mirror of
https://github.com/PurpleI2P/i2pd.git
synced 2025-01-22 13:27:17 +01:00
1442 lines
40 KiB
C++
1442 lines
40 KiB
C++
/*
|
|
* Copyright (c) 2013-2021, The PurpleI2P Project
|
|
*
|
|
* This file is part of Purple i2pd project and licensed under BSD3
|
|
*
|
|
* See full license text in LICENSE file at top of project tree
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <mutex>
|
|
#include <memory>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/md5.h>
|
|
#include <openssl/crypto.h>
|
|
#include "TunnelBase.h"
|
|
#include <openssl/ssl.h>
|
|
#if OPENSSL_HKDF
|
|
#include <openssl/kdf.h>
|
|
#endif
|
|
#if !OPENSSL_AEAD_CHACHA20_POLY1305
|
|
#include "ChaCha20.h"
|
|
#include "Poly1305.h"
|
|
#endif
|
|
#include "Crypto.h"
|
|
#include "Ed25519.h"
|
|
#include "I2PEndian.h"
|
|
#include "Log.h"
|
|
|
|
namespace i2p
|
|
{
|
|
namespace crypto
|
|
{
|
|
const uint8_t elgp_[256]=
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
|
|
0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
|
|
0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
|
|
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37,
|
|
0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6,
|
|
0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
|
|
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6,
|
|
0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05,
|
|
0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
|
|
0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB,
|
|
0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04,
|
|
0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B,
|
|
0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F,
|
|
0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18,
|
|
0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10,
|
|
0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
|
|
};
|
|
|
|
const int elgg_ = 2;
|
|
|
|
const uint8_t dsap_[128]=
|
|
{
|
|
0x9c, 0x05, 0xb2, 0xaa, 0x96, 0x0d, 0x9b, 0x97, 0xb8, 0x93, 0x19, 0x63, 0xc9, 0xcc, 0x9e, 0x8c,
|
|
0x30, 0x26, 0xe9, 0xb8, 0xed, 0x92, 0xfa, 0xd0, 0xa6, 0x9c, 0xc8, 0x86, 0xd5, 0xbf, 0x80, 0x15,
|
|
0xfc, 0xad, 0xae, 0x31, 0xa0, 0xad, 0x18, 0xfa, 0xb3, 0xf0, 0x1b, 0x00, 0xa3, 0x58, 0xde, 0x23,
|
|
0x76, 0x55, 0xc4, 0x96, 0x4a, 0xfa, 0xa2, 0xb3, 0x37, 0xe9, 0x6a, 0xd3, 0x16, 0xb9, 0xfb, 0x1c,
|
|
0xc5, 0x64, 0xb5, 0xae, 0xc5, 0xb6, 0x9a, 0x9f, 0xf6, 0xc3, 0xe4, 0x54, 0x87, 0x07, 0xfe, 0xf8,
|
|
0x50, 0x3d, 0x91, 0xdd, 0x86, 0x02, 0xe8, 0x67, 0xe6, 0xd3, 0x5d, 0x22, 0x35, 0xc1, 0x86, 0x9c,
|
|
0xe2, 0x47, 0x9c, 0x3b, 0x9d, 0x54, 0x01, 0xde, 0x04, 0xe0, 0x72, 0x7f, 0xb3, 0x3d, 0x65, 0x11,
|
|
0x28, 0x5d, 0x4c, 0xf2, 0x95, 0x38, 0xd9, 0xe3, 0xb6, 0x05, 0x1f, 0x5b, 0x22, 0xcc, 0x1c, 0x93
|
|
};
|
|
|
|
const uint8_t dsaq_[20]=
|
|
{
|
|
0xa5, 0xdf, 0xc2, 0x8f, 0xef, 0x4c, 0xa1, 0xe2, 0x86, 0x74, 0x4c, 0xd8, 0xee, 0xd9, 0xd2, 0x9d,
|
|
0x68, 0x40, 0x46, 0xb7
|
|
};
|
|
|
|
const uint8_t dsag_[128]=
|
|
{
|
|
0x0c, 0x1f, 0x4d, 0x27, 0xd4, 0x00, 0x93, 0xb4, 0x29, 0xe9, 0x62, 0xd7, 0x22, 0x38, 0x24, 0xe0,
|
|
0xbb, 0xc4, 0x7e, 0x7c, 0x83, 0x2a, 0x39, 0x23, 0x6f, 0xc6, 0x83, 0xaf, 0x84, 0x88, 0x95, 0x81,
|
|
0x07, 0x5f, 0xf9, 0x08, 0x2e, 0xd3, 0x23, 0x53, 0xd4, 0x37, 0x4d, 0x73, 0x01, 0xcd, 0xa1, 0xd2,
|
|
0x3c, 0x43, 0x1f, 0x46, 0x98, 0x59, 0x9d, 0xda, 0x02, 0x45, 0x18, 0x24, 0xff, 0x36, 0x97, 0x52,
|
|
0x59, 0x36, 0x47, 0xcc, 0x3d, 0xdc, 0x19, 0x7d, 0xe9, 0x85, 0xe4, 0x3d, 0x13, 0x6c, 0xdc, 0xfc,
|
|
0x6b, 0xd5, 0x40, 0x9c, 0xd2, 0xf4, 0x50, 0x82, 0x11, 0x42, 0xa5, 0xe6, 0xf8, 0xeb, 0x1c, 0x3a,
|
|
0xb5, 0xd0, 0x48, 0x4b, 0x81, 0x29, 0xfc, 0xf1, 0x7b, 0xce, 0x4f, 0x7f, 0x33, 0x32, 0x1c, 0x3c,
|
|
0xb3, 0xdb, 0xb1, 0x4a, 0x90, 0x5e, 0x7b, 0x2b, 0x3e, 0x93, 0xbe, 0x47, 0x08, 0xcb, 0xcc, 0x82
|
|
};
|
|
|
|
const int rsae_ = 65537;
|
|
|
|
struct CryptoConstants
|
|
{
|
|
// DH/ElGamal
|
|
BIGNUM * elgp;
|
|
BIGNUM * elgg;
|
|
|
|
// DSA
|
|
BIGNUM * dsap;
|
|
BIGNUM * dsaq;
|
|
BIGNUM * dsag;
|
|
|
|
// RSA
|
|
BIGNUM * rsae;
|
|
|
|
CryptoConstants (const uint8_t * elgp_, int elgg_, const uint8_t * dsap_,
|
|
const uint8_t * dsaq_, const uint8_t * dsag_, int rsae_)
|
|
{
|
|
elgp = BN_new ();
|
|
BN_bin2bn (elgp_, 256, elgp);
|
|
elgg = BN_new ();
|
|
BN_set_word (elgg, elgg_);
|
|
dsap = BN_new ();
|
|
BN_bin2bn (dsap_, 128, dsap);
|
|
dsaq = BN_new ();
|
|
BN_bin2bn (dsaq_, 20, dsaq);
|
|
dsag = BN_new ();
|
|
BN_bin2bn (dsag_, 128, dsag);
|
|
rsae = BN_new ();
|
|
BN_set_word (rsae, rsae_);
|
|
}
|
|
|
|
~CryptoConstants ()
|
|
{
|
|
BN_free (elgp); BN_free (elgg); BN_free (dsap); BN_free (dsaq); BN_free (dsag); BN_free (rsae);
|
|
}
|
|
};
|
|
|
|
static const CryptoConstants& GetCryptoConstants ()
|
|
{
|
|
static CryptoConstants cryptoConstants (elgp_, elgg_, dsap_, dsaq_, dsag_, rsae_);
|
|
return cryptoConstants;
|
|
}
|
|
|
|
bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len)
|
|
{
|
|
int offset = len - BN_num_bytes (bn);
|
|
if (offset < 0) return false;
|
|
BN_bn2bin (bn, buf + offset);
|
|
memset (buf, 0, offset);
|
|
return true;
|
|
}
|
|
|
|
// RSA
|
|
#define rsae GetCryptoConstants ().rsae
|
|
const BIGNUM * GetRSAE ()
|
|
{
|
|
return rsae;
|
|
}
|
|
|
|
// DSA
|
|
#define dsap GetCryptoConstants ().dsap
|
|
#define dsaq GetCryptoConstants ().dsaq
|
|
#define dsag GetCryptoConstants ().dsag
|
|
DSA * CreateDSA ()
|
|
{
|
|
DSA * dsa = DSA_new ();
|
|
DSA_set0_pqg (dsa, BN_dup (dsap), BN_dup (dsaq), BN_dup (dsag));
|
|
DSA_set0_key (dsa, NULL, NULL);
|
|
return dsa;
|
|
}
|
|
|
|
// DH/ElGamal
|
|
|
|
const int ELGAMAL_SHORT_EXPONENT_NUM_BITS = 226;
|
|
const int ELGAMAL_SHORT_EXPONENT_NUM_BYTES = ELGAMAL_SHORT_EXPONENT_NUM_BITS/8+1;
|
|
const int ELGAMAL_FULL_EXPONENT_NUM_BITS = 2048;
|
|
const int ELGAMAL_FULL_EXPONENT_NUM_BYTES = ELGAMAL_FULL_EXPONENT_NUM_BITS/8;
|
|
|
|
#define elgp GetCryptoConstants ().elgp
|
|
#define elgg GetCryptoConstants ().elgg
|
|
|
|
static BN_MONT_CTX * g_MontCtx = nullptr;
|
|
static void PrecalculateElggTable (BIGNUM * table[][255], int len) // table is len's array of array of 255 bignums
|
|
{
|
|
if (len <= 0) return;
|
|
BN_CTX * ctx = BN_CTX_new ();
|
|
g_MontCtx = BN_MONT_CTX_new ();
|
|
BN_MONT_CTX_set (g_MontCtx, elgp, ctx);
|
|
auto montCtx = BN_MONT_CTX_new ();
|
|
BN_MONT_CTX_copy (montCtx, g_MontCtx);
|
|
for (int i = 0; i < len; i++)
|
|
{
|
|
table[i][0] = BN_new ();
|
|
if (!i)
|
|
BN_to_montgomery (table[0][0], elgg, montCtx, ctx);
|
|
else
|
|
BN_mod_mul_montgomery (table[i][0], table[i-1][254], table[i-1][0], montCtx, ctx);
|
|
for (int j = 1; j < 255; j++)
|
|
{
|
|
table[i][j] = BN_new ();
|
|
BN_mod_mul_montgomery (table[i][j], table[i][j-1], table[i][0], montCtx, ctx);
|
|
}
|
|
}
|
|
BN_MONT_CTX_free (montCtx);
|
|
BN_CTX_free (ctx);
|
|
}
|
|
|
|
static void DestroyElggTable (BIGNUM * table[][255], int len)
|
|
{
|
|
for (int i = 0; i < len; i++)
|
|
for (int j = 0; j < 255; j++)
|
|
{
|
|
BN_free (table[i][j]);
|
|
table[i][j] = nullptr;
|
|
}
|
|
BN_MONT_CTX_free (g_MontCtx);
|
|
}
|
|
|
|
static BIGNUM * ElggPow (const uint8_t * exp, int len, BIGNUM * table[][255], BN_CTX * ctx)
|
|
// exp is in Big Endian
|
|
{
|
|
if (len <= 0) return nullptr;
|
|
auto montCtx = BN_MONT_CTX_new ();
|
|
BN_MONT_CTX_copy (montCtx, g_MontCtx);
|
|
BIGNUM * res = nullptr;
|
|
for (int i = 0; i < len; i++)
|
|
{
|
|
if (res)
|
|
{
|
|
if (exp[i])
|
|
BN_mod_mul_montgomery (res, res, table[len-1-i][exp[i]-1], montCtx, ctx);
|
|
}
|
|
else if (exp[i])
|
|
res = BN_dup (table[len-i-1][exp[i]-1]);
|
|
}
|
|
if (res)
|
|
BN_from_montgomery (res, res, montCtx, ctx);
|
|
BN_MONT_CTX_free (montCtx);
|
|
return res;
|
|
}
|
|
|
|
static BIGNUM * ElggPow (const BIGNUM * exp, BIGNUM * table[][255], BN_CTX * ctx)
|
|
{
|
|
auto len = BN_num_bytes (exp);
|
|
uint8_t * buf = new uint8_t[len];
|
|
BN_bn2bin (exp, buf);
|
|
auto ret = ElggPow (buf, len, table, ctx);
|
|
delete[] buf;
|
|
return ret;
|
|
}
|
|
|
|
static BIGNUM * (* g_ElggTable)[255] = nullptr;
|
|
|
|
// DH
|
|
|
|
DHKeys::DHKeys ()
|
|
{
|
|
m_DH = DH_new ();
|
|
DH_set0_pqg (m_DH, BN_dup (elgp), NULL, BN_dup (elgg));
|
|
DH_set0_key (m_DH, NULL, NULL);
|
|
}
|
|
|
|
DHKeys::~DHKeys ()
|
|
{
|
|
DH_free (m_DH);
|
|
}
|
|
|
|
void DHKeys::GenerateKeys ()
|
|
{
|
|
BIGNUM * priv_key = NULL, * pub_key = NULL;
|
|
#if !defined(__x86_64__) // use short exponent for non x64
|
|
priv_key = BN_new ();
|
|
BN_rand (priv_key, ELGAMAL_SHORT_EXPONENT_NUM_BITS, 0, 1);
|
|
#endif
|
|
if (g_ElggTable)
|
|
{
|
|
#if defined(__x86_64__)
|
|
priv_key = BN_new ();
|
|
BN_rand (priv_key, ELGAMAL_FULL_EXPONENT_NUM_BITS, 0, 1);
|
|
#endif
|
|
auto ctx = BN_CTX_new ();
|
|
pub_key = ElggPow (priv_key, g_ElggTable, ctx);
|
|
DH_set0_key (m_DH, pub_key, priv_key);
|
|
BN_CTX_free (ctx);
|
|
}
|
|
else
|
|
{
|
|
DH_set0_key (m_DH, NULL, priv_key);
|
|
DH_generate_key (m_DH);
|
|
DH_get0_key (m_DH, (const BIGNUM **)&pub_key, (const BIGNUM **)&priv_key);
|
|
}
|
|
|
|
bn2buf (pub_key, m_PublicKey, 256);
|
|
}
|
|
|
|
void DHKeys::Agree (const uint8_t * pub, uint8_t * shared)
|
|
{
|
|
BIGNUM * pk = BN_bin2bn (pub, 256, NULL);
|
|
DH_compute_key (shared, pk, m_DH);
|
|
BN_free (pk);
|
|
}
|
|
|
|
// x25519
|
|
X25519Keys::X25519Keys ()
|
|
{
|
|
#if OPENSSL_X25519
|
|
m_Ctx = EVP_PKEY_CTX_new_id (NID_X25519, NULL);
|
|
m_Pkey = nullptr;
|
|
#else
|
|
m_Ctx = BN_CTX_new ();
|
|
#endif
|
|
}
|
|
|
|
X25519Keys::X25519Keys (const uint8_t * priv, const uint8_t * pub)
|
|
{
|
|
#if OPENSSL_X25519
|
|
m_Pkey = EVP_PKEY_new_raw_private_key (EVP_PKEY_X25519, NULL, priv, 32);
|
|
m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL);
|
|
if (pub)
|
|
memcpy (m_PublicKey, pub, 32); // TODO: verify against m_Pkey
|
|
else
|
|
{
|
|
size_t len = 32;
|
|
EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len);
|
|
}
|
|
#else
|
|
m_Ctx = BN_CTX_new ();
|
|
memcpy (m_PrivateKey, priv, 32);
|
|
if (pub)
|
|
memcpy (m_PublicKey, pub, 32);
|
|
else
|
|
GetEd25519 ()->ScalarMulB (m_PrivateKey, m_PublicKey, m_Ctx);
|
|
#endif
|
|
}
|
|
|
|
X25519Keys::~X25519Keys ()
|
|
{
|
|
#if OPENSSL_X25519
|
|
EVP_PKEY_CTX_free (m_Ctx);
|
|
if (m_Pkey) EVP_PKEY_free (m_Pkey);
|
|
#else
|
|
BN_CTX_free (m_Ctx);
|
|
#endif
|
|
}
|
|
|
|
void X25519Keys::GenerateKeys ()
|
|
{
|
|
#if OPENSSL_X25519
|
|
if (m_Pkey)
|
|
{
|
|
EVP_PKEY_free (m_Pkey);
|
|
m_Pkey = nullptr;
|
|
}
|
|
EVP_PKEY_keygen_init (m_Ctx);
|
|
EVP_PKEY_keygen (m_Ctx, &m_Pkey);
|
|
EVP_PKEY_CTX_free (m_Ctx);
|
|
m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL); // TODO: do we really need to re-create m_Ctx?
|
|
size_t len = 32;
|
|
EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len);
|
|
#else
|
|
RAND_bytes (m_PrivateKey, 32);
|
|
GetEd25519 ()->ScalarMulB (m_PrivateKey, m_PublicKey, m_Ctx);
|
|
#endif
|
|
}
|
|
|
|
bool X25519Keys::Agree (const uint8_t * pub, uint8_t * shared)
|
|
{
|
|
if (!pub || (pub[31] & 0x80)) return false; // not x25519 key
|
|
#if OPENSSL_X25519
|
|
EVP_PKEY_derive_init (m_Ctx);
|
|
auto pkey = EVP_PKEY_new_raw_public_key (EVP_PKEY_X25519, NULL, pub, 32);
|
|
if (!pkey) return false;
|
|
EVP_PKEY_derive_set_peer (m_Ctx, pkey);
|
|
size_t len = 32;
|
|
EVP_PKEY_derive (m_Ctx, shared, &len);
|
|
EVP_PKEY_free (pkey);
|
|
#else
|
|
GetEd25519 ()->ScalarMul (pub, m_PrivateKey, shared, m_Ctx);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void X25519Keys::GetPrivateKey (uint8_t * priv) const
|
|
{
|
|
#if OPENSSL_X25519
|
|
size_t len = 32;
|
|
EVP_PKEY_get_raw_private_key (m_Pkey, priv, &len);
|
|
#else
|
|
memcpy (priv, m_PrivateKey, 32);
|
|
#endif
|
|
}
|
|
|
|
void X25519Keys::SetPrivateKey (const uint8_t * priv, bool calculatePublic)
|
|
{
|
|
#if OPENSSL_X25519
|
|
if (m_Ctx) EVP_PKEY_CTX_free (m_Ctx);
|
|
if (m_Pkey) EVP_PKEY_free (m_Pkey);
|
|
m_Pkey = EVP_PKEY_new_raw_private_key (EVP_PKEY_X25519, NULL, priv, 32);
|
|
m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL);
|
|
if (calculatePublic)
|
|
{
|
|
size_t len = 32;
|
|
EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len);
|
|
}
|
|
#else
|
|
memcpy (m_PrivateKey, priv, 32);
|
|
if (calculatePublic)
|
|
GetEd25519 ()->ScalarMulB (m_PrivateKey, m_PublicKey, m_Ctx);
|
|
#endif
|
|
}
|
|
|
|
// ElGamal
|
|
void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted, bool zeroPadding)
|
|
{
|
|
BN_CTX * ctx = BN_CTX_new ();
|
|
BN_CTX_start (ctx);
|
|
// everything, but a, because a might come from table
|
|
BIGNUM * k = BN_CTX_get (ctx);
|
|
BIGNUM * y = BN_CTX_get (ctx);
|
|
BIGNUM * b1 = BN_CTX_get (ctx);
|
|
BIGNUM * b = BN_CTX_get (ctx);
|
|
// select random k
|
|
#if defined(__x86_64__)
|
|
BN_rand (k, ELGAMAL_FULL_EXPONENT_NUM_BITS, -1, 1); // full exponent for x64
|
|
#else
|
|
BN_rand (k, ELGAMAL_SHORT_EXPONENT_NUM_BITS, -1, 1); // short exponent of 226 bits
|
|
#endif
|
|
// calculate a
|
|
BIGNUM * a;
|
|
if (g_ElggTable)
|
|
a = ElggPow (k, g_ElggTable, ctx);
|
|
else
|
|
{
|
|
a = BN_new ();
|
|
BN_mod_exp (a, elgg, k, elgp, ctx);
|
|
}
|
|
|
|
// restore y from key
|
|
BN_bin2bn (key, 256, y);
|
|
// calculate b1
|
|
BN_mod_exp (b1, y, k, elgp, ctx);
|
|
// create m
|
|
uint8_t m[255];
|
|
m[0] = 0xFF;
|
|
memcpy (m+33, data, 222);
|
|
SHA256 (m+33, 222, m+1);
|
|
// calculate b = b1*m mod p
|
|
BN_bin2bn (m, 255, b);
|
|
BN_mod_mul (b, b1, b, elgp, ctx);
|
|
// copy a and b
|
|
if (zeroPadding)
|
|
{
|
|
encrypted[0] = 0;
|
|
bn2buf (a, encrypted + 1, 256);
|
|
encrypted[257] = 0;
|
|
bn2buf (b, encrypted + 258, 256);
|
|
}
|
|
else
|
|
{
|
|
bn2buf (a, encrypted, 256);
|
|
bn2buf (b, encrypted + 256, 256);
|
|
}
|
|
BN_free (a);
|
|
BN_CTX_end (ctx);
|
|
BN_CTX_free (ctx);
|
|
}
|
|
|
|
bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data)
|
|
{
|
|
BN_CTX * ctx = BN_CTX_new ();
|
|
BN_CTX_start (ctx);
|
|
BIGNUM * x = BN_CTX_get (ctx), * a = BN_CTX_get (ctx), * b = BN_CTX_get (ctx);
|
|
BN_bin2bn (key, 256, x);
|
|
BN_sub (x, elgp, x); BN_sub_word (x, 1); // x = elgp - x- 1
|
|
BN_bin2bn (encrypted + 1, 256, a);
|
|
BN_bin2bn (encrypted + 258, 256, b);
|
|
// m = b*(a^x mod p) mod p
|
|
BN_mod_exp (x, a, x, elgp, ctx);
|
|
BN_mod_mul (b, b, x, elgp, ctx);
|
|
uint8_t m[255];
|
|
bn2buf (b, m, 255);
|
|
BN_CTX_end (ctx);
|
|
BN_CTX_free (ctx);
|
|
uint8_t hash[32];
|
|
SHA256 (m + 33, 222, hash);
|
|
if (memcmp (m + 1, hash, 32))
|
|
{
|
|
LogPrint (eLogError, "ElGamal decrypt hash doesn't match");
|
|
return false;
|
|
}
|
|
memcpy (data, m + 33, 222);
|
|
return true;
|
|
}
|
|
|
|
void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub)
|
|
{
|
|
#if defined(__x86_64__) || defined(__i386__) || defined(_MSC_VER)
|
|
RAND_bytes (priv, 256);
|
|
#else
|
|
// lower 226 bits (28 bytes and 2 bits) only. short exponent
|
|
auto numBytes = (ELGAMAL_SHORT_EXPONENT_NUM_BITS)/8 + 1; // 29
|
|
auto numZeroBytes = 256 - numBytes;
|
|
RAND_bytes (priv + numZeroBytes, numBytes);
|
|
memset (priv, 0, numZeroBytes);
|
|
priv[numZeroBytes] &= 0x03;
|
|
#endif
|
|
BN_CTX * ctx = BN_CTX_new ();
|
|
BIGNUM * p = BN_new ();
|
|
BN_bin2bn (priv, 256, p);
|
|
BN_mod_exp (p, elgg, p, elgp, ctx);
|
|
bn2buf (p, pub, 256);
|
|
BN_free (p);
|
|
BN_CTX_free (ctx);
|
|
}
|
|
|
|
// ECIES
|
|
void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted, bool zeroPadding)
|
|
{
|
|
BN_CTX * ctx = BN_CTX_new ();
|
|
BN_CTX_start (ctx);
|
|
BIGNUM * q = BN_CTX_get (ctx);
|
|
EC_GROUP_get_order(curve, q, ctx);
|
|
int len = BN_num_bytes (q);
|
|
BIGNUM * k = BN_CTX_get (ctx);
|
|
BN_rand_range (k, q); // 0 < k < q
|
|
// point for shared secret
|
|
auto p = EC_POINT_new (curve);
|
|
EC_POINT_mul (curve, p, k, nullptr, nullptr, ctx);
|
|
BIGNUM * x = BN_CTX_get (ctx), * y = BN_CTX_get (ctx);
|
|
EC_POINT_get_affine_coordinates_GFp (curve, p, x, y, nullptr);
|
|
if (zeroPadding)
|
|
{
|
|
encrypted[0] = 0;
|
|
bn2buf (x, encrypted + 1, len);
|
|
bn2buf (y, encrypted + 1 + len, len);
|
|
RAND_bytes (encrypted + 1 + 2*len, 256 - 2*len);
|
|
}
|
|
else
|
|
{
|
|
bn2buf (x, encrypted, len);
|
|
bn2buf (y, encrypted + len, len);
|
|
RAND_bytes (encrypted + 2*len, 256 - 2*len);
|
|
}
|
|
// encryption key and iv
|
|
EC_POINT_mul (curve, p, nullptr, key, k, ctx);
|
|
EC_POINT_get_affine_coordinates_GFp (curve, p, x, y, nullptr);
|
|
uint8_t keyBuf[64], iv[64], shared[32];
|
|
bn2buf (x, keyBuf, len);
|
|
bn2buf (y, iv, len);
|
|
SHA256 (keyBuf, len, shared);
|
|
// create buffer
|
|
uint8_t m[256];
|
|
m[0] = 0xFF; m[255] = 0xFF;
|
|
memcpy (m+33, data, 222);
|
|
SHA256 (m+33, 222, m+1);
|
|
// encrypt
|
|
CBCEncryption encryption;
|
|
encryption.SetKey (shared);
|
|
encryption.SetIV (iv);
|
|
if (zeroPadding)
|
|
{
|
|
encrypted[257] = 0;
|
|
encryption.Encrypt (m, 256, encrypted + 258);
|
|
}
|
|
else
|
|
encryption.Encrypt (m, 256, encrypted + 256);
|
|
EC_POINT_free (p);
|
|
BN_CTX_end (ctx);
|
|
BN_CTX_free (ctx);
|
|
}
|
|
|
|
bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data)
|
|
{
|
|
bool ret = true;
|
|
BN_CTX * ctx = BN_CTX_new ();
|
|
BN_CTX_start (ctx);
|
|
BIGNUM * q = BN_CTX_get (ctx);
|
|
EC_GROUP_get_order(curve, q, ctx);
|
|
int len = BN_num_bytes (q);
|
|
// point for shared secret
|
|
BIGNUM * x = BN_CTX_get (ctx), * y = BN_CTX_get (ctx);
|
|
BN_bin2bn (encrypted + 1, len, x);
|
|
BN_bin2bn (encrypted + 1 + len, len, y);
|
|
auto p = EC_POINT_new (curve);
|
|
if (EC_POINT_set_affine_coordinates_GFp (curve, p, x, y, nullptr))
|
|
{
|
|
auto s = EC_POINT_new (curve);
|
|
EC_POINT_mul (curve, s, nullptr, p, key, ctx);
|
|
EC_POINT_get_affine_coordinates_GFp (curve, s, x, y, nullptr);
|
|
EC_POINT_free (s);
|
|
uint8_t keyBuf[64], iv[64], shared[32];
|
|
bn2buf (x, keyBuf, len);
|
|
bn2buf (y, iv, len);
|
|
SHA256 (keyBuf, len, shared);
|
|
// decrypt
|
|
uint8_t m[256];
|
|
CBCDecryption decryption;
|
|
decryption.SetKey (shared);
|
|
decryption.SetIV (iv);
|
|
decryption.Decrypt (encrypted + 258, 256, m);
|
|
// verify and copy
|
|
uint8_t hash[32];
|
|
SHA256 (m + 33, 222, hash);
|
|
if (!memcmp (m + 1, hash, 32))
|
|
memcpy (data, m + 33, 222);
|
|
else
|
|
{
|
|
LogPrint (eLogError, "ECIES decrypt hash doesn't match");
|
|
ret = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
LogPrint (eLogError, "ECIES decrypt point is invalid");
|
|
ret = false;
|
|
}
|
|
|
|
EC_POINT_free (p);
|
|
BN_CTX_end (ctx);
|
|
BN_CTX_free (ctx);
|
|
return ret;
|
|
}
|
|
|
|
void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub)
|
|
{
|
|
BN_CTX * ctx = BN_CTX_new ();
|
|
BIGNUM * q = BN_new ();
|
|
EC_GROUP_get_order(curve, q, ctx);
|
|
priv = BN_new ();
|
|
BN_rand_range (priv, q);
|
|
pub = EC_POINT_new (curve);
|
|
EC_POINT_mul (curve, pub, priv, nullptr, nullptr, ctx);
|
|
BN_free (q);
|
|
BN_CTX_free (ctx);
|
|
}
|
|
|
|
// HMAC
|
|
const uint64_t IPAD = 0x3636363636363636;
|
|
const uint64_t OPAD = 0x5C5C5C5C5C5C5C5C;
|
|
|
|
|
|
static const uint64_t ipads[] = { IPAD, IPAD, IPAD, IPAD };
|
|
static const uint64_t opads[] = { OPAD, OPAD, OPAD, OPAD };
|
|
|
|
void HMACMD5Digest (uint8_t * msg, size_t len, const MACKey& key, uint8_t * digest)
|
|
// key is 32 bytes
|
|
// digest is 16 bytes
|
|
// block size is 64 bytes
|
|
{
|
|
uint64_t buf[256];
|
|
uint64_t hash[12]; // 96 bytes
|
|
#if (defined(__x86_64__) || defined(__i386__)) && defined(__AVX__) // not all X86 targets supports AVX (like old Pentium, see #1600)
|
|
if(i2p::cpu::avx)
|
|
{
|
|
__asm__
|
|
(
|
|
"vmovups %[key], %%ymm0 \n"
|
|
"vmovups %[ipad], %%ymm1 \n"
|
|
"vmovups %%ymm1, 32(%[buf]) \n"
|
|
"vxorps %%ymm0, %%ymm1, %%ymm1 \n"
|
|
"vmovups %%ymm1, (%[buf]) \n"
|
|
"vmovups %[opad], %%ymm1 \n"
|
|
"vmovups %%ymm1, 32(%[hash]) \n"
|
|
"vxorps %%ymm0, %%ymm1, %%ymm1 \n"
|
|
"vmovups %%ymm1, (%[hash]) \n"
|
|
"vzeroall \n" // end of AVX
|
|
"movups %%xmm0, 80(%[hash]) \n" // zero last 16 bytes
|
|
:
|
|
: [key]"m"(*(const uint8_t *)key), [ipad]"m"(*ipads), [opad]"m"(*opads),
|
|
[buf]"r"(buf), [hash]"r"(hash)
|
|
: "memory", "%xmm0" // TODO: change to %ymm0 later
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// ikeypad
|
|
buf[0] = key.GetLL ()[0] ^ IPAD;
|
|
buf[1] = key.GetLL ()[1] ^ IPAD;
|
|
buf[2] = key.GetLL ()[2] ^ IPAD;
|
|
buf[3] = key.GetLL ()[3] ^ IPAD;
|
|
buf[4] = IPAD;
|
|
buf[5] = IPAD;
|
|
buf[6] = IPAD;
|
|
buf[7] = IPAD;
|
|
// okeypad
|
|
hash[0] = key.GetLL ()[0] ^ OPAD;
|
|
hash[1] = key.GetLL ()[1] ^ OPAD;
|
|
hash[2] = key.GetLL ()[2] ^ OPAD;
|
|
hash[3] = key.GetLL ()[3] ^ OPAD;
|
|
hash[4] = OPAD;
|
|
hash[5] = OPAD;
|
|
hash[6] = OPAD;
|
|
hash[7] = OPAD;
|
|
// fill last 16 bytes with zeros (first hash size assumed 32 bytes in I2P)
|
|
memset (hash + 10, 0, 16);
|
|
}
|
|
|
|
// concatenate with msg
|
|
memcpy (buf + 8, msg, len);
|
|
// calculate first hash
|
|
MD5((uint8_t *)buf, len + 64, (uint8_t *)(hash + 8)); // 16 bytes
|
|
|
|
// calculate digest
|
|
MD5((uint8_t *)hash, 96, digest);
|
|
}
|
|
|
|
// AES
|
|
#ifdef __AES__
|
|
#define KeyExpansion256(round0,round1) \
|
|
"pshufd $0xff, %%xmm2, %%xmm2 \n" \
|
|
"movaps %%xmm1, %%xmm4 \n" \
|
|
"pslldq $4, %%xmm4 \n" \
|
|
"pxor %%xmm4, %%xmm1 \n" \
|
|
"pslldq $4, %%xmm4 \n" \
|
|
"pxor %%xmm4, %%xmm1 \n" \
|
|
"pslldq $4, %%xmm4 \n" \
|
|
"pxor %%xmm4, %%xmm1 \n" \
|
|
"pxor %%xmm2, %%xmm1 \n" \
|
|
"movaps %%xmm1, "#round0"(%[sched]) \n" \
|
|
"aeskeygenassist $0, %%xmm1, %%xmm4 \n" \
|
|
"pshufd $0xaa, %%xmm4, %%xmm2 \n" \
|
|
"movaps %%xmm3, %%xmm4 \n" \
|
|
"pslldq $4, %%xmm4 \n" \
|
|
"pxor %%xmm4, %%xmm3 \n" \
|
|
"pslldq $4, %%xmm4 \n" \
|
|
"pxor %%xmm4, %%xmm3 \n" \
|
|
"pslldq $4, %%xmm4 \n" \
|
|
"pxor %%xmm4, %%xmm3 \n" \
|
|
"pxor %%xmm2, %%xmm3 \n" \
|
|
"movaps %%xmm3, "#round1"(%[sched]) \n"
|
|
#endif
|
|
|
|
#ifdef __AES__
|
|
void ECBCryptoAESNI::ExpandKey (const AESKey& key)
|
|
{
|
|
__asm__
|
|
(
|
|
"movups (%[key]), %%xmm1 \n"
|
|
"movups 16(%[key]), %%xmm3 \n"
|
|
"movaps %%xmm1, (%[sched]) \n"
|
|
"movaps %%xmm3, 16(%[sched]) \n"
|
|
"aeskeygenassist $1, %%xmm3, %%xmm2 \n"
|
|
KeyExpansion256(32,48)
|
|
"aeskeygenassist $2, %%xmm3, %%xmm2 \n"
|
|
KeyExpansion256(64,80)
|
|
"aeskeygenassist $4, %%xmm3, %%xmm2 \n"
|
|
KeyExpansion256(96,112)
|
|
"aeskeygenassist $8, %%xmm3, %%xmm2 \n"
|
|
KeyExpansion256(128,144)
|
|
"aeskeygenassist $16, %%xmm3, %%xmm2 \n"
|
|
KeyExpansion256(160,176)
|
|
"aeskeygenassist $32, %%xmm3, %%xmm2 \n"
|
|
KeyExpansion256(192,208)
|
|
"aeskeygenassist $64, %%xmm3, %%xmm2 \n"
|
|
// key expansion final
|
|
"pshufd $0xff, %%xmm2, %%xmm2 \n"
|
|
"movaps %%xmm1, %%xmm4 \n"
|
|
"pslldq $4, %%xmm4 \n"
|
|
"pxor %%xmm4, %%xmm1 \n"
|
|
"pslldq $4, %%xmm4 \n"
|
|
"pxor %%xmm4, %%xmm1 \n"
|
|
"pslldq $4, %%xmm4 \n"
|
|
"pxor %%xmm4, %%xmm1 \n"
|
|
"pxor %%xmm2, %%xmm1 \n"
|
|
"movups %%xmm1, 224(%[sched]) \n"
|
|
: // output
|
|
: [key]"r"((const uint8_t *)key), [sched]"r"(GetKeySchedule ()) // input
|
|
: "%xmm1", "%xmm2", "%xmm3", "%xmm4", "memory" // clogged
|
|
);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef __AES__
|
|
#define EncryptAES256(sched) \
|
|
"pxor (%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 16(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 32(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 48(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 64(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 80(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 96(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 112(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 128(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 144(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 160(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 176(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 192(%["#sched"]), %%xmm0 \n" \
|
|
"aesenc 208(%["#sched"]), %%xmm0 \n" \
|
|
"aesenclast 224(%["#sched"]), %%xmm0 \n"
|
|
#endif
|
|
|
|
void ECBEncryption::Encrypt (const ChipherBlock * in, ChipherBlock * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
"movups (%[in]), %%xmm0 \n"
|
|
EncryptAES256(sched)
|
|
"movups %%xmm0, (%[out]) \n"
|
|
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
AES_encrypt (in->buf, out->buf, &m_Key);
|
|
}
|
|
}
|
|
|
|
#ifdef __AES__
|
|
#define DecryptAES256(sched) \
|
|
"pxor 224(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 208(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 192(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 176(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 160(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 144(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 128(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 112(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 96(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 80(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 64(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 48(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 32(%["#sched"]), %%xmm0 \n" \
|
|
"aesdec 16(%["#sched"]), %%xmm0 \n" \
|
|
"aesdeclast (%["#sched"]), %%xmm0 \n"
|
|
#endif
|
|
|
|
void ECBDecryption::Decrypt (const ChipherBlock * in, ChipherBlock * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
"movups (%[in]), %%xmm0 \n"
|
|
DecryptAES256(sched)
|
|
"movups %%xmm0, (%[out]) \n"
|
|
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
AES_decrypt (in->buf, out->buf, &m_Key);
|
|
}
|
|
}
|
|
|
|
#ifdef __AES__
|
|
#define CallAESIMC(offset) \
|
|
"movaps "#offset"(%[shed]), %%xmm0 \n" \
|
|
"aesimc %%xmm0, %%xmm0 \n" \
|
|
"movaps %%xmm0, "#offset"(%[shed]) \n"
|
|
#endif
|
|
|
|
void ECBEncryption::SetKey (const AESKey& key)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
ExpandKey (key);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
AES_set_encrypt_key (key, 256, &m_Key);
|
|
}
|
|
}
|
|
|
|
void ECBDecryption::SetKey (const AESKey& key)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
ExpandKey (key); // expand encryption key first
|
|
// then invert it using aesimc
|
|
__asm__
|
|
(
|
|
CallAESIMC(16)
|
|
CallAESIMC(32)
|
|
CallAESIMC(48)
|
|
CallAESIMC(64)
|
|
CallAESIMC(80)
|
|
CallAESIMC(96)
|
|
CallAESIMC(112)
|
|
CallAESIMC(128)
|
|
CallAESIMC(144)
|
|
CallAESIMC(160)
|
|
CallAESIMC(176)
|
|
CallAESIMC(192)
|
|
CallAESIMC(208)
|
|
: : [shed]"r"(GetKeySchedule ()) : "%xmm0", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
AES_set_decrypt_key (key, 256, &m_Key);
|
|
}
|
|
}
|
|
|
|
void CBCEncryption::Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
"movups (%[iv]), %%xmm1 \n"
|
|
"1: \n"
|
|
"movups (%[in]), %%xmm0 \n"
|
|
"pxor %%xmm1, %%xmm0 \n"
|
|
EncryptAES256(sched)
|
|
"movaps %%xmm0, %%xmm1 \n"
|
|
"movups %%xmm0, (%[out]) \n"
|
|
"add $16, %[in] \n"
|
|
"add $16, %[out] \n"
|
|
"dec %[num] \n"
|
|
"jnz 1b \n"
|
|
"movups %%xmm1, (%[iv]) \n"
|
|
:
|
|
: [iv]"r"((uint8_t *)m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
|
|
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
|
|
: "%xmm0", "%xmm1", "cc", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for (int i = 0; i < numBlocks; i++)
|
|
{
|
|
*m_LastBlock.GetChipherBlock () ^= in[i];
|
|
m_ECBEncryption.Encrypt (m_LastBlock.GetChipherBlock (), m_LastBlock.GetChipherBlock ());
|
|
out[i] = *m_LastBlock.GetChipherBlock ();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CBCEncryption::Encrypt (const uint8_t * in, std::size_t len, uint8_t * out)
|
|
{
|
|
// len/16
|
|
int numBlocks = len >> 4;
|
|
if (numBlocks > 0)
|
|
Encrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
|
|
}
|
|
|
|
void CBCEncryption::Encrypt (const uint8_t * in, uint8_t * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
"movups (%[iv]), %%xmm1 \n"
|
|
"movups (%[in]), %%xmm0 \n"
|
|
"pxor %%xmm1, %%xmm0 \n"
|
|
EncryptAES256(sched)
|
|
"movups %%xmm0, (%[out]) \n"
|
|
"movups %%xmm0, (%[iv]) \n"
|
|
:
|
|
: [iv]"r"((uint8_t *)m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
|
|
[in]"r"(in), [out]"r"(out)
|
|
: "%xmm0", "%xmm1", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
Encrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
|
|
}
|
|
|
|
void CBCDecryption::Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
"movups (%[iv]), %%xmm1 \n"
|
|
"1: \n"
|
|
"movups (%[in]), %%xmm0 \n"
|
|
"movaps %%xmm0, %%xmm2 \n"
|
|
DecryptAES256(sched)
|
|
"pxor %%xmm1, %%xmm0 \n"
|
|
"movups %%xmm0, (%[out]) \n"
|
|
"movaps %%xmm2, %%xmm1 \n"
|
|
"add $16, %[in] \n"
|
|
"add $16, %[out] \n"
|
|
"dec %[num] \n"
|
|
"jnz 1b \n"
|
|
"movups %%xmm1, (%[iv]) \n"
|
|
:
|
|
: [iv]"r"((uint8_t *)m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
|
|
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
|
|
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for (int i = 0; i < numBlocks; i++)
|
|
{
|
|
ChipherBlock tmp = in[i];
|
|
m_ECBDecryption.Decrypt (in + i, out + i);
|
|
out[i] ^= *m_IV.GetChipherBlock ();
|
|
*m_IV.GetChipherBlock () = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CBCDecryption::Decrypt (const uint8_t * in, std::size_t len, uint8_t * out)
|
|
{
|
|
int numBlocks = len >> 4;
|
|
if (numBlocks > 0)
|
|
Decrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
|
|
}
|
|
|
|
void CBCDecryption::Decrypt (const uint8_t * in, uint8_t * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
"movups (%[iv]), %%xmm1 \n"
|
|
"movups (%[in]), %%xmm0 \n"
|
|
"movups %%xmm0, (%[iv]) \n"
|
|
DecryptAES256(sched)
|
|
"pxor %%xmm1, %%xmm0 \n"
|
|
"movups %%xmm0, (%[out]) \n"
|
|
:
|
|
: [iv]"r"((uint8_t *)m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
|
|
[in]"r"(in), [out]"r"(out)
|
|
: "%xmm0", "%xmm1", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
Decrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
|
|
}
|
|
|
|
void TunnelEncryption::Encrypt (const uint8_t * in, uint8_t * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
// encrypt IV
|
|
"movups (%[in]), %%xmm0 \n"
|
|
EncryptAES256(sched_iv)
|
|
"movaps %%xmm0, %%xmm1 \n"
|
|
// double IV encryption
|
|
EncryptAES256(sched_iv)
|
|
"movups %%xmm0, (%[out]) \n"
|
|
// encrypt data, IV is xmm1
|
|
"1: \n"
|
|
"add $16, %[in] \n"
|
|
"add $16, %[out] \n"
|
|
"movups (%[in]), %%xmm0 \n"
|
|
"pxor %%xmm1, %%xmm0 \n"
|
|
EncryptAES256(sched_l)
|
|
"movaps %%xmm0, %%xmm1 \n"
|
|
"movups %%xmm0, (%[out]) \n"
|
|
"dec %[num] \n"
|
|
"jnz 1b \n"
|
|
:
|
|
: [sched_iv]"r"(m_IVEncryption.GetKeySchedule ()), [sched_l]"r"(m_LayerEncryption.ECB().GetKeySchedule ()),
|
|
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
|
|
: "%xmm0", "%xmm1", "cc", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
m_IVEncryption.Encrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
|
|
m_LayerEncryption.SetIV (out);
|
|
m_LayerEncryption.Encrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
|
|
m_IVEncryption.Encrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
|
|
}
|
|
}
|
|
|
|
void TunnelDecryption::Decrypt (const uint8_t * in, uint8_t * out)
|
|
{
|
|
#ifdef __AES__
|
|
if(i2p::cpu::aesni)
|
|
{
|
|
__asm__
|
|
(
|
|
// decrypt IV
|
|
"movups (%[in]), %%xmm0 \n"
|
|
DecryptAES256(sched_iv)
|
|
"movaps %%xmm0, %%xmm1 \n"
|
|
// double IV encryption
|
|
DecryptAES256(sched_iv)
|
|
"movups %%xmm0, (%[out]) \n"
|
|
// decrypt data, IV is xmm1
|
|
"1: \n"
|
|
"add $16, %[in] \n"
|
|
"add $16, %[out] \n"
|
|
"movups (%[in]), %%xmm0 \n"
|
|
"movaps %%xmm0, %%xmm2 \n"
|
|
DecryptAES256(sched_l)
|
|
"pxor %%xmm1, %%xmm0 \n"
|
|
"movups %%xmm0, (%[out]) \n"
|
|
"movaps %%xmm2, %%xmm1 \n"
|
|
"dec %[num] \n"
|
|
"jnz 1b \n"
|
|
:
|
|
: [sched_iv]"r"(m_IVDecryption.GetKeySchedule ()), [sched_l]"r"(m_LayerDecryption.ECB().GetKeySchedule ()),
|
|
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
|
|
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
|
|
);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
m_IVDecryption.Decrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
|
|
m_LayerDecryption.SetIV (out);
|
|
m_LayerDecryption.Decrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
|
|
m_IVDecryption.Decrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
|
|
}
|
|
}
|
|
|
|
// AEAD/ChaCha20/Poly1305
|
|
|
|
bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt)
|
|
{
|
|
if (len < msgLen) return false;
|
|
if (encrypt && len < msgLen + 16) return false;
|
|
bool ret = true;
|
|
#if OPENSSL_AEAD_CHACHA20_POLY1305
|
|
int outlen = 0;
|
|
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new ();
|
|
if (encrypt)
|
|
{
|
|
EVP_EncryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0);
|
|
EVP_EncryptInit_ex(ctx, NULL, NULL, key, nonce);
|
|
EVP_EncryptUpdate(ctx, NULL, &outlen, ad, adLen);
|
|
EVP_EncryptUpdate(ctx, buf, &outlen, msg, msgLen);
|
|
EVP_EncryptFinal_ex(ctx, buf, &outlen);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, buf + msgLen);
|
|
}
|
|
else
|
|
{
|
|
EVP_DecryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, 16, (uint8_t *)(msg + msgLen));
|
|
EVP_DecryptInit_ex(ctx, NULL, NULL, key, nonce);
|
|
EVP_DecryptUpdate(ctx, NULL, &outlen, ad, adLen);
|
|
EVP_DecryptUpdate(ctx, buf, &outlen, msg, msgLen);
|
|
ret = EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen) > 0;
|
|
}
|
|
|
|
EVP_CIPHER_CTX_free (ctx);
|
|
#else
|
|
chacha::Chacha20State state;
|
|
// generate one time poly key
|
|
chacha::Chacha20Init (state, nonce, key, 0);
|
|
uint64_t polyKey[8];
|
|
memset(polyKey, 0, sizeof(polyKey));
|
|
chacha::Chacha20Encrypt (state, (uint8_t *)polyKey, 64);
|
|
// create Poly1305 hash
|
|
Poly1305 polyHash (polyKey);
|
|
if (!ad) adLen = 0;
|
|
uint8_t padding[16]; memset (padding, 0, 16);
|
|
if (ad)
|
|
{
|
|
polyHash.Update (ad, adLen);// additional authenticated data
|
|
auto rem = adLen & 0x0F; // %16
|
|
if (rem)
|
|
{
|
|
// padding1
|
|
rem = 16 - rem;
|
|
polyHash.Update (padding, rem);
|
|
}
|
|
}
|
|
// encrypt/decrypt data and add to hash
|
|
Chacha20SetCounter (state, 1);
|
|
if (buf != msg)
|
|
memcpy (buf, msg, msgLen);
|
|
if (encrypt)
|
|
{
|
|
chacha::Chacha20Encrypt (state, buf, msgLen); // encrypt
|
|
polyHash.Update (buf, msgLen); // after encryption
|
|
}
|
|
else
|
|
{
|
|
polyHash.Update (buf, msgLen); // before decryption
|
|
chacha::Chacha20Encrypt (state, buf, msgLen); // decrypt
|
|
}
|
|
|
|
auto rem = msgLen & 0x0F; // %16
|
|
if (rem)
|
|
{
|
|
// padding2
|
|
rem = 16 - rem;
|
|
polyHash.Update (padding, rem);
|
|
}
|
|
// adLen and msgLen
|
|
htole64buf (padding, adLen);
|
|
htole64buf (padding + 8, msgLen);
|
|
polyHash.Update (padding, 16);
|
|
|
|
if (encrypt)
|
|
// calculate Poly1305 tag and write in after encrypted data
|
|
polyHash.Finish ((uint64_t *)(buf + msgLen));
|
|
else
|
|
{
|
|
uint64_t tag[4];
|
|
// calculate Poly1305 tag
|
|
polyHash.Finish (tag);
|
|
if (memcmp (tag, msg + msgLen, 16)) ret = false; // compare with provided
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void AEADChaCha20Poly1305Encrypt (const std::vector<std::pair<uint8_t *, size_t> >& bufs, const uint8_t * key, const uint8_t * nonce, uint8_t * mac)
|
|
{
|
|
if (bufs.empty ()) return;
|
|
#if OPENSSL_AEAD_CHACHA20_POLY1305
|
|
int outlen = 0;
|
|
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new ();
|
|
EVP_EncryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0);
|
|
EVP_EncryptInit_ex(ctx, NULL, NULL, key, nonce);
|
|
for (const auto& it: bufs)
|
|
EVP_EncryptUpdate(ctx, it.first, &outlen, it.first, it.second);
|
|
EVP_EncryptFinal_ex(ctx, NULL, &outlen);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, mac);
|
|
EVP_CIPHER_CTX_free (ctx);
|
|
#else
|
|
chacha::Chacha20State state;
|
|
// generate one time poly key
|
|
chacha::Chacha20Init (state, nonce, key, 0);
|
|
uint64_t polyKey[8];
|
|
memset(polyKey, 0, sizeof(polyKey));
|
|
chacha::Chacha20Encrypt (state, (uint8_t *)polyKey, 64);
|
|
Poly1305 polyHash (polyKey);
|
|
// encrypt buffers
|
|
Chacha20SetCounter (state, 1);
|
|
size_t size = 0;
|
|
for (const auto& it: bufs)
|
|
{
|
|
chacha::Chacha20Encrypt (state, it.first, it.second);
|
|
polyHash.Update (it.first, it.second); // after encryption
|
|
size += it.second;
|
|
}
|
|
// padding
|
|
uint8_t padding[16];
|
|
memset (padding, 0, 16);
|
|
auto rem = size & 0x0F; // %16
|
|
if (rem)
|
|
{
|
|
// padding2
|
|
rem = 16 - rem;
|
|
polyHash.Update (padding, rem);
|
|
}
|
|
// adLen and msgLen
|
|
// adLen is always zero
|
|
htole64buf (padding + 8, size);
|
|
polyHash.Update (padding, 16);
|
|
// MAC
|
|
polyHash.Finish ((uint64_t *)mac);
|
|
#endif
|
|
}
|
|
|
|
void ChaCha20 (const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out)
|
|
{
|
|
#if OPENSSL_AEAD_CHACHA20_POLY1305
|
|
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new ();
|
|
uint32_t iv[4];
|
|
iv[0] = htole32 (1); memcpy (iv + 1, nonce, 12); // counter | nonce
|
|
EVP_EncryptInit_ex(ctx, EVP_chacha20 (), NULL, key, (const uint8_t *)iv);
|
|
int outlen = 0;
|
|
EVP_EncryptUpdate(ctx, out, &outlen, msg, msgLen);
|
|
EVP_EncryptFinal_ex(ctx, NULL, &outlen);
|
|
EVP_CIPHER_CTX_free (ctx);
|
|
#else
|
|
chacha::Chacha20State state;
|
|
chacha::Chacha20Init (state, nonce, key, 1);
|
|
if (out != msg) memcpy (out, msg, msgLen);
|
|
chacha::Chacha20Encrypt (state, out, msgLen);
|
|
#endif
|
|
}
|
|
|
|
void HKDF (const uint8_t * salt, const uint8_t * key, size_t keyLen, const std::string& info,
|
|
uint8_t * out, size_t outLen)
|
|
{
|
|
#if OPENSSL_HKDF
|
|
EVP_PKEY_CTX * pctx = EVP_PKEY_CTX_new_id (EVP_PKEY_HKDF, nullptr);
|
|
EVP_PKEY_derive_init (pctx);
|
|
EVP_PKEY_CTX_set_hkdf_md (pctx, EVP_sha256());
|
|
if (key && keyLen)
|
|
{
|
|
EVP_PKEY_CTX_set1_hkdf_salt (pctx, salt, 32);
|
|
EVP_PKEY_CTX_set1_hkdf_key (pctx, key, keyLen);
|
|
}
|
|
else
|
|
{
|
|
// zerolen
|
|
EVP_PKEY_CTX_hkdf_mode (pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY);
|
|
uint8_t tempKey[32]; unsigned int len;
|
|
HMAC(EVP_sha256(), salt, 32, nullptr, 0, tempKey, &len);
|
|
EVP_PKEY_CTX_set1_hkdf_key (pctx, tempKey, len);
|
|
}
|
|
if (info.length () > 0)
|
|
EVP_PKEY_CTX_add1_hkdf_info (pctx, info.c_str (), info.length ());
|
|
EVP_PKEY_derive (pctx, out, &outLen);
|
|
EVP_PKEY_CTX_free (pctx);
|
|
#else
|
|
uint8_t prk[32]; unsigned int len;
|
|
HMAC(EVP_sha256(), salt, 32, key, keyLen, prk, &len);
|
|
auto l = info.length ();
|
|
memcpy (out, info.c_str (), l); out[l] = 0x01;
|
|
HMAC(EVP_sha256(), prk, 32, out, l + 1, out, &len);
|
|
if (outLen > 32) // 64
|
|
{
|
|
memcpy (out + 32, info.c_str (), l); out[l + 32] = 0x02;
|
|
HMAC(EVP_sha256(), prk, 32, out, l + 33, out + 32, &len);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Noise
|
|
|
|
void NoiseSymmetricState::MixHash (const uint8_t * buf, size_t len)
|
|
{
|
|
SHA256_CTX ctx;
|
|
SHA256_Init (&ctx);
|
|
SHA256_Update (&ctx, m_H, 32);
|
|
SHA256_Update (&ctx, buf, len);
|
|
SHA256_Final (m_H, &ctx);
|
|
}
|
|
|
|
void NoiseSymmetricState::MixKey (const uint8_t * sharedSecret)
|
|
{
|
|
HKDF (m_CK, sharedSecret, 32, "", m_CK);
|
|
// new ck is m_CK[0:31], key is m_CK[32:63]
|
|
}
|
|
|
|
static void InitNoiseState (NoiseSymmetricState& state, const uint8_t * ck,
|
|
const uint8_t * hh, const uint8_t * pub)
|
|
{
|
|
// pub is Bob's public static key, hh = SHA256(h)
|
|
memcpy (state.m_CK, ck, 32);
|
|
SHA256_CTX ctx;
|
|
SHA256_Init (&ctx);
|
|
SHA256_Update (&ctx, hh, 32);
|
|
SHA256_Update (&ctx, pub, 32);
|
|
SHA256_Final (state.m_H, &ctx); // h = MixHash(pub) = SHA256(hh || pub)
|
|
}
|
|
|
|
void InitNoiseNState (NoiseSymmetricState& state, const uint8_t * pub)
|
|
{
|
|
static const char protocolName[] = "Noise_N_25519_ChaChaPoly_SHA256"; // 31 chars
|
|
static const uint8_t hh[32] =
|
|
{
|
|
0x69, 0x4d, 0x52, 0x44, 0x5a, 0x27, 0xd9, 0xad, 0xfa, 0xd2, 0x9c, 0x76, 0x32, 0x39, 0x5d, 0xc1,
|
|
0xe4, 0x35, 0x4c, 0x69, 0xb4, 0xf9, 0x2e, 0xac, 0x8a, 0x1e, 0xe4, 0x6a, 0x9e, 0xd2, 0x15, 0x54
|
|
}; // hh = SHA256(protocol_name || 0)
|
|
InitNoiseState (state, (const uint8_t *)protocolName, hh, pub); // ck = protocol_name || 0
|
|
}
|
|
|
|
void InitNoiseXKState (NoiseSymmetricState& state, const uint8_t * pub)
|
|
{
|
|
static const uint8_t protocolNameHash[] =
|
|
{
|
|
0x72, 0xe8, 0x42, 0xc5, 0x45, 0xe1, 0x80, 0x80, 0xd3, 0x9c, 0x44, 0x93, 0xbb, 0x91, 0xd7, 0xed,
|
|
0xf2, 0x28, 0x98, 0x17, 0x71, 0x21, 0x8c, 0x1f, 0x62, 0x4e, 0x20, 0x6f, 0x28, 0xd3, 0x2f, 0x71
|
|
}; // SHA256 ("Noise_XKaesobfse+hs2+hs3_25519_ChaChaPoly_SHA256")
|
|
static const uint8_t hh[32] =
|
|
{
|
|
0x49, 0xff, 0x48, 0x3f, 0xc4, 0x04, 0xb9, 0xb2, 0x6b, 0x11, 0x94, 0x36, 0x72, 0xff, 0x05, 0xb5,
|
|
0x61, 0x27, 0x03, 0x31, 0xba, 0x89, 0xb8, 0xfc, 0x33, 0x15, 0x93, 0x87, 0x57, 0xdd, 0x3d, 0x1e
|
|
}; // SHA256 (protocolNameHash)
|
|
InitNoiseState (state, protocolNameHash, hh, pub);
|
|
}
|
|
|
|
void InitNoiseIKState (NoiseSymmetricState& state, const uint8_t * pub)
|
|
{
|
|
static const uint8_t protocolNameHash[32] =
|
|
{
|
|
0x4c, 0xaf, 0x11, 0xef, 0x2c, 0x8e, 0x36, 0x56, 0x4c, 0x53, 0xe8, 0x88, 0x85, 0x06, 0x4d, 0xba,
|
|
0xac, 0xbe, 0x00, 0x54, 0xad, 0x17, 0x8f, 0x80, 0x79, 0xa6, 0x46, 0x82, 0x7e, 0x6e, 0xe4, 0x0c
|
|
}; // SHA256("Noise_IKelg2+hs2_25519_ChaChaPoly_SHA256"), 40 bytes
|
|
static const uint8_t hh[32] =
|
|
{
|
|
0x9c, 0xcf, 0x85, 0x2c, 0xc9, 0x3b, 0xb9, 0x50, 0x44, 0x41, 0xe9, 0x50, 0xe0, 0x1d, 0x52, 0x32,
|
|
0x2e, 0x0d, 0x47, 0xad, 0xd1, 0xe9, 0xa5, 0x55, 0xf7, 0x55, 0xb5, 0x69, 0xae, 0x18, 0x3b, 0x5c
|
|
}; // SHA256 (protocolNameHash)
|
|
InitNoiseState (state, protocolNameHash, hh, pub);
|
|
}
|
|
|
|
// init and terminate
|
|
|
|
/* std::vector <std::unique_ptr<std::mutex> > m_OpenSSLMutexes;
|
|
static void OpensslLockingCallback(int mode, int type, const char * file, int line)
|
|
{
|
|
if (type > 0 && (size_t)type < m_OpenSSLMutexes.size ())
|
|
{
|
|
if (mode & CRYPTO_LOCK)
|
|
m_OpenSSLMutexes[type]->lock ();
|
|
else
|
|
m_OpenSSLMutexes[type]->unlock ();
|
|
}
|
|
}*/
|
|
|
|
void InitCrypto (bool precomputation, bool aesni, bool avx, bool force)
|
|
{
|
|
i2p::cpu::Detect (aesni, avx, force);
|
|
#if LEGACY_OPENSSL
|
|
SSL_library_init ();
|
|
#endif
|
|
/* auto numLocks = CRYPTO_num_locks();
|
|
for (int i = 0; i < numLocks; i++)
|
|
m_OpenSSLMutexes.emplace_back (new std::mutex);
|
|
CRYPTO_set_locking_callback (OpensslLockingCallback);*/
|
|
if (precomputation)
|
|
{
|
|
#if defined(__x86_64__)
|
|
g_ElggTable = new BIGNUM * [ELGAMAL_FULL_EXPONENT_NUM_BYTES][255];
|
|
PrecalculateElggTable (g_ElggTable, ELGAMAL_FULL_EXPONENT_NUM_BYTES);
|
|
#else
|
|
g_ElggTable = new BIGNUM * [ELGAMAL_SHORT_EXPONENT_NUM_BYTES][255];
|
|
PrecalculateElggTable (g_ElggTable, ELGAMAL_SHORT_EXPONENT_NUM_BYTES);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void TerminateCrypto ()
|
|
{
|
|
if (g_ElggTable)
|
|
{
|
|
DestroyElggTable (g_ElggTable,
|
|
#if defined(__x86_64__)
|
|
ELGAMAL_FULL_EXPONENT_NUM_BYTES
|
|
#else
|
|
ELGAMAL_SHORT_EXPONENT_NUM_BYTES
|
|
#endif
|
|
);
|
|
delete[] g_ElggTable; g_ElggTable = nullptr;
|
|
}
|
|
/* CRYPTO_set_locking_callback (nullptr);
|
|
m_OpenSSLMutexes.clear ();*/
|
|
}
|
|
}
|
|
}
|