i2pd/libi2pd/Crypto.h
Anatolii Cherednichenko 55534ea002 Reformat code
2022-08-30 02:11:28 +03:00

459 lines
13 KiB
C++

/*
* Copyright (c) 2013-2022, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#ifndef CRYPTO_H__
#define CRYPTO_H__
#include <inttypes.h>
#include <string>
#include <vector>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/aes.h>
#include <openssl/dsa.h>
#include <openssl/ecdsa.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/engine.h>
#include <openssl/opensslv.h>
#include "Base.h"
#include "Tag.h"
#include "CPU.h"
// recognize openssl version and features
#if (defined(LIBRESSL_VERSION_NUMBER) && (LIBRESSL_VERSION_NUMBER >= 0x3050200fL)) // LibreSSL 3.5.2 and above
# define LEGACY_OPENSSL 0
#elif ((OPENSSL_VERSION_NUMBER < 0x010100000) || defined(LIBRESSL_VERSION_NUMBER)) // 1.0.2 and below or LibreSSL
# define LEGACY_OPENSSL 1
# define X509_getm_notBefore X509_get_notBefore
# define X509_getm_notAfter X509_get_notAfter
#else
# define LEGACY_OPENSSL 0
# if (OPENSSL_VERSION_NUMBER >= 0x010101000) // 1.1.1
# define OPENSSL_HKDF 1
# define OPENSSL_EDDSA 1
# define OPENSSL_X25519 1
# if (OPENSSL_VERSION_NUMBER != 0x030000000) // 3.0.0, regression in SipHash
# define OPENSSL_SIPHASH 1
# endif
# endif
# if !defined OPENSSL_NO_CHACHA && !defined OPENSSL_NO_POLY1305 // some builds might not include them
# define OPENSSL_AEAD_CHACHA20_POLY1305 1
# endif
#endif
namespace i2p {
namespace crypto {
bool bn2buf(const BIGNUM *bn, uint8_t *buf, size_t len);
// DSA
DSA *CreateDSA();
// RSA
const BIGNUM *GetRSAE();
// DH
class DHKeys {
public:
DHKeys();
~DHKeys();
void GenerateKeys();
const uint8_t *GetPublicKey() const { return m_PublicKey; };
void Agree(const uint8_t *pub, uint8_t *shared);
private:
DH *m_DH;
uint8_t m_PublicKey[256];
};
// x25519
class X25519Keys {
public:
X25519Keys();
X25519Keys(const uint8_t *priv, const uint8_t *pub); // if pub is null, derive from priv
~X25519Keys();
void GenerateKeys();
const uint8_t *GetPublicKey() const { return m_PublicKey; };
void GetPrivateKey(uint8_t *priv) const;
void SetPrivateKey(const uint8_t *priv, bool calculatePublic = false);
bool Agree(const uint8_t *pub, uint8_t *shared);
bool IsElligatorIneligible() const { return m_IsElligatorIneligible; }
void SetElligatorIneligible() { m_IsElligatorIneligible = true; }
private:
uint8_t m_PublicKey[32];
#if OPENSSL_X25519
EVP_PKEY_CTX * m_Ctx;
EVP_PKEY * m_Pkey;
#else
BN_CTX *m_Ctx;
uint8_t m_PrivateKey[32];
#endif
bool m_IsElligatorIneligible = false; // true if definitely ineligible
};
// ElGamal
void ElGamalEncrypt(const uint8_t *key, const uint8_t *data,
uint8_t *encrypted); // 222 bytes data, 514 bytes encrypted
bool
ElGamalDecrypt(const uint8_t *key, const uint8_t *encrypted, uint8_t *data); // 514 bytes encrypted, 222 data
void GenerateElGamalKeyPair(uint8_t *priv, uint8_t *pub);
// ECIES
void ECIESEncrypt(const EC_GROUP *curve, const EC_POINT *key, const uint8_t *data,
uint8_t *encrypted); // 222 bytes data, 514 bytes encrypted
bool ECIESDecrypt(const EC_GROUP *curve, const BIGNUM *key, const uint8_t *encrypted,
uint8_t *data); // 514 bytes encrypted, 222 data
void GenerateECIESKeyPair(const EC_GROUP *curve, BIGNUM *&priv, EC_POINT *&pub);
// HMAC
typedef i2p::data::Tag<32> MACKey;
void HMACMD5Digest(uint8_t *msg, size_t len, const MACKey &key, uint8_t *digest);
// AES
struct ChipherBlock {
uint8_t buf[16];
void operator^=(const ChipherBlock &other) // XOR
{
if (!(((size_t) buf | (size_t) other.buf) & 0x03)) // multiple of 4 ?
{
for (int i = 0; i < 4; i++)
reinterpret_cast<uint32_t *>(buf)[i] ^= reinterpret_cast<const uint32_t *>(other.buf)[i];
} else {
for (int i = 0; i < 16; i++)
buf[i] ^= other.buf[i];
}
}
};
typedef i2p::data::Tag<32> AESKey;
template<size_t sz>
class AESAlignedBuffer // 16 bytes alignment
{
public:
AESAlignedBuffer() {
m_Buf = m_UnalignedBuffer;
uint8_t rem = ((size_t) m_Buf) & 0x0f;
if (rem)
m_Buf += (16 - rem);
}
operator uint8_t *() { return m_Buf; };
operator const uint8_t *() const { return m_Buf; };
ChipherBlock *GetChipherBlock() { return (ChipherBlock *) m_Buf; };
const ChipherBlock *GetChipherBlock() const { return (const ChipherBlock *) m_Buf; };
private:
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment
uint8_t *m_Buf;
};
#ifdef __AES__
class ECBCryptoAESNI
{
public:
uint8_t * GetKeySchedule () { return m_KeySchedule; };
protected:
void ExpandKey (const AESKey& key);
private:
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes
};
#endif
#ifdef __AES__
class ECBEncryption: public ECBCryptoAESNI
#else
class ECBEncryption
#endif
{
public:
void SetKey(const AESKey &key);
void Encrypt(const ChipherBlock *in, ChipherBlock *out);
private:
AES_KEY m_Key;
};
#ifdef __AES__
class ECBDecryption: public ECBCryptoAESNI
#else
class ECBDecryption
#endif
{
public:
void SetKey(const AESKey &key);
void Decrypt(const ChipherBlock *in, ChipherBlock *out);
private:
AES_KEY m_Key;
};
class CBCEncryption {
public:
CBCEncryption() { memset((uint8_t *) m_LastBlock, 0, 16); };
void SetKey(const AESKey &key) { m_ECBEncryption.SetKey(key); }; // 32 bytes
void SetIV(const uint8_t *iv) { memcpy((uint8_t *) m_LastBlock, iv, 16); }; // 16 bytes
void GetIV(uint8_t *iv) const { memcpy(iv, (const uint8_t *) m_LastBlock, 16); };
void Encrypt(int numBlocks, const ChipherBlock *in, ChipherBlock *out);
void Encrypt(const uint8_t *in, std::size_t len, uint8_t *out);
void Encrypt(const uint8_t *in, uint8_t *out); // one block
ECBEncryption &ECB() { return m_ECBEncryption; }
private:
AESAlignedBuffer<16> m_LastBlock;
ECBEncryption m_ECBEncryption;
};
class CBCDecryption {
public:
CBCDecryption() { memset((uint8_t *) m_IV, 0, 16); };
void SetKey(const AESKey &key) { m_ECBDecryption.SetKey(key); }; // 32 bytes
void SetIV(const uint8_t *iv) { memcpy((uint8_t *) m_IV, iv, 16); }; // 16 bytes
void GetIV(uint8_t *iv) const { memcpy(iv, (const uint8_t *) m_IV, 16); };
void Decrypt(int numBlocks, const ChipherBlock *in, ChipherBlock *out);
void Decrypt(const uint8_t *in, std::size_t len, uint8_t *out);
void Decrypt(const uint8_t *in, uint8_t *out); // one block
ECBDecryption &ECB() { return m_ECBDecryption; }
private:
AESAlignedBuffer<16> m_IV;
ECBDecryption m_ECBDecryption;
};
class TunnelEncryption // with double IV encryption
{
public:
void SetKeys(const AESKey &layerKey, const AESKey &ivKey) {
m_LayerEncryption.SetKey(layerKey);
m_IVEncryption.SetKey(ivKey);
}
void Encrypt(const uint8_t *in, uint8_t *out); // 1024 bytes (16 IV + 1008 data)
private:
ECBEncryption m_IVEncryption;
CBCEncryption m_LayerEncryption;
};
class TunnelDecryption // with double IV encryption
{
public:
void SetKeys(const AESKey &layerKey, const AESKey &ivKey) {
m_LayerDecryption.SetKey(layerKey);
m_IVDecryption.SetKey(ivKey);
}
void Decrypt(const uint8_t *in, uint8_t *out); // 1024 bytes (16 IV + 1008 data)
private:
ECBDecryption m_IVDecryption;
CBCDecryption m_LayerDecryption;
};
// AEAD/ChaCha20/Poly1305
bool
AEADChaCha20Poly1305(const uint8_t *msg, size_t msgLen, const uint8_t *ad, size_t adLen, const uint8_t *key,
const uint8_t *nonce, uint8_t *buf, size_t len, bool encrypt); // msgLen is len without tag
void AEADChaCha20Poly1305Encrypt(const std::vector<std::pair<uint8_t *, size_t> > &bufs, const uint8_t *key,
const uint8_t *nonce, uint8_t *mac); // encrypt multiple buffers with zero ad
// ChaCha20
void ChaCha20(const uint8_t *msg, size_t msgLen, const uint8_t *key, const uint8_t *nonce, uint8_t *out);
// HKDF
void HKDF(const uint8_t *salt, const uint8_t *key, size_t keyLen, const std::string &info, uint8_t *out,
size_t outLen = 64); // salt - 32, out - 32 or 64, info <= 32
// Noise
struct NoiseSymmetricState {
uint8_t m_H[32] /*h*/, m_CK[64] /*[ck, k]*/;
void MixHash(const uint8_t *buf, size_t len);
void MixHash(const std::vector<std::pair<uint8_t *, size_t> > &bufs);
void MixKey(const uint8_t *sharedSecret);
};
void InitNoiseNState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_N (tunnels, router)
void InitNoiseXKState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_XK (NTCP2)
void InitNoiseXKState1(NoiseSymmetricState &state, const uint8_t *pub); // Noise_XK (SSU2)
void InitNoiseIKState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_IK (ratchets)
// init and terminate
void InitCrypto(bool precomputation, bool aesni, bool avx, bool force);
void TerminateCrypto();
}
}
// take care about openssl below 1.1.0
#if LEGACY_OPENSSL
// define getters and setters introduced in 1.1.0
inline int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
if (d->p) BN_free(d->p);
if (d->q) BN_free(d->q);
if (d->g) BN_free(d->g);
d->p = p;
d->q = q;
d->g = g;
return 1;
}
inline int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key) {
if (d->pub_key) BN_free(d->pub_key);
if (d->priv_key) BN_free(d->priv_key);
d->pub_key = pub_key;
d->priv_key = priv_key;
return 1;
}
inline void DSA_get0_key(const DSA *d, const BIGNUM **pub_key, const BIGNUM **priv_key) {
*pub_key = d->pub_key;
*priv_key = d->priv_key;
}
inline int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
if (sig->r) BN_free(sig->r);
if (sig->s) BN_free(sig->s);
sig->r = r;
sig->s = s;
return 1;
}
inline void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {
*pr = sig->r;
*ps = sig->s;
}
inline int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
if (sig->r) BN_free(sig->r);
if (sig->s) BN_free(sig->s);
sig->r = r;
sig->s = s;
return 1;
}
inline void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {
*pr = sig->r;
*ps = sig->s;
}
inline int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
if (r->n) BN_free(r->n);
if (r->e) BN_free(r->e);
if (r->d) BN_free(r->d);
r->n = n;
r->e = e;
r->d = d;
return 1;
}
inline void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) {
*n = r->n;
*e = r->e;
*d = r->d;
}
inline int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
if (dh->p) BN_free(dh->p);
if (dh->q) BN_free(dh->q);
if (dh->g) BN_free(dh->g);
dh->p = p;
dh->q = q;
dh->g = g;
return 1;
}
inline int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) {
if (dh->pub_key) BN_free(dh->pub_key);
if (dh->priv_key) BN_free(dh->priv_key);
dh->pub_key = pub_key;
dh->priv_key = priv_key;
return 1;
}
inline void DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key) {
*pub_key = dh->pub_key;
*priv_key = dh->priv_key;
}
inline RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey) { return pkey->pkey.rsa; }
inline EVP_MD_CTX *EVP_MD_CTX_new() { return EVP_MD_CTX_create(); }
inline void EVP_MD_CTX_free(EVP_MD_CTX *ctx) { EVP_MD_CTX_destroy(ctx); }
// ssl
#define TLS_method TLSv1_method
#endif
#endif