|
||||
};
|
||||
private:
|
||||
|
||||
ECBEncryption m_IVEncryption;
|
||||
CBCEncryption m_LayerEncryption;
|
||||
};
|
||||
|
||||
class TunnelDecryption // with double IV encryption
|
||||
{
|
||||
public:
|
||||
|
||||
void SetKeys(const AESKey &layerKey, const AESKey &ivKey) {
|
||||
m_LayerDecryption.SetKey(layerKey);
|
||||
m_IVDecryption.SetKey(ivKey);
|
||||
}
|
||||
|
||||
void Decrypt(const uint8_t *in, uint8_t *out); // 1024 bytes (16 IV + 1008 data)
|
||||
|
||||
private:
|
||||
|
||||
ECBDecryption m_IVDecryption;
|
||||
CBCDecryption m_LayerDecryption;
|
||||
};
|
||||
|
||||
// AEAD/ChaCha20/Poly1305
|
||||
bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt); // msgLen is len without tag
|
||||
bool
|
||||
AEADChaCha20Poly1305(const uint8_t *msg, size_t msgLen, const uint8_t *ad, size_t adLen, const uint8_t *key,
|
||||
const uint8_t *nonce, uint8_t *buf, size_t len, bool encrypt); // msgLen is len without tag
|
||||
|
||||
void AEADChaCha20Poly1305Encrypt (const std::vector<std::pair<uint8_t *, size_t> >& bufs, const uint8_t * key, const uint8_t * nonce, uint8_t * mac); // encrypt multiple buffers with zero ad
|
||||
void AEADChaCha20Poly1305Encrypt(const std::vector<std::pair<uint8_t *, size_t> > &bufs, const uint8_t *key,
|
||||
const uint8_t *nonce, uint8_t *mac); // encrypt multiple buffers with zero ad
|
||||
|
||||
// ChaCha20
|
||||
void ChaCha20 (const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out);
|
||||
void ChaCha20(const uint8_t *msg, size_t msgLen, const uint8_t *key, const uint8_t *nonce, uint8_t *out);
|
||||
|
||||
// HKDF
|
||||
|
||||
void HKDF (const uint8_t * salt, const uint8_t * key, size_t keyLen, const std::string& info, uint8_t * out, size_t outLen = 64); // salt - 32, out - 32 or 64, info <= 32
|
||||
void HKDF(const uint8_t *salt, const uint8_t *key, size_t keyLen, const std::string &info, uint8_t *out,
|
||||
size_t outLen = 64); // salt - 32, out - 32 or 64, info <= 32
|
||||
|
||||
// Noise
|
||||
|
||||
struct NoiseSymmetricState
|
||||
{
|
||||
uint8_t m_H[32] /*h*/, m_CK[64] /*[ck, k]*/;
|
||||
struct NoiseSymmetricState {
|
||||
uint8_t m_H[32] /*h*/, m_CK[64] /*[ck, k]*/;
|
||||
|
||||
void MixHash (const uint8_t * buf, size_t len);
|
||||
void MixHash (const std::vector<std::pair<uint8_t *, size_t> >& bufs);
|
||||
void MixKey (const uint8_t * sharedSecret);
|
||||
};
|
||||
void MixHash(const uint8_t *buf, size_t len);
|
||||
|
||||
void InitNoiseNState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_N (tunnels, router)
|
||||
void InitNoiseXKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (NTCP2)
|
||||
void InitNoiseXKState1 (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (SSU2)
|
||||
void InitNoiseIKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_IK (ratchets)
|
||||
void MixHash(const std::vector<std::pair<uint8_t *, size_t> > &bufs);
|
||||
|
||||
void MixKey(const uint8_t *sharedSecret);
|
||||
};
|
||||
|
||||
void InitNoiseNState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_N (tunnels, router)
|
||||
void InitNoiseXKState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_XK (NTCP2)
|
||||
void InitNoiseXKState1(NoiseSymmetricState &state, const uint8_t *pub); // Noise_XK (SSU2)
|
||||
void InitNoiseIKState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_IK (ratchets)
|
||||
|
||||
// init and terminate
|
||||
void InitCrypto (bool precomputation, bool aesni, bool avx, bool force);
|
||||
void TerminateCrypto ();
|
||||
}
|
||||
void InitCrypto(bool precomputation, bool aesni, bool avx, bool force);
|
||||
|
||||
void TerminateCrypto();
|
||||
}
|
||||
}
|
||||
|
||||
// take care about openssl below 1.1.0
|
||||
#if LEGACY_OPENSSL
|
||||
|
||||
// define getters and setters introduced in 1.1.0
|
||||
inline int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g)
|
||||
{
|
||||
if (d->p) BN_free (d->p);
|
||||
if (d->q) BN_free (d->q);
|
||||
if (d->g) BN_free (d->g);
|
||||
d->p = p; d->q = q; d->g = g; return 1;
|
||||
}
|
||||
inline int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key)
|
||||
{
|
||||
if (d->pub_key) BN_free (d->pub_key);
|
||||
if (d->priv_key) BN_free (d->priv_key);
|
||||
d->pub_key = pub_key; d->priv_key = priv_key; return 1;
|
||||
}
|
||||
inline void DSA_get0_key(const DSA *d, const BIGNUM **pub_key, const BIGNUM **priv_key)
|
||||
{ *pub_key = d->pub_key; *priv_key = d->priv_key; }
|
||||
inline int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s)
|
||||
{
|
||||
if (sig->r) BN_free (sig->r);
|
||||
if (sig->s) BN_free (sig->s);
|
||||
sig->r = r; sig->s = s; return 1;
|
||||
}
|
||||
inline void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps)
|
||||
{ *pr = sig->r; *ps = sig->s; }
|
||||
inline int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
|
||||
if (d->p) BN_free(d->p);
|
||||
if (d->q) BN_free(d->q);
|
||||
if (d->g) BN_free(d->g);
|
||||
d->p = p;
|
||||
d->q = q;
|
||||
d->g = g;
|
||||
return 1;
|
||||
}
|
||||
|
||||
inline int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s)
|
||||
{
|
||||
if (sig->r) BN_free (sig->r);
|
||||
if (sig->s) BN_free (sig->s);
|
||||
sig->r = r; sig->s = s; return 1;
|
||||
}
|
||||
inline void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps)
|
||||
{ *pr = sig->r; *ps = sig->s; }
|
||||
inline int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key) {
|
||||
if (d->pub_key) BN_free(d->pub_key);
|
||||
if (d->priv_key) BN_free(d->priv_key);
|
||||
d->pub_key = pub_key;
|
||||
d->priv_key = priv_key;
|
||||
return 1;
|
||||
}
|
||||
|
||||
inline int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
|
||||
{
|
||||
if (r->n) BN_free (r->n);
|
||||
if (r->e) BN_free (r->e);
|
||||
if (r->d) BN_free (r->d);
|
||||
r->n = n; r->e = e; r->d = d; return 1;
|
||||
}
|
||||
inline void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
|
||||
{ *n = r->n; *e = r->e; *d = r->d; }
|
||||
inline void DSA_get0_key(const DSA *d, const BIGNUM **pub_key, const BIGNUM **priv_key) {
|
||||
*pub_key = d->pub_key;
|
||||
*priv_key = d->priv_key;
|
||||
}
|
||||
|
||||
inline int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g)
|
||||
{
|
||||
if (dh->p) BN_free (dh->p);
|
||||
if (dh->q) BN_free (dh->q);
|
||||
if (dh->g) BN_free (dh->g);
|
||||
dh->p = p; dh->q = q; dh->g = g; return 1;
|
||||
}
|
||||
inline int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key)
|
||||
{
|
||||
if (dh->pub_key) BN_free (dh->pub_key);
|
||||
if (dh->priv_key) BN_free (dh->priv_key);
|
||||
dh->pub_key = pub_key; dh->priv_key = priv_key; return 1;
|
||||
}
|
||||
inline void DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key)
|
||||
{ *pub_key = dh->pub_key; *priv_key = dh->priv_key; }
|
||||
inline int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
|
||||
if (sig->r) BN_free(sig->r);
|
||||
if (sig->s) BN_free(sig->s);
|
||||
sig->r = r;
|
||||
sig->s = s;
|
||||
return 1;
|
||||
}
|
||||
|
||||
inline RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey)
|
||||
{ return pkey->pkey.rsa; }
|
||||
inline void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {
|
||||
*pr = sig->r;
|
||||
*ps = sig->s;
|
||||
}
|
||||
|
||||
inline EVP_MD_CTX *EVP_MD_CTX_new ()
|
||||
{ return EVP_MD_CTX_create(); }
|
||||
inline void EVP_MD_CTX_free (EVP_MD_CTX *ctx)
|
||||
{ EVP_MD_CTX_destroy (ctx); }
|
||||
inline int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
|
||||
if (sig->r) BN_free(sig->r);
|
||||
if (sig->s) BN_free(sig->s);
|
||||
sig->r = r;
|
||||
sig->s = s;
|
||||
return 1;
|
||||
}
|
||||
|
||||
inline void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {
|
||||
*pr = sig->r;
|
||||
*ps = sig->s;
|
||||
}
|
||||
|
||||
inline int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
|
||||
if (r->n) BN_free(r->n);
|
||||
if (r->e) BN_free(r->e);
|
||||
if (r->d) BN_free(r->d);
|
||||
r->n = n;
|
||||
r->e = e;
|
||||
r->d = d;
|
||||
return 1;
|
||||
}
|
||||
|
||||
inline void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) {
|
||||
*n = r->n;
|
||||
*e = r->e;
|
||||
*d = r->d;
|
||||
}
|
||||
|
||||
inline int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
|
||||
if (dh->p) BN_free(dh->p);
|
||||
if (dh->q) BN_free(dh->q);
|
||||
if (dh->g) BN_free(dh->g);
|
||||
dh->p = p;
|
||||
dh->q = q;
|
||||
dh->g = g;
|
||||
return 1;
|
||||
}
|
||||
|
||||
inline int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) {
|
||||
if (dh->pub_key) BN_free(dh->pub_key);
|
||||
if (dh->priv_key) BN_free(dh->priv_key);
|
||||
dh->pub_key = pub_key;
|
||||
dh->priv_key = priv_key;
|
||||
return 1;
|
||||
}
|
||||
|
||||
inline void DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key) {
|
||||
*pub_key = dh->pub_key;
|
||||
*priv_key = dh->priv_key;
|
||||
}
|
||||
|
||||
inline RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey) { return pkey->pkey.rsa; }
|
||||
|
||||
inline EVP_MD_CTX *EVP_MD_CTX_new() { return EVP_MD_CTX_create(); }
|
||||
|
||||
inline void EVP_MD_CTX_free(EVP_MD_CTX *ctx) { EVP_MD_CTX_destroy(ctx); }
|
||||
|
||||
// ssl
|
||||
#define TLS_method TLSv1_method
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue