mirror of
https://github.com/PurpleI2P/i2pd.git
synced 2025-04-30 20:52:30 +02:00
459 lines
13 KiB
C++
459 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2013-2022, The PurpleI2P Project
|
|
*
|
|
* This file is part of Purple i2pd project and licensed under BSD3
|
|
*
|
|
* See full license text in LICENSE file at top of project tree
|
|
*/
|
|
|
|
#ifndef CRYPTO_H__
|
|
#define CRYPTO_H__
|
|
|
|
#include <inttypes.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/dsa.h>
|
|
#include <openssl/ecdsa.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/opensslv.h>
|
|
|
|
#include "Base.h"
|
|
#include "Tag.h"
|
|
#include "CPU.h"
|
|
|
|
// recognize openssl version and features
|
|
#if (defined(LIBRESSL_VERSION_NUMBER) && (LIBRESSL_VERSION_NUMBER >= 0x3050200fL)) // LibreSSL 3.5.2 and above
|
|
# define LEGACY_OPENSSL 0
|
|
#elif ((OPENSSL_VERSION_NUMBER < 0x010100000) || defined(LIBRESSL_VERSION_NUMBER)) // 1.0.2 and below or LibreSSL
|
|
# define LEGACY_OPENSSL 1
|
|
# define X509_getm_notBefore X509_get_notBefore
|
|
# define X509_getm_notAfter X509_get_notAfter
|
|
#else
|
|
# define LEGACY_OPENSSL 0
|
|
# if (OPENSSL_VERSION_NUMBER >= 0x010101000) // 1.1.1
|
|
# define OPENSSL_HKDF 1
|
|
# define OPENSSL_EDDSA 1
|
|
# define OPENSSL_X25519 1
|
|
# if (OPENSSL_VERSION_NUMBER != 0x030000000) // 3.0.0, regression in SipHash
|
|
# define OPENSSL_SIPHASH 1
|
|
# endif
|
|
# endif
|
|
# if !defined OPENSSL_NO_CHACHA && !defined OPENSSL_NO_POLY1305 // some builds might not include them
|
|
# define OPENSSL_AEAD_CHACHA20_POLY1305 1
|
|
# endif
|
|
#endif
|
|
|
|
namespace i2p {
|
|
namespace crypto {
|
|
bool bn2buf(const BIGNUM *bn, uint8_t *buf, size_t len);
|
|
|
|
// DSA
|
|
DSA *CreateDSA();
|
|
|
|
// RSA
|
|
const BIGNUM *GetRSAE();
|
|
|
|
// DH
|
|
class DHKeys {
|
|
public:
|
|
|
|
DHKeys();
|
|
|
|
~DHKeys();
|
|
|
|
void GenerateKeys();
|
|
|
|
const uint8_t *GetPublicKey() const { return m_PublicKey; };
|
|
|
|
void Agree(const uint8_t *pub, uint8_t *shared);
|
|
|
|
private:
|
|
|
|
DH *m_DH;
|
|
uint8_t m_PublicKey[256];
|
|
};
|
|
|
|
// x25519
|
|
class X25519Keys {
|
|
public:
|
|
|
|
X25519Keys();
|
|
|
|
X25519Keys(const uint8_t *priv, const uint8_t *pub); // if pub is null, derive from priv
|
|
~X25519Keys();
|
|
|
|
void GenerateKeys();
|
|
|
|
const uint8_t *GetPublicKey() const { return m_PublicKey; };
|
|
|
|
void GetPrivateKey(uint8_t *priv) const;
|
|
|
|
void SetPrivateKey(const uint8_t *priv, bool calculatePublic = false);
|
|
|
|
bool Agree(const uint8_t *pub, uint8_t *shared);
|
|
|
|
bool IsElligatorIneligible() const { return m_IsElligatorIneligible; }
|
|
|
|
void SetElligatorIneligible() { m_IsElligatorIneligible = true; }
|
|
|
|
private:
|
|
|
|
uint8_t m_PublicKey[32];
|
|
#if OPENSSL_X25519
|
|
EVP_PKEY_CTX * m_Ctx;
|
|
EVP_PKEY * m_Pkey;
|
|
#else
|
|
BN_CTX *m_Ctx;
|
|
uint8_t m_PrivateKey[32];
|
|
#endif
|
|
bool m_IsElligatorIneligible = false; // true if definitely ineligible
|
|
};
|
|
|
|
// ElGamal
|
|
void ElGamalEncrypt(const uint8_t *key, const uint8_t *data,
|
|
uint8_t *encrypted); // 222 bytes data, 514 bytes encrypted
|
|
bool
|
|
ElGamalDecrypt(const uint8_t *key, const uint8_t *encrypted, uint8_t *data); // 514 bytes encrypted, 222 data
|
|
void GenerateElGamalKeyPair(uint8_t *priv, uint8_t *pub);
|
|
|
|
// ECIES
|
|
void ECIESEncrypt(const EC_GROUP *curve, const EC_POINT *key, const uint8_t *data,
|
|
uint8_t *encrypted); // 222 bytes data, 514 bytes encrypted
|
|
bool ECIESDecrypt(const EC_GROUP *curve, const BIGNUM *key, const uint8_t *encrypted,
|
|
uint8_t *data); // 514 bytes encrypted, 222 data
|
|
void GenerateECIESKeyPair(const EC_GROUP *curve, BIGNUM *&priv, EC_POINT *&pub);
|
|
|
|
// HMAC
|
|
typedef i2p::data::Tag<32> MACKey;
|
|
|
|
void HMACMD5Digest(uint8_t *msg, size_t len, const MACKey &key, uint8_t *digest);
|
|
|
|
// AES
|
|
struct ChipherBlock {
|
|
uint8_t buf[16];
|
|
|
|
void operator^=(const ChipherBlock &other) // XOR
|
|
{
|
|
if (!(((size_t) buf | (size_t) other.buf) & 0x03)) // multiple of 4 ?
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
reinterpret_cast<uint32_t *>(buf)[i] ^= reinterpret_cast<const uint32_t *>(other.buf)[i];
|
|
} else {
|
|
for (int i = 0; i < 16; i++)
|
|
buf[i] ^= other.buf[i];
|
|
}
|
|
}
|
|
};
|
|
|
|
typedef i2p::data::Tag<32> AESKey;
|
|
|
|
template<size_t sz>
|
|
class AESAlignedBuffer // 16 bytes alignment
|
|
{
|
|
public:
|
|
|
|
AESAlignedBuffer() {
|
|
m_Buf = m_UnalignedBuffer;
|
|
uint8_t rem = ((size_t) m_Buf) & 0x0f;
|
|
if (rem)
|
|
m_Buf += (16 - rem);
|
|
}
|
|
|
|
operator uint8_t *() { return m_Buf; };
|
|
|
|
operator const uint8_t *() const { return m_Buf; };
|
|
|
|
ChipherBlock *GetChipherBlock() { return (ChipherBlock *) m_Buf; };
|
|
|
|
const ChipherBlock *GetChipherBlock() const { return (const ChipherBlock *) m_Buf; };
|
|
|
|
private:
|
|
|
|
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment
|
|
uint8_t *m_Buf;
|
|
};
|
|
|
|
|
|
#ifdef __AES__
|
|
class ECBCryptoAESNI
|
|
{
|
|
public:
|
|
|
|
uint8_t * GetKeySchedule () { return m_KeySchedule; };
|
|
|
|
protected:
|
|
|
|
void ExpandKey (const AESKey& key);
|
|
|
|
private:
|
|
|
|
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes
|
|
};
|
|
#endif
|
|
|
|
#ifdef __AES__
|
|
class ECBEncryption: public ECBCryptoAESNI
|
|
#else
|
|
|
|
class ECBEncryption
|
|
#endif
|
|
{
|
|
public:
|
|
|
|
void SetKey(const AESKey &key);
|
|
|
|
void Encrypt(const ChipherBlock *in, ChipherBlock *out);
|
|
|
|
private:
|
|
AES_KEY m_Key;
|
|
};
|
|
|
|
#ifdef __AES__
|
|
class ECBDecryption: public ECBCryptoAESNI
|
|
#else
|
|
|
|
class ECBDecryption
|
|
#endif
|
|
{
|
|
public:
|
|
|
|
void SetKey(const AESKey &key);
|
|
|
|
void Decrypt(const ChipherBlock *in, ChipherBlock *out);
|
|
|
|
private:
|
|
AES_KEY m_Key;
|
|
};
|
|
|
|
class CBCEncryption {
|
|
public:
|
|
|
|
CBCEncryption() { memset((uint8_t *) m_LastBlock, 0, 16); };
|
|
|
|
void SetKey(const AESKey &key) { m_ECBEncryption.SetKey(key); }; // 32 bytes
|
|
void SetIV(const uint8_t *iv) { memcpy((uint8_t *) m_LastBlock, iv, 16); }; // 16 bytes
|
|
void GetIV(uint8_t *iv) const { memcpy(iv, (const uint8_t *) m_LastBlock, 16); };
|
|
|
|
void Encrypt(int numBlocks, const ChipherBlock *in, ChipherBlock *out);
|
|
|
|
void Encrypt(const uint8_t *in, std::size_t len, uint8_t *out);
|
|
|
|
void Encrypt(const uint8_t *in, uint8_t *out); // one block
|
|
|
|
ECBEncryption &ECB() { return m_ECBEncryption; }
|
|
|
|
private:
|
|
|
|
AESAlignedBuffer<16> m_LastBlock;
|
|
|
|
ECBEncryption m_ECBEncryption;
|
|
};
|
|
|
|
class CBCDecryption {
|
|
public:
|
|
|
|
CBCDecryption() { memset((uint8_t *) m_IV, 0, 16); };
|
|
|
|
void SetKey(const AESKey &key) { m_ECBDecryption.SetKey(key); }; // 32 bytes
|
|
void SetIV(const uint8_t *iv) { memcpy((uint8_t *) m_IV, iv, 16); }; // 16 bytes
|
|
void GetIV(uint8_t *iv) const { memcpy(iv, (const uint8_t *) m_IV, 16); };
|
|
|
|
void Decrypt(int numBlocks, const ChipherBlock *in, ChipherBlock *out);
|
|
|
|
void Decrypt(const uint8_t *in, std::size_t len, uint8_t *out);
|
|
|
|
void Decrypt(const uint8_t *in, uint8_t *out); // one block
|
|
|
|
ECBDecryption &ECB() { return m_ECBDecryption; }
|
|
|
|
private:
|
|
|
|
AESAlignedBuffer<16> m_IV;
|
|
ECBDecryption m_ECBDecryption;
|
|
};
|
|
|
|
class TunnelEncryption // with double IV encryption
|
|
{
|
|
public:
|
|
|
|
void SetKeys(const AESKey &layerKey, const AESKey &ivKey) {
|
|
m_LayerEncryption.SetKey(layerKey);
|
|
m_IVEncryption.SetKey(ivKey);
|
|
}
|
|
|
|
void Encrypt(const uint8_t *in, uint8_t *out); // 1024 bytes (16 IV + 1008 data)
|
|
|
|
private:
|
|
|
|
ECBEncryption m_IVEncryption;
|
|
CBCEncryption m_LayerEncryption;
|
|
};
|
|
|
|
class TunnelDecryption // with double IV encryption
|
|
{
|
|
public:
|
|
|
|
void SetKeys(const AESKey &layerKey, const AESKey &ivKey) {
|
|
m_LayerDecryption.SetKey(layerKey);
|
|
m_IVDecryption.SetKey(ivKey);
|
|
}
|
|
|
|
void Decrypt(const uint8_t *in, uint8_t *out); // 1024 bytes (16 IV + 1008 data)
|
|
|
|
private:
|
|
|
|
ECBDecryption m_IVDecryption;
|
|
CBCDecryption m_LayerDecryption;
|
|
};
|
|
|
|
// AEAD/ChaCha20/Poly1305
|
|
bool
|
|
AEADChaCha20Poly1305(const uint8_t *msg, size_t msgLen, const uint8_t *ad, size_t adLen, const uint8_t *key,
|
|
const uint8_t *nonce, uint8_t *buf, size_t len, bool encrypt); // msgLen is len without tag
|
|
|
|
void AEADChaCha20Poly1305Encrypt(const std::vector<std::pair<uint8_t *, size_t> > &bufs, const uint8_t *key,
|
|
const uint8_t *nonce, uint8_t *mac); // encrypt multiple buffers with zero ad
|
|
|
|
// ChaCha20
|
|
void ChaCha20(const uint8_t *msg, size_t msgLen, const uint8_t *key, const uint8_t *nonce, uint8_t *out);
|
|
|
|
// HKDF
|
|
|
|
void HKDF(const uint8_t *salt, const uint8_t *key, size_t keyLen, const std::string &info, uint8_t *out,
|
|
size_t outLen = 64); // salt - 32, out - 32 or 64, info <= 32
|
|
|
|
// Noise
|
|
|
|
struct NoiseSymmetricState {
|
|
uint8_t m_H[32] /*h*/, m_CK[64] /*[ck, k]*/;
|
|
|
|
void MixHash(const uint8_t *buf, size_t len);
|
|
|
|
void MixHash(const std::vector<std::pair<uint8_t *, size_t> > &bufs);
|
|
|
|
void MixKey(const uint8_t *sharedSecret);
|
|
};
|
|
|
|
void InitNoiseNState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_N (tunnels, router)
|
|
void InitNoiseXKState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_XK (NTCP2)
|
|
void InitNoiseXKState1(NoiseSymmetricState &state, const uint8_t *pub); // Noise_XK (SSU2)
|
|
void InitNoiseIKState(NoiseSymmetricState &state, const uint8_t *pub); // Noise_IK (ratchets)
|
|
|
|
// init and terminate
|
|
void InitCrypto(bool precomputation, bool aesni, bool avx, bool force);
|
|
|
|
void TerminateCrypto();
|
|
}
|
|
}
|
|
|
|
// take care about openssl below 1.1.0
|
|
#if LEGACY_OPENSSL
|
|
|
|
// define getters and setters introduced in 1.1.0
|
|
inline int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
|
|
if (d->p) BN_free(d->p);
|
|
if (d->q) BN_free(d->q);
|
|
if (d->g) BN_free(d->g);
|
|
d->p = p;
|
|
d->q = q;
|
|
d->g = g;
|
|
return 1;
|
|
}
|
|
|
|
inline int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key) {
|
|
if (d->pub_key) BN_free(d->pub_key);
|
|
if (d->priv_key) BN_free(d->priv_key);
|
|
d->pub_key = pub_key;
|
|
d->priv_key = priv_key;
|
|
return 1;
|
|
}
|
|
|
|
inline void DSA_get0_key(const DSA *d, const BIGNUM **pub_key, const BIGNUM **priv_key) {
|
|
*pub_key = d->pub_key;
|
|
*priv_key = d->priv_key;
|
|
}
|
|
|
|
inline int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
|
|
if (sig->r) BN_free(sig->r);
|
|
if (sig->s) BN_free(sig->s);
|
|
sig->r = r;
|
|
sig->s = s;
|
|
return 1;
|
|
}
|
|
|
|
inline void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {
|
|
*pr = sig->r;
|
|
*ps = sig->s;
|
|
}
|
|
|
|
inline int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
|
|
if (sig->r) BN_free(sig->r);
|
|
if (sig->s) BN_free(sig->s);
|
|
sig->r = r;
|
|
sig->s = s;
|
|
return 1;
|
|
}
|
|
|
|
inline void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {
|
|
*pr = sig->r;
|
|
*ps = sig->s;
|
|
}
|
|
|
|
inline int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
|
|
if (r->n) BN_free(r->n);
|
|
if (r->e) BN_free(r->e);
|
|
if (r->d) BN_free(r->d);
|
|
r->n = n;
|
|
r->e = e;
|
|
r->d = d;
|
|
return 1;
|
|
}
|
|
|
|
inline void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) {
|
|
*n = r->n;
|
|
*e = r->e;
|
|
*d = r->d;
|
|
}
|
|
|
|
inline int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
|
|
if (dh->p) BN_free(dh->p);
|
|
if (dh->q) BN_free(dh->q);
|
|
if (dh->g) BN_free(dh->g);
|
|
dh->p = p;
|
|
dh->q = q;
|
|
dh->g = g;
|
|
return 1;
|
|
}
|
|
|
|
inline int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) {
|
|
if (dh->pub_key) BN_free(dh->pub_key);
|
|
if (dh->priv_key) BN_free(dh->priv_key);
|
|
dh->pub_key = pub_key;
|
|
dh->priv_key = priv_key;
|
|
return 1;
|
|
}
|
|
|
|
inline void DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key) {
|
|
*pub_key = dh->pub_key;
|
|
*priv_key = dh->priv_key;
|
|
}
|
|
|
|
inline RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey) { return pkey->pkey.rsa; }
|
|
|
|
inline EVP_MD_CTX *EVP_MD_CTX_new() { return EVP_MD_CTX_create(); }
|
|
|
|
inline void EVP_MD_CTX_free(EVP_MD_CTX *ctx) { EVP_MD_CTX_destroy(ctx); }
|
|
|
|
// ssl
|
|
#define TLS_method TLSv1_method
|
|
|
|
#endif
|
|
|
|
#endif
|