i2pd/libi2pd/SSU2Session.cpp
Anatolii Cherednichenko 91a420433a small fixes
2022-08-30 03:29:03 +03:00

2433 lines
125 KiB
C++

/*
* Copyright (c) 2022, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include <string.h>
#include <openssl/rand.h>
#include "Log.h"
#include "Transports.h"
#include "Gzip.h"
#include "NetDb.hpp"
#include "SSU2.h"
namespace i2p {
namespace transport {
void SSU2IncompleteMessage::AttachNextFragment(const uint8_t *fragment, size_t fragmentSize) {
if (msg->len + fragmentSize > msg->maxLen) {
LogPrint(eLogInfo, "SSU2: I2NP message size ", msg->maxLen, " is not enough");
auto newMsg = NewI2NPMessage();
*newMsg = *msg;
msg = newMsg;
}
if (msg->Concat(fragment, fragmentSize) < fragmentSize)
LogPrint(eLogError, "SSU2: I2NP buffer overflow ", msg->maxLen);
nextFragmentNum++;
}
SSU2Session::SSU2Session(SSU2Server &server, std::shared_ptr<const i2p::data::RouterInfo> in_RemoteRouter,
std::shared_ptr<const i2p::data::RouterInfo::Address> addr) :
TransportSession(in_RemoteRouter, SSU2_CONNECT_TIMEOUT),
m_Server(server), m_Address(addr), m_RemoteTransports(0),
m_DestConnID(0), m_SourceConnID(0), m_State(eSSU2SessionStateUnknown),
m_SendPacketNum(0), m_ReceivePacketNum(0), m_IsDataReceived(false),
m_WindowSize(SSU2_MIN_WINDOW_SIZE), m_RTT(SSU2_RESEND_INTERVAL),
m_RTO(SSU2_RESEND_INTERVAL * SSU2_kAPPA), m_RelayTag(0),
m_ConnectTimer(server.GetService()), m_TerminationReason(eSSU2TerminationReasonNormalClose),
m_MaxPayloadSize(SSU2_MIN_PACKET_SIZE - IPV6_HEADER_SIZE - UDP_HEADER_SIZE - 32) // min size
{
m_NoiseState.reset(new i2p::crypto::NoiseSymmetricState);
if (in_RemoteRouter && m_Address) {
// outgoing
InitNoiseXKState1(*m_NoiseState, m_Address->s);
m_RemoteEndpoint = boost::asio::ip::udp::endpoint(m_Address->host, m_Address->port);
m_RemoteTransports = in_RemoteRouter->GetCompatibleTransports(false);
RAND_bytes((uint8_t * ) & m_DestConnID, 8);
RAND_bytes((uint8_t * ) & m_SourceConnID, 8);
} else {
// incoming
InitNoiseXKState1(*m_NoiseState, i2p::context.GetSSU2StaticPublicKey());
}
}
SSU2Session::~SSU2Session() {
}
void SSU2Session::Connect() {
if (m_State == eSSU2SessionStateUnknown || m_State == eSSU2SessionStateTokenReceived) {
ScheduleConnectTimer();
auto token = m_Server.FindOutgoingToken(m_RemoteEndpoint);
if (token)
SendSessionRequest(token);
else {
m_State = eSSU2SessionStateUnknown;
SendTokenRequest();
}
}
}
void SSU2Session::ScheduleConnectTimer() {
m_ConnectTimer.cancel();
m_ConnectTimer.expires_from_now(boost::posix_time::seconds(SSU2_CONNECT_TIMEOUT));
m_ConnectTimer.async_wait(std::bind(&SSU2Session::HandleConnectTimer,
shared_from_this(), std::placeholders::_1));
}
void SSU2Session::HandleConnectTimer(const boost::system::error_code &ecode) {
if (!ecode) {
// timeout expired
LogPrint(eLogWarning, "SSU2: Session with ", m_RemoteEndpoint, " was not established after ",
SSU2_CONNECT_TIMEOUT, " seconds");
Terminate();
}
}
bool SSU2Session::Introduce(std::shared_ptr<SSU2Session> session, uint32_t relayTag) {
// we are Alice
if (!session || !relayTag) return false;
// find local adddress to introduce
auto localAddress = session->FindLocalAddress();
if (!localAddress) return false;
// create nonce
uint32_t nonce;
RAND_bytes((uint8_t * ) & nonce, 4);
auto ts = i2p::util::GetSecondsSinceEpoch();
// payload
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = 0;
payload[0] = eSSU2BlkRelayRequest;
payload[3] = 0; // flag
htobe32buf(payload + 4, nonce);
htobe32buf(payload + 8, relayTag);
htobe32buf(payload + 12, ts);
payload[16] = 2; // ver
size_t asz = CreateEndpoint(payload + 18, m_MaxPayloadSize - 18,
boost::asio::ip::udp::endpoint(localAddress->host, localAddress->port));
if (!asz) return false;
payload[17] = asz;
payloadSize += asz + 18;
SignedData s;
s.Insert((const uint8_t *) "RelayRequestData", 16); // prologue
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
s.Insert(session->GetRemoteIdentity()->GetIdentHash(), 32); // chash
s.Insert(payload + 4, 14 + asz); // nonce, relay tag, timestamp, ver, asz and Alice's endpoint
s.Sign(i2p::context.GetPrivateKeys(), payload + payloadSize);
payloadSize += i2p::context.GetIdentity()->GetSignatureLen();
htobe16buf(payload + 1, payloadSize - 3); // size
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
// send
m_RelaySessions.emplace(nonce, std::make_pair(session, ts));
session->m_SourceConnID = htobe64(((uint64_t) nonce << 32) | nonce);
session->m_DestConnID = ~session->m_SourceConnID;
m_Server.AddSession(session);
SendData(payload, payloadSize);
return true;
}
void SSU2Session::WaitForIntroduction() {
m_State = eSSU2SessionStateIntroduced;
ScheduleConnectTimer();
}
void SSU2Session::ConnectAfterIntroduction() {
if (m_State == eSSU2SessionStateIntroduced) {
// create new connID
uint64_t oldConnID = GetConnID();
RAND_bytes((uint8_t * ) & m_DestConnID, 8);
RAND_bytes((uint8_t * ) & m_SourceConnID, 8);
// connect
m_State = eSSU2SessionStateTokenReceived;
m_Server.AddPendingOutgoingSession(shared_from_this());
m_Server.RemoveSession(oldConnID);
Connect();
}
}
void SSU2Session::SendPeerTest() {
// we are Alice
uint32_t nonce;
RAND_bytes((uint8_t * ) & nonce, 4);
auto ts = i2p::util::GetSecondsSinceEpoch();
// session for message 5
auto session = std::make_shared<SSU2Session>(m_Server);
session->SetState(eSSU2SessionStatePeerTest);
m_PeerTests.emplace(nonce, std::make_pair(session, ts));
session->m_SourceConnID = htobe64(((uint64_t) nonce << 32) | nonce);
session->m_DestConnID = ~session->m_SourceConnID;
m_Server.AddSession(session);
// peer test block
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = CreatePeerTestBlock(payload, m_MaxPayloadSize, nonce);
if (payloadSize > 0) {
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
SendData(payload, payloadSize);
}
}
void SSU2Session::SendKeepAlive() {
if (IsEstablished()) {
uint8_t payload[20];
size_t payloadSize = CreatePaddingBlock(payload, 20, 5);
SendData(payload, payloadSize);
}
}
void SSU2Session::Terminate() {
if (m_State != eSSU2SessionStateTerminated) {
m_State = eSSU2SessionStateTerminated;
m_ConnectTimer.cancel();
m_OnEstablished = nullptr;
if (m_RelayTag)
m_Server.RemoveRelay(m_RelayTag);
m_SentHandshakePacket.reset(nullptr);
m_SendQueue.clear();
m_SentPackets.clear();
m_IncompleteMessages.clear();
m_RelaySessions.clear();
m_PeerTests.clear();
m_Server.RemoveSession(m_SourceConnID);
transports.PeerDisconnected(shared_from_this());
LogPrint(eLogDebug, "SSU2: Session terminated");
}
}
void SSU2Session::RequestTermination(SSU2TerminationReason reason) {
if (m_State == eSSU2SessionStateEstablished || m_State == eSSU2SessionStateClosing) {
m_TerminationReason = reason;
SendTermination();
}
m_State = eSSU2SessionStateClosing;
}
void SSU2Session::Established() {
m_State = eSSU2SessionStateEstablished;
m_EphemeralKeys = nullptr;
m_NoiseState.reset(nullptr);
m_SessionConfirmedFragment.reset(nullptr);
m_SentHandshakePacket.reset(nullptr);
m_ConnectTimer.cancel();
SetTerminationTimeout(SSU2_TERMINATION_TIMEOUT);
transports.PeerConnected(shared_from_this());
if (m_OnEstablished) {
m_OnEstablished();
m_OnEstablished = nullptr;
}
}
void SSU2Session::Done() {
m_Server.GetService().post(std::bind(&SSU2Session::Terminate, shared_from_this()));
}
void SSU2Session::SendLocalRouterInfo(bool update) {
if (update || !IsOutgoing()) {
auto s = shared_from_this();
m_Server.GetService().post([s]() {
if (!s->IsEstablished()) return;
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = s->CreateRouterInfoBlock(payload, s->m_MaxPayloadSize - 32,
i2p::context.GetSharedRouterInfo());
if (payloadSize) {
if (payloadSize < s->m_MaxPayloadSize)
payloadSize += s->CreatePaddingBlock(payload + payloadSize,
s->m_MaxPayloadSize - payloadSize);
s->SendData(payload, payloadSize);
} else
s->SendFragmentedMessage(CreateDatabaseStoreMsg());
});
}
}
void SSU2Session::SendI2NPMessages(const std::vector<std::shared_ptr<I2NPMessage> > &msgs) {
m_Server.GetService().post(std::bind(&SSU2Session::PostI2NPMessages, shared_from_this(), msgs));
}
void SSU2Session::PostI2NPMessages(std::vector<std::shared_ptr<I2NPMessage> > msgs) {
if (m_State == eSSU2SessionStateTerminated) return;
for (auto it: msgs)
m_SendQueue.push_back(it);
SendQueue();
if (m_SendQueue.size() > 0) // windows is full
{
if (m_SendQueue.size() <= SSU2_MAX_OUTGOING_QUEUE_SIZE)
Resend(i2p::util::GetMillisecondsSinceEpoch());
else {
LogPrint(eLogWarning, "SSU2: Outgoing messages queue size to ",
GetIdentHashBase64(), " exceeds ", SSU2_MAX_OUTGOING_QUEUE_SIZE);
RequestTermination(eSSU2TerminationReasonTimeout);
}
}
}
bool SSU2Session::SendQueue() {
if (!m_SendQueue.empty() && m_SentPackets.size() <= m_WindowSize) {
auto ts = i2p::util::GetMillisecondsSinceEpoch();
auto packet = m_Server.GetSentPacketsPool().AcquireShared();
size_t ackBlockSize = CreateAckBlock(packet->payload, m_MaxPayloadSize);
bool ackBlockSent = false;
packet->payloadSize += ackBlockSize;
while (!m_SendQueue.empty() && m_SentPackets.size() <= m_WindowSize) {
auto msg = m_SendQueue.front();
size_t len = msg->GetNTCP2Length() + 3;
if (len > m_MaxPayloadSize) // message too long
{
m_SendQueue.pop_front();
if (SendFragmentedMessage(msg))
ackBlockSent = true;
} else if (packet->payloadSize + len <= m_MaxPayloadSize) {
m_SendQueue.pop_front();
packet->payloadSize += CreateI2NPBlock(packet->payload + packet->payloadSize,
m_MaxPayloadSize - packet->payloadSize, std::move(msg));
} else {
// create new packet and copy ack block
auto newPacket = m_Server.GetSentPacketsPool().AcquireShared();
memcpy(newPacket->payload, packet->payload, ackBlockSize);
newPacket->payloadSize = ackBlockSize;
// complete current packet
if (packet->payloadSize > ackBlockSize) // more than just ack block
{
ackBlockSent = true;
// try to add padding
if (packet->payloadSize + 16 < m_MaxPayloadSize)
packet->payloadSize += CreatePaddingBlock(packet->payload + packet->payloadSize,
m_MaxPayloadSize - packet->payloadSize);
} else {
// reduce ack block
if (len + 8 < m_MaxPayloadSize) {
// keep Ack block and drop some ranges
ackBlockSent = true;
packet->payloadSize = m_MaxPayloadSize - len;
if (packet->payloadSize & 0x01) packet->payloadSize--; // make it even
htobe16buf(packet->payload + 1, packet->payloadSize - 3); // new block size
} else // drop Ack block completely
packet->payloadSize = 0;
// msg fits single packet
m_SendQueue.pop_front();
packet->payloadSize += CreateI2NPBlock(packet->payload + packet->payloadSize,
m_MaxPayloadSize - packet->payloadSize,
std::move(msg));
}
// send right a way
uint32_t packetNum = SendData(packet->payload, packet->payloadSize);
packet->sendTime = ts;
m_SentPackets.emplace(packetNum, packet);
packet = newPacket; // just ack block
}
}
if (packet->payloadSize > ackBlockSize) {
ackBlockSent = true;
if (packet->payloadSize + 16 < m_MaxPayloadSize)
packet->payloadSize += CreatePaddingBlock(packet->payload + packet->payloadSize,
m_MaxPayloadSize - packet->payloadSize);
uint32_t packetNum = SendData(packet->payload, packet->payloadSize);
packet->sendTime = ts;
m_SentPackets.emplace(packetNum, packet);
}
return ackBlockSent;
}
return false;
}
bool SSU2Session::SendFragmentedMessage(std::shared_ptr<I2NPMessage> msg) {
size_t lastFragmentSize = (msg->GetNTCP2Length() + 3 - m_MaxPayloadSize) % (m_MaxPayloadSize - 8);
size_t extraSize = m_MaxPayloadSize - lastFragmentSize;
bool ackBlockSent = false;
uint32_t msgID;
memcpy(&msgID, msg->GetHeader() + I2NP_HEADER_MSGID_OFFSET, 4);
auto ts = i2p::util::GetMillisecondsSinceEpoch();
auto packet = m_Server.GetSentPacketsPool().AcquireShared();
if (extraSize >= 8) {
packet->payloadSize = CreateAckBlock(packet->payload, extraSize);
ackBlockSent = true;
if (packet->payloadSize + 12 < m_MaxPayloadSize) {
uint32_t packetNum = SendData(packet->payload, packet->payloadSize);
packet->sendTime = ts;
m_SentPackets.emplace(packetNum, packet);
packet = m_Server.GetSentPacketsPool().AcquireShared();
} else
extraSize -= packet->payloadSize;
}
size_t offset = extraSize > 0 ? (rand() % extraSize) : 0;
if (offset + packet->payloadSize >= m_MaxPayloadSize) offset = 0;
auto size = CreateFirstFragmentBlock(packet->payload + packet->payloadSize,
m_MaxPayloadSize - offset - packet->payloadSize, msg);
if (!size) return false;
extraSize -= offset;
packet->payloadSize += size;
uint32_t firstPacketNum = SendData(packet->payload, packet->payloadSize);
packet->sendTime = ts;
m_SentPackets.emplace(firstPacketNum, packet);
uint8_t fragmentNum = 0;
while (msg->offset < msg->len) {
offset = extraSize > 0 ? (rand() % extraSize) : 0;
packet = m_Server.GetSentPacketsPool().AcquireShared();
packet->payloadSize = CreateFollowOnFragmentBlock(packet->payload, m_MaxPayloadSize - offset, msg,
fragmentNum, msgID);
extraSize -= offset;
if (msg->offset >= msg->len && packet->payloadSize + 16 < m_MaxPayloadSize) // last fragment
packet->payloadSize += CreatePaddingBlock(packet->payload + packet->payloadSize,
m_MaxPayloadSize - packet->payloadSize);
uint32_t followonPacketNum = SendData(packet->payload, packet->payloadSize);
packet->sendTime = ts;
m_SentPackets.emplace(followonPacketNum, packet);
}
return ackBlockSent;
}
void SSU2Session::Resend(uint64_t ts) {
// resend handshake packet
if (m_SentHandshakePacket && ts >= m_SentHandshakePacket->sendTime + SSU2_HANDSHAKE_RESEND_INTERVAL) {
LogPrint(eLogDebug, "SSU2: Resending ", (int) m_State);
ResendHandshakePacket();
m_SentHandshakePacket->sendTime = ts;
return;
}
// resend data packets
if (m_SentPackets.empty()) return;
std::map<uint32_t, std::shared_ptr<SSU2SentPacket> > resentPackets;
for (auto it = m_SentPackets.begin(); it != m_SentPackets.end();)
if (ts >= it->second->sendTime + it->second->numResends * m_RTO) {
if (it->second->numResends > SSU2_MAX_NUM_RESENDS) {
LogPrint(eLogInfo, "SSU2: Packet was not Acked after ", it->second->numResends,
" attempts. Terminate session");
m_SentPackets.clear();
m_SendQueue.clear();
RequestTermination(eSSU2TerminationReasonTimeout);
return;
} else {
uint32_t packetNum = SendData(it->second->payload, it->second->payloadSize);
it->second->numResends++;
it->second->sendTime = ts;
resentPackets.emplace(packetNum, it->second);
it = m_SentPackets.erase(it);
}
} else
it++;
if (!resentPackets.empty()) {
#if (__cplusplus >= 201703L) // C++ 17 or higher
m_SentPackets.merge (resentPackets);
#else
m_SentPackets.insert(resentPackets.begin(), resentPackets.end());
#endif
m_WindowSize >>= 1; // /2
if (m_WindowSize < SSU2_MIN_WINDOW_SIZE) m_WindowSize = SSU2_MIN_WINDOW_SIZE;
}
}
void SSU2Session::ResendHandshakePacket() {
if (m_SentHandshakePacket) {
m_Server.Send(m_SentHandshakePacket->header.buf, 16, m_SentHandshakePacket->headerX, 48,
m_SentHandshakePacket->payload, m_SentHandshakePacket->payloadSize, m_RemoteEndpoint);
if (m_SessionConfirmedFragment && m_State == eSSU2SessionStateSessionConfirmedSent)
// resend second fragment of SessionConfirmed
m_Server.Send(m_SessionConfirmedFragment->header.buf, 16,
m_SessionConfirmedFragment->payload, m_SessionConfirmedFragment->payloadSize,
m_RemoteEndpoint);
}
}
bool SSU2Session::ProcessFirstIncomingMessage(uint64_t connID, uint8_t *buf, size_t len) {
// we are Bob
m_SourceConnID = connID;
Header header;
header.h.connID = connID;
memcpy(header.buf + 8, buf + 8, 8);
header.ll[1] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), buf + (len - 12));
switch (header.h.type) {
case eSSU2SessionRequest:
ProcessSessionRequest(header, buf, len);
break;
case eSSU2TokenRequest:
ProcessTokenRequest(header, buf, len);
break;
case eSSU2PeerTest: {
// TODO: remove later
const uint8_t nonce[12] = {0};
uint64_t headerX[2];
i2p::crypto::ChaCha20(buf + 16, 16, i2p::context.GetSSU2IntroKey(), nonce, (uint8_t *) headerX);
LogPrint(eLogWarning, "SSU2: Unexpected PeerTest message SourceConnID=", connID, " DestConnID=",
headerX[0]);
break;
}
case eSSU2HolePunch:
LogPrint(eLogDebug, "SSU2: Late HolePunch for ", connID);
break;
default: {
LogPrint(eLogWarning, "SSU2: Unexpected message type ", (int) header.h.type, " from ",
m_RemoteEndpoint, " of ", len, " bytes");
return false;
}
}
return true;
}
void SSU2Session::SendSessionRequest(uint64_t token) {
// we are Alice
m_EphemeralKeys = i2p::transport::transports.GetNextX25519KeysPair();
m_SentHandshakePacket.reset(new HandshakePacket);
auto ts = i2p::util::GetMillisecondsSinceEpoch();
m_SentHandshakePacket->sendTime = ts;
Header &header = m_SentHandshakePacket->header;
uint8_t *headerX = m_SentHandshakePacket->headerX,
*payload = m_SentHandshakePacket->payload;
// fill packet
header.h.connID = m_DestConnID; // dest id
header.h.packetNum = 0;
header.h.type = eSSU2SessionRequest;
header.h.flags[0] = 2; // ver
header.h.flags[1] = (uint8_t) i2p::context.GetNetID(); // netID
header.h.flags[2] = 0; // flag
memcpy(headerX, &m_SourceConnID, 8); // source id
memcpy(headerX + 8, &token, 8); // token
memcpy(headerX + 16, m_EphemeralKeys->GetPublicKey(), 32); // X
// payload
payload[0] = eSSU2BlkDateTime;
htobe16buf(payload + 1, 4);
htobe32buf(payload + 3, ts / 1000);
size_t payloadSize = 7;
if (GetRouterStatus() == eRouterStatusFirewalled && m_Address->IsIntroducer()) {
// relay tag request
payload[payloadSize] = eSSU2BlkRelayTagRequest;
memset(payload + payloadSize + 1, 0, 2); // size = 0
payloadSize += 3;
}
payloadSize += CreatePaddingBlock(payload + payloadSize, 40 - payloadSize, 1);
// KDF for session request
m_NoiseState->MixHash({{header.buf, 16},
{headerX, 16}}); // h = SHA256(h || header)
m_NoiseState->MixHash(m_EphemeralKeys->GetPublicKey(), 32); // h = SHA256(h || aepk);
uint8_t sharedSecret[32];
m_EphemeralKeys->Agree(m_Address->s, sharedSecret);
m_NoiseState->MixKey(sharedSecret);
// encrypt
const uint8_t nonce[12] = {0};
i2p::crypto::AEADChaCha20Poly1305(payload, payloadSize, m_NoiseState->m_H, 32, m_NoiseState->m_CK + 32,
nonce, payload, payloadSize + 16, true);
payloadSize += 16;
header.ll[0] ^= CreateHeaderMask(m_Address->i, payload + (payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(m_Address->i, payload + (payloadSize - 12));
i2p::crypto::ChaCha20(headerX, 48, m_Address->i, nonce, headerX);
m_NoiseState->MixHash(payload,
payloadSize); // h = SHA256(h || encrypted payload from Session Request) for SessionCreated
m_SentHandshakePacket->payloadSize = payloadSize;
// send
if (m_State == eSSU2SessionStateTokenReceived || m_Server.AddPendingOutgoingSession(shared_from_this())) {
m_State = eSSU2SessionStateSessionRequestSent;
m_Server.Send(header.buf, 16, headerX, 48, payload, payloadSize, m_RemoteEndpoint);
} else {
LogPrint(eLogWarning, "SSU2: SessionRequest request to ", m_RemoteEndpoint, " already pending");
Terminate();
}
}
void SSU2Session::ProcessSessionRequest(Header &header, uint8_t *buf, size_t len) {
// we are Bob
const uint8_t nonce[12] = {0};
uint8_t headerX[48];
i2p::crypto::ChaCha20(buf + 16, 48, i2p::context.GetSSU2IntroKey(), nonce, headerX);
memcpy(&m_DestConnID, headerX, 8);
uint64_t token;
memcpy(&token, headerX + 8, 8);
if (!token || token != m_Server.GetIncomingToken(m_RemoteEndpoint)) {
LogPrint(eLogDebug, "SSU2: SessionRequest token mismatch. Retry");
SendRetry();
return;
}
// KDF for session request
m_NoiseState->MixHash({{header.buf, 16},
{headerX, 16}}); // h = SHA256(h || header)
m_NoiseState->MixHash(headerX + 16, 32); // h = SHA256(h || aepk);
uint8_t sharedSecret[32];
i2p::context.GetSSU2StaticKeys().Agree(headerX + 16, sharedSecret);
m_NoiseState->MixKey(sharedSecret);
// decrypt
uint8_t *payload = buf + 64;
std::vector<uint8_t> decryptedPayload(len - 80);
if (!i2p::crypto::AEADChaCha20Poly1305(payload, len - 80, m_NoiseState->m_H, 32,
m_NoiseState->m_CK + 32, nonce, decryptedPayload.data(),
decryptedPayload.size(), false)) {
LogPrint(eLogWarning, "SSU2: SessionRequest AEAD verification failed ");
return;
}
m_NoiseState->MixHash(payload, len -
64); // h = SHA256(h || encrypted payload from Session Request) for SessionCreated
// payload
m_State = eSSU2SessionStateSessionRequestReceived;
HandlePayload(decryptedPayload.data(), decryptedPayload.size());
if (m_TerminationReason == eSSU2TerminationReasonNormalClose) {
m_Server.AddSession(shared_from_this());
SendSessionCreated(headerX + 16);
} else
SendRetry();
}
void SSU2Session::SendSessionCreated(const uint8_t *X) {
// we are Bob
m_EphemeralKeys = i2p::transport::transports.GetNextX25519KeysPair();
m_SentHandshakePacket.reset(new HandshakePacket);
auto ts = i2p::util::GetMillisecondsSinceEpoch();
m_SentHandshakePacket->sendTime = ts;
uint8_t kh2[32];
i2p::crypto::HKDF(m_NoiseState->m_CK, nullptr, 0, "SessCreateHeader", kh2,
32); // k_header_2 = HKDF(chainKey, ZEROLEN, "SessCreateHeader", 32)
// fill packet
Header &header = m_SentHandshakePacket->header;
uint8_t *headerX = m_SentHandshakePacket->headerX,
*payload = m_SentHandshakePacket->payload;
header.h.connID = m_DestConnID; // dest id
header.h.packetNum = 0;
header.h.type = eSSU2SessionCreated;
header.h.flags[0] = 2; // ver
header.h.flags[1] = (uint8_t) i2p::context.GetNetID(); // netID
header.h.flags[2] = 0; // flag
memcpy(headerX, &m_SourceConnID, 8); // source id
memset(headerX + 8, 0, 8); // token = 0
memcpy(headerX + 16, m_EphemeralKeys->GetPublicKey(), 32); // Y
// payload
size_t maxPayloadSize = m_MaxPayloadSize - 48;
payload[0] = eSSU2BlkDateTime;
htobe16buf(payload + 1, 4);
htobe32buf(payload + 3, ts / 1000);
size_t payloadSize = 7;
payloadSize += CreateAddressBlock(payload + payloadSize, maxPayloadSize - payloadSize, m_RemoteEndpoint);
if (m_RelayTag) {
payload[payloadSize] = eSSU2BlkRelayTag;
htobe16buf(payload + payloadSize + 1, 4);
htobe32buf(payload + payloadSize + 3, m_RelayTag);
payloadSize += 7;
}
auto token = m_Server.NewIncomingToken(m_RemoteEndpoint);
if (ts + SSU2_TOKEN_EXPIRATION_THRESHOLD > token.second) // not expired?
{
payload[payloadSize] = eSSU2BlkNewToken;
htobe16buf(payload + payloadSize + 1, 12);
htobe32buf(payload + payloadSize + 3, token.second - SSU2_TOKEN_EXPIRATION_THRESHOLD); // expires
memcpy(payload + payloadSize + 7, &token.first, 8); // token
payloadSize += 15;
}
payloadSize += CreatePaddingBlock(payload + payloadSize, maxPayloadSize - payloadSize);
// KDF for SessionCreated
m_NoiseState->MixHash({{header.buf, 16},
{headerX, 16}}); // h = SHA256(h || header)
m_NoiseState->MixHash(headerX + 16, 32); // h = SHA256(h || bepk);
uint8_t sharedSecret[32];
m_EphemeralKeys->Agree(X, sharedSecret);
m_NoiseState->MixKey(sharedSecret);
// encrypt
const uint8_t nonce[12] = {0};
i2p::crypto::AEADChaCha20Poly1305(payload, payloadSize, m_NoiseState->m_H, 32, m_NoiseState->m_CK + 32,
nonce, payload, payloadSize + 16, true);
payloadSize += 16;
m_NoiseState->MixHash(payload,
payloadSize); // h = SHA256(h || encrypted Noise payload from Session Created)
header.ll[0] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), payload + (payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(kh2, payload + (payloadSize - 12));
i2p::crypto::ChaCha20(headerX, 48, kh2, nonce, headerX);
m_State = eSSU2SessionStateSessionCreatedSent;
m_SentHandshakePacket->payloadSize = payloadSize;
// send
m_Server.Send(header.buf, 16, headerX, 48, payload, payloadSize, m_RemoteEndpoint);
}
bool SSU2Session::ProcessSessionCreated(uint8_t *buf, size_t len) {
// we are Alice
Header header;
memcpy(header.buf, buf, 16);
header.ll[0] ^= CreateHeaderMask(m_Address->i, buf + (len - 24));
uint8_t kh2[32];
i2p::crypto::HKDF(m_NoiseState->m_CK, nullptr, 0, "SessCreateHeader", kh2,
32); // k_header_2 = HKDF(chainKey, ZEROLEN, "SessCreateHeader", 32)
header.ll[1] ^= CreateHeaderMask(kh2, buf + (len - 12));
if (header.h.type != eSSU2SessionCreated)
// this situation is valid, because it might be Retry with different encryption
return false;
const uint8_t nonce[12] = {0};
uint8_t headerX[48];
i2p::crypto::ChaCha20(buf + 16, 48, kh2, nonce, headerX);
// KDF for SessionCreated
m_NoiseState->MixHash({{header.buf, 16},
{headerX, 16}}); // h = SHA256(h || header)
m_NoiseState->MixHash(headerX + 16, 32); // h = SHA256(h || bepk);
uint8_t sharedSecret[32];
m_EphemeralKeys->Agree(headerX + 16, sharedSecret);
m_NoiseState->MixKey(sharedSecret);
// decrypt
uint8_t *payload = buf + 64;
std::vector<uint8_t> decryptedPayload(len - 80);
if (!i2p::crypto::AEADChaCha20Poly1305(payload, len - 80, m_NoiseState->m_H, 32,
m_NoiseState->m_CK + 32, nonce, decryptedPayload.data(),
decryptedPayload.size(), false)) {
LogPrint(eLogWarning, "SSU2: SessionCreated AEAD verification failed ");
return false;
}
m_NoiseState->MixHash(payload, len -
64); // h = SHA256(h || encrypted payload from SessionCreated) for SessionConfirmed
// payload
m_State = eSSU2SessionStateSessionCreatedReceived;
HandlePayload(decryptedPayload.data(), decryptedPayload.size());
m_Server.AddSession(shared_from_this());
AdjustMaxPayloadSize();
SendSessionConfirmed(headerX + 16);
KDFDataPhase(m_KeyDataSend, m_KeyDataReceive);
return true;
}
void SSU2Session::SendSessionConfirmed(const uint8_t *Y) {
// we are Alice
m_SentHandshakePacket.reset(new HandshakePacket);
m_SentHandshakePacket->sendTime = i2p::util::GetMillisecondsSinceEpoch();
uint8_t kh2[32];
i2p::crypto::HKDF(m_NoiseState->m_CK, nullptr, 0, "SessionConfirmed", kh2,
32); // k_header_2 = HKDF(chainKey, ZEROLEN, "SessionConfirmed", 32)
// fill packet
Header &header = m_SentHandshakePacket->header;
header.h.connID = m_DestConnID; // dest id
header.h.packetNum = 0;
header.h.type = eSSU2SessionConfirmed;
memset(header.h.flags, 0, 3);
header.h.flags[0] = 1; // frag, total fragments always 1
// payload
size_t maxPayloadSize = m_MaxPayloadSize - 48; // for part 2, 48 is part1
uint8_t *payload = m_SentHandshakePacket->payload;
size_t payloadSize = CreateRouterInfoBlock(payload, maxPayloadSize, i2p::context.GetSharedRouterInfo());
if (!payloadSize) {
// split by two fragments
maxPayloadSize += m_MaxPayloadSize;
payloadSize = CreateRouterInfoBlock(payload, maxPayloadSize, i2p::context.GetSharedRouterInfo());
header.h.flags[0] = 0x02; // frag 0, total fragments 2
// TODO: check if we need more fragments
}
if (payloadSize < maxPayloadSize)
payloadSize += CreatePaddingBlock(payload + payloadSize, maxPayloadSize - payloadSize);
// KDF for Session Confirmed part 1
m_NoiseState->MixHash(header.buf, 16); // h = SHA256(h || header)
// Encrypt part 1
uint8_t *part1 = m_SentHandshakePacket->headerX;
uint8_t nonce[12];
CreateNonce(1, nonce);
i2p::crypto::AEADChaCha20Poly1305(i2p::context.GetSSU2StaticPublicKey(), 32, m_NoiseState->m_H, 32,
m_NoiseState->m_CK + 32, nonce, part1, 48, true);
m_NoiseState->MixHash(part1, 48); // h = SHA256(h || ciphertext);
// KDF for Session Confirmed part 2
uint8_t sharedSecret[32];
i2p::context.GetSSU2StaticKeys().Agree(Y, sharedSecret);
m_NoiseState->MixKey(sharedSecret);
// Encrypt part2
memset(nonce, 0, 12);
i2p::crypto::AEADChaCha20Poly1305(payload, payloadSize, m_NoiseState->m_H, 32, m_NoiseState->m_CK + 32,
nonce, payload, payloadSize + 16, true);
payloadSize += 16;
m_NoiseState->MixHash(payload, payloadSize); // h = SHA256(h || ciphertext);
m_SentHandshakePacket->payloadSize = payloadSize;
if (header.h.flags[0] > 1) {
if (payloadSize > m_MaxPayloadSize - 48) {
payloadSize = m_MaxPayloadSize - 48 - (rand() % 16);
if (m_SentHandshakePacket->payloadSize - payloadSize < 24)
payloadSize -= 24;
} else
header.h.flags[0] = 1;
}
// Encrypt header
header.ll[0] ^= CreateHeaderMask(m_Address->i, payload + (payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(kh2, payload + (payloadSize - 12));
m_State = eSSU2SessionStateSessionConfirmedSent;
// send
m_Server.Send(header.buf, 16, part1, 48, payload, payloadSize, m_RemoteEndpoint);
m_SendPacketNum++;
if (m_SentHandshakePacket->payloadSize > payloadSize) {
// send second fragment
m_SessionConfirmedFragment.reset(new HandshakePacket);
Header &header = m_SessionConfirmedFragment->header;
header.h.connID = m_DestConnID; // dest id
header.h.packetNum = 0;
header.h.type = eSSU2SessionConfirmed;
memset(header.h.flags, 0, 3);
header.h.flags[0] = 0x12; // frag 1, total fragments 2
m_SessionConfirmedFragment->payloadSize = m_SentHandshakePacket->payloadSize - payloadSize;
memcpy(m_SessionConfirmedFragment->payload, m_SentHandshakePacket->payload + payloadSize,
m_SessionConfirmedFragment->payloadSize);
m_SentHandshakePacket->payloadSize = payloadSize;
header.ll[0] ^= CreateHeaderMask(m_Address->i, m_SessionConfirmedFragment->payload +
(m_SessionConfirmedFragment->payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(kh2, m_SessionConfirmedFragment->payload +
(m_SessionConfirmedFragment->payloadSize - 12));
m_Server.Send(header.buf, 16, m_SessionConfirmedFragment->payload,
m_SessionConfirmedFragment->payloadSize, m_RemoteEndpoint);
}
}
bool SSU2Session::ProcessSessionConfirmed(uint8_t *buf, size_t len) {
// we are Bob
Header header;
memcpy(header.buf, buf, 16);
header.ll[0] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), buf + (len - 24));
uint8_t kh2[32];
i2p::crypto::HKDF(m_NoiseState->m_CK, nullptr, 0, "SessionConfirmed", kh2,
32); // k_header_2 = HKDF(chainKey, ZEROLEN, "SessionConfirmed", 32)
header.ll[1] ^= CreateHeaderMask(kh2, buf + (len - 12));
if (header.h.type != eSSU2SessionConfirmed) {
LogPrint(eLogInfo, "SSU2: Unexpected message type ", (int) header.h.type, " instead ",
(int) eSSU2SessionConfirmed);
// TODO: queue up
return true;
}
// check if fragmented
if ((header.h.flags[0] & 0x0F) > 1) {
// fragmented
if (!(header.h.flags[0] & 0xF0)) {
// first fragment
if (!m_SessionConfirmedFragment) {
m_SessionConfirmedFragment.reset(new HandshakePacket);
m_SessionConfirmedFragment->header = header;
memcpy(m_SessionConfirmedFragment->payload, buf + 16, len - 16);
m_SessionConfirmedFragment->payloadSize = len - 16;
return true; // wait for second fragment
} else if (m_SessionConfirmedFragment->isSecondFragment) {
// we have second fragment
m_SessionConfirmedFragment->header = header;
memmove(m_SessionConfirmedFragment->payload + (len - 16), m_SessionConfirmedFragment->payload,
m_SessionConfirmedFragment->payloadSize);
memcpy(m_SessionConfirmedFragment->payload, buf + 16, len - 16);
m_SessionConfirmedFragment->payloadSize += (len - 16);
buf = m_SessionConfirmedFragment->payload - 16;
len = m_SessionConfirmedFragment->payloadSize + 16;
} else
return true;
} else {
// second fragment
if (!m_SessionConfirmedFragment) {
// out of sequence, save it
m_SessionConfirmedFragment.reset(new HandshakePacket);
memcpy(m_SessionConfirmedFragment->payload, buf + 16, len - 16);
m_SessionConfirmedFragment->payloadSize = len - 16;
m_SessionConfirmedFragment->isSecondFragment = true;
return true;
}
header = m_SessionConfirmedFragment->header;
memcpy(m_SessionConfirmedFragment->payload + m_SessionConfirmedFragment->payloadSize, buf + 16,
len - 16);
m_SessionConfirmedFragment->payloadSize += (len - 16);
buf = m_SessionConfirmedFragment->payload - 16;
len = m_SessionConfirmedFragment->payloadSize + 16;
}
}
// KDF for Session Confirmed part 1
m_NoiseState->MixHash(header.buf, 16); // h = SHA256(h || header)
// decrypt part1
uint8_t nonce[12];
CreateNonce(1, nonce);
uint8_t S[32];
if (!i2p::crypto::AEADChaCha20Poly1305(buf + 16, 32, m_NoiseState->m_H, 32,
m_NoiseState->m_CK + 32, nonce, S, 32, false)) {
LogPrint(eLogWarning, "SSU2: SessionConfirmed part 1 AEAD verification failed ");
return false;
}
m_NoiseState->MixHash(buf + 16, 48); // h = SHA256(h || ciphertext);
// KDF for Session Confirmed part 2 and data phase
uint8_t sharedSecret[32];
m_EphemeralKeys->Agree(S, sharedSecret);
m_NoiseState->MixKey(sharedSecret);
KDFDataPhase(m_KeyDataReceive, m_KeyDataSend);
// decrypt part2
memset(nonce, 0, 12);
uint8_t *payload = buf + 64;
std::vector<uint8_t> decryptedPayload(len - 80);
if (!i2p::crypto::AEADChaCha20Poly1305(payload, len - 80, m_NoiseState->m_H, 32,
m_NoiseState->m_CK + 32, nonce, decryptedPayload.data(),
decryptedPayload.size(), false)) {
LogPrint(eLogWarning, "SSU2: SessionConfirmed part 2 AEAD verification failed ");
return false;
}
m_NoiseState->MixHash(payload, len - 64); // h = SHA256(h || ciphertext);
// payload
// handle RouterInfo block that must be first
if (decryptedPayload[0] != eSSU2BlkRouterInfo) {
LogPrint(eLogError, "SSU2: SessionConfirmed unexpected first block type ", (int) decryptedPayload[0]);
return false;
}
size_t riSize = bufbe16toh(decryptedPayload.data() + 1);
if (riSize + 3 > decryptedPayload.size()) {
LogPrint(eLogError, "SSU2: SessionConfirmed RouterInfo block is too long ", riSize);
return false;
}
LogPrint(eLogDebug, "SSU2: RouterInfo in SessionConfirmed");
auto ri = ExtractRouterInfo(decryptedPayload.data() + 3, riSize);
if (!ri) {
LogPrint(eLogError, "SSU2: SessionConfirmed malformed RouterInfo block");
return false;
}
m_Address = ri->GetSSU2AddressWithStaticKey(S, m_RemoteEndpoint.address().is_v6());
if (!m_Address) {
LogPrint(eLogError, "SSU2: No SSU2 address with static key found in SessionConfirmed from ",
i2p::data::GetIdentHashAbbreviation(ri->GetIdentHash()));
return false;
}
// update RouterInfo in netdb
ri = i2p::data::netdb.AddRouterInfo(ri->GetBuffer(), ri->GetBufferLen()); // ri points to one from netdb now
if (!ri) {
LogPrint(eLogError, "SSU2: Couldn't update RouterInfo from SessionConfirmed in netdb");
return false;
}
SetRemoteIdentity(ri->GetRouterIdentity());
AdjustMaxPayloadSize();
m_Server.AddSessionByRouterHash(shared_from_this()); // we know remote router now
m_RemoteTransports = ri->GetCompatibleTransports(false);
// handle other blocks
HandlePayload(decryptedPayload.data() + riSize + 3, decryptedPayload.size() - riSize - 3);
Established();
SendQuickAck();
return true;
}
void SSU2Session::KDFDataPhase(uint8_t *keydata_ab, uint8_t *keydata_ba) {
uint8_t keydata[64];
i2p::crypto::HKDF(m_NoiseState->m_CK, nullptr, 0, "", keydata); // keydata = HKDF(chainKey, ZEROLEN, "", 64)
// ab
i2p::crypto::HKDF(keydata, nullptr, 0, "HKDFSSU2DataKeys",
keydata_ab); // keydata_ab = HKDF(keydata, ZEROLEN, "HKDFSSU2DataKeys", 64)
// ba
i2p::crypto::HKDF(keydata + 32, nullptr, 0, "HKDFSSU2DataKeys",
keydata_ba); // keydata_ba = HKDF(keydata + 32, ZEROLEN, "HKDFSSU2DataKeys", 64)
}
void SSU2Session::SendTokenRequest() {
// we are Alice
Header header;
uint8_t h[32], payload[41];
// fill packet
header.h.connID = m_DestConnID; // dest id
RAND_bytes(header.buf + 8, 4); // random packet num
header.h.type = eSSU2TokenRequest;
header.h.flags[0] = 2; // ver
header.h.flags[1] = (uint8_t) i2p::context.GetNetID(); // netID
header.h.flags[2] = 0; // flag
memcpy(h, header.buf, 16);
memcpy(h + 16, &m_SourceConnID, 8); // source id
memset(h + 24, 0, 8); // zero token
// payload
payload[0] = eSSU2BlkDateTime;
htobe16buf(payload + 1, 4);
htobe32buf(payload + 3, i2p::util::GetSecondsSinceEpoch());
size_t payloadSize = 7;
payloadSize += CreatePaddingBlock(payload + payloadSize, 25 - payloadSize, 1);
// encrypt
uint8_t nonce[12];
CreateNonce(be32toh(header.h.packetNum), nonce);
i2p::crypto::AEADChaCha20Poly1305(payload, payloadSize, h, 32, m_Address->i, nonce, payload,
payloadSize + 16, true);
payloadSize += 16;
header.ll[0] ^= CreateHeaderMask(m_Address->i, payload + (payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(m_Address->i, payload + (payloadSize - 12));
memset(nonce, 0, 12);
i2p::crypto::ChaCha20(h + 16, 16, m_Address->i, nonce, h + 16);
// send
if (m_Server.AddPendingOutgoingSession(shared_from_this()))
m_Server.Send(header.buf, 16, h + 16, 16, payload, payloadSize, m_RemoteEndpoint);
else {
LogPrint(eLogWarning, "SSU2: TokenRequest request to ", m_RemoteEndpoint, " already pending");
Terminate();
}
}
void SSU2Session::ProcessTokenRequest(Header &header, uint8_t *buf, size_t len) {
// we are Bob
if (len < 48) {
LogPrint(eLogWarning, "SSU2: Incorrect TokenRequest len ", len);
return;
}
uint8_t nonce[12] = {0};
uint8_t h[32];
memcpy(h, header.buf, 16);
i2p::crypto::ChaCha20(buf + 16, 16, i2p::context.GetSSU2IntroKey(), nonce, h + 16);
memcpy(&m_DestConnID, h + 16, 8);
// decrypt
CreateNonce(be32toh(header.h.packetNum), nonce);
uint8_t *payload = buf + 32;
if (!i2p::crypto::AEADChaCha20Poly1305(payload, len - 48, h, 32,
i2p::context.GetSSU2IntroKey(), nonce, payload, len - 48, false)) {
LogPrint(eLogWarning, "SSU2: TokenRequest AEAD verification failed ");
return;
}
// payload
m_State = eSSU2SessionStateTokenRequestReceived;
HandlePayload(payload, len - 48);
SendRetry();
}
void SSU2Session::SendRetry() {
// we are Bob
Header header;
uint8_t h[32], payload[72];
// fill packet
header.h.connID = m_DestConnID; // dest id
RAND_bytes(header.buf + 8, 4); // random packet num
header.h.type = eSSU2Retry;
header.h.flags[0] = 2; // ver
header.h.flags[1] = (uint8_t) i2p::context.GetNetID(); // netID
header.h.flags[2] = 0; // flag
memcpy(h, header.buf, 16);
memcpy(h + 16, &m_SourceConnID, 8); // source id
uint64_t token = 0;
if (m_TerminationReason == eSSU2TerminationReasonNormalClose)
token = m_Server.GetIncomingToken(m_RemoteEndpoint);
memcpy(h + 24, &token, 8); // token
// payload
payload[0] = eSSU2BlkDateTime;
htobe16buf(payload + 1, 4);
htobe32buf(payload + 3, i2p::util::GetSecondsSinceEpoch());
size_t payloadSize = 7;
payloadSize += CreateAddressBlock(payload + payloadSize, 56 - payloadSize, m_RemoteEndpoint);
if (m_TerminationReason != eSSU2TerminationReasonNormalClose)
payloadSize += CreateTerminationBlock(payload + payloadSize, 56 - payloadSize);
payloadSize += CreatePaddingBlock(payload + payloadSize, 56 - payloadSize);
// encrypt
uint8_t nonce[12];
CreateNonce(be32toh(header.h.packetNum), nonce);
i2p::crypto::AEADChaCha20Poly1305(payload, payloadSize, h, 32, i2p::context.GetSSU2IntroKey(), nonce,
payload, payloadSize + 16, true);
payloadSize += 16;
header.ll[0] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), payload + (payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), payload + (payloadSize - 12));
memset(nonce, 0, 12);
i2p::crypto::ChaCha20(h + 16, 16, i2p::context.GetSSU2IntroKey(), nonce, h + 16);
// send
m_Server.Send(header.buf, 16, h + 16, 16, payload, payloadSize, m_RemoteEndpoint);
}
bool SSU2Session::ProcessRetry(uint8_t *buf, size_t len) {
// we are Alice
Header header;
memcpy(header.buf, buf, 16);
header.ll[0] ^= CreateHeaderMask(m_Address->i, buf + (len - 24));
header.ll[1] ^= CreateHeaderMask(m_Address->i, buf + (len - 12));
if (header.h.type != eSSU2Retry) {
LogPrint(eLogWarning, "SSU2: Unexpected message type ", (int) header.h.type, " instead ",
(int) eSSU2Retry);
return false;
}
uint8_t nonce[12] = {0};
uint64_t headerX[2]; // sourceConnID, token
i2p::crypto::ChaCha20(buf + 16, 16, m_Address->i, nonce, (uint8_t *) headerX);
uint64_t token = headerX[1];
if (token)
m_Server.UpdateOutgoingToken(m_RemoteEndpoint, token,
i2p::util::GetSecondsSinceEpoch() + SSU2_TOKEN_EXPIRATION_TIMEOUT);
// decrypt and handle payload
uint8_t *payload = buf + 32;
CreateNonce(be32toh(header.h.packetNum), nonce);
uint8_t h[32];
memcpy(h, header.buf, 16);
memcpy(h + 16, &headerX, 16);
if (!i2p::crypto::AEADChaCha20Poly1305(payload, len - 48, h, 32,
m_Address->i, nonce, payload, len - 48, false)) {
LogPrint(eLogWarning, "SSU2: Retry AEAD verification failed");
return false;
}
m_State = eSSU2SessionStateTokenReceived;
HandlePayload(payload, len - 48);
if (!token) {
// we should handle payload even for zero token to handle Datetime block and adjust clock in case of clock skew
LogPrint(eLogWarning, "SSU2: Retry token is zero");
return false;
}
InitNoiseXKState1(*m_NoiseState, m_Address->s); // reset Noise TODO: check state
SendSessionRequest(token);
return true;
}
void SSU2Session::SendHolePunch(uint32_t nonce, const boost::asio::ip::udp::endpoint &ep,
const uint8_t *introKey, uint64_t token) {
// we are Charlie
LogPrint(eLogDebug, "SSU2: Sending HolePunch to ", ep);
Header header;
uint8_t h[32], payload[SSU2_MAX_PACKET_SIZE];
// fill packet
header.h.connID = htobe64(((uint64_t) nonce << 32) | nonce); // dest id
RAND_bytes(header.buf + 8, 4); // random packet num
header.h.type = eSSU2HolePunch;
header.h.flags[0] = 2; // ver
header.h.flags[1] = (uint8_t) i2p::context.GetNetID(); // netID
header.h.flags[2] = 0; // flag
memcpy(h, header.buf, 16);
uint64_t c = ~header.h.connID;
memcpy(h + 16, &c, 8); // source id
RAND_bytes(h + 24, 8); // token
// payload
payload[0] = eSSU2BlkDateTime;
htobe16buf(payload + 1, 4);
htobe32buf(payload + 3, i2p::util::GetSecondsSinceEpoch());
size_t payloadSize = 7;
payloadSize += CreateAddressBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize, ep);
payloadSize += CreateRelayResponseBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize,
eSSU2RelayResponseCodeAccept, nonce, token, ep.address().is_v4());
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
// encrypt
uint8_t n[12];
CreateNonce(be32toh(header.h.packetNum), n);
i2p::crypto::AEADChaCha20Poly1305(payload, payloadSize, h, 32, introKey, n, payload, payloadSize + 16,
true);
payloadSize += 16;
header.ll[0] ^= CreateHeaderMask(introKey, payload + (payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(introKey, payload + (payloadSize - 12));
memset(n, 0, 12);
i2p::crypto::ChaCha20(h + 16, 16, introKey, n, h + 16);
// send
m_Server.Send(header.buf, 16, h + 16, 16, payload, payloadSize, ep);
}
bool SSU2Session::ProcessHolePunch(uint8_t *buf, size_t len) {
// we are Alice
LogPrint(eLogDebug, "SSU2: HolePunch");
Header header;
memcpy(header.buf, buf, 16);
header.ll[0] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), buf + (len - 24));
header.ll[1] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), buf + (len - 12));
if (header.h.type != eSSU2HolePunch) {
LogPrint(eLogWarning, "SSU2: Unexpected message type ", (int) header.h.type, " instead ",
(int) eSSU2HolePunch);
return false;
}
uint8_t nonce[12] = {0};
uint64_t headerX[2]; // sourceConnID, token
i2p::crypto::ChaCha20(buf + 16, 16, i2p::context.GetSSU2IntroKey(), nonce, (uint8_t *) headerX);
m_DestConnID = headerX[0];
// decrypt and handle payload
uint8_t *payload = buf + 32;
CreateNonce(be32toh(header.h.packetNum), nonce);
uint8_t h[32];
memcpy(h, header.buf, 16);
memcpy(h + 16, &headerX, 16);
if (!i2p::crypto::AEADChaCha20Poly1305(payload, len - 48, h, 32,
i2p::context.GetSSU2IntroKey(), nonce, payload, len - 48, false)) {
LogPrint(eLogWarning, "SSU2: HolePunch AEAD verification failed ");
return false;
}
HandlePayload(payload, len - 48);
// connect to Charlie
ConnectAfterIntroduction();
return true;
}
void SSU2Session::SendPeerTest(uint8_t msg, const uint8_t *signedData, size_t signedDataLen,
const uint8_t *introKey) {
Header header;
uint8_t h[32], payload[SSU2_MAX_PACKET_SIZE];
// fill packet
header.h.connID = m_DestConnID; // dest id
RAND_bytes(header.buf + 8, 4); // random packet num
header.h.type = eSSU2PeerTest;
header.h.flags[0] = 2; // ver
header.h.flags[1] = (uint8_t) i2p::context.GetNetID(); // netID
header.h.flags[2] = 0; // flag
memcpy(h, header.buf, 16);
memcpy(h + 16, &m_SourceConnID, 8); // source id
// payload
payload[0] = eSSU2BlkDateTime;
htobe16buf(payload + 1, 4);
htobe32buf(payload + 3, i2p::util::GetSecondsSinceEpoch());
size_t payloadSize = 7;
if (msg == 6 || msg == 7)
payloadSize += CreateAddressBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize,
m_RemoteEndpoint);
payloadSize += CreatePeerTestBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize,
msg, eSSU2PeerTestCodeAccept, nullptr, signedData, signedDataLen);
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
// encrypt
uint8_t n[12];
CreateNonce(be32toh(header.h.packetNum), n);
i2p::crypto::AEADChaCha20Poly1305(payload, payloadSize, h, 32, introKey, n, payload, payloadSize + 16,
true);
payloadSize += 16;
header.ll[0] ^= CreateHeaderMask(introKey, payload + (payloadSize - 24));
header.ll[1] ^= CreateHeaderMask(introKey, payload + (payloadSize - 12));
memset(n, 0, 12);
i2p::crypto::ChaCha20(h + 16, 16, introKey, n, h + 16);
// send
m_Server.Send(header.buf, 16, h + 16, 16, payload, payloadSize, m_RemoteEndpoint);
}
bool SSU2Session::ProcessPeerTest(uint8_t *buf, size_t len) {
// we are Alice or Charlie
Header header;
memcpy(header.buf, buf, 16);
header.ll[0] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), buf + (len - 24));
header.ll[1] ^= CreateHeaderMask(i2p::context.GetSSU2IntroKey(), buf + (len - 12));
if (header.h.type != eSSU2PeerTest) {
LogPrint(eLogWarning, "SSU2: Unexpected message type ", (int) header.h.type, " instead ",
(int) eSSU2PeerTest);
return false;
}
uint8_t nonce[12] = {0};
uint64_t headerX[2]; // sourceConnID, token
i2p::crypto::ChaCha20(buf + 16, 16, i2p::context.GetSSU2IntroKey(), nonce, (uint8_t *) headerX);
m_DestConnID = headerX[0];
// decrypt and handle payload
uint8_t *payload = buf + 32;
CreateNonce(be32toh(header.h.packetNum), nonce);
uint8_t h[32];
memcpy(h, header.buf, 16);
memcpy(h + 16, &headerX, 16);
if (!i2p::crypto::AEADChaCha20Poly1305(payload, len - 48, h, 32,
i2p::context.GetSSU2IntroKey(), nonce, payload, len - 48, false)) {
LogPrint(eLogWarning, "SSU2: PeerTest AEAD verification failed ");
return false;
}
HandlePayload(payload, len - 48);
return true;
}
uint32_t SSU2Session::SendData(const uint8_t *buf, size_t len) {
if (len < 8) {
LogPrint(eLogWarning, "SSU2: Data message payload is too short ", (int) len);
return 0;
}
Header header;
header.h.connID = m_DestConnID;
header.h.packetNum = htobe32(m_SendPacketNum);
header.h.type = eSSU2Data;
memset(header.h.flags, 0, 3);
uint8_t nonce[12];
CreateNonce(m_SendPacketNum, nonce);
uint8_t payload[SSU2_MAX_PACKET_SIZE];
i2p::crypto::AEADChaCha20Poly1305(buf, len, header.buf, 16, m_KeyDataSend, nonce, payload,
SSU2_MAX_PACKET_SIZE, true);
header.ll[0] ^= CreateHeaderMask(m_Address->i, payload + (len - 8));
header.ll[1] ^= CreateHeaderMask(m_KeyDataSend + 32, payload + (len + 4));
m_Server.Send(header.buf, 16, payload, len + 16, m_RemoteEndpoint);
m_SendPacketNum++;
m_LastActivityTimestamp = i2p::util::GetSecondsSinceEpoch();
m_NumSentBytes += len + 32;
return m_SendPacketNum - 1;
}
void SSU2Session::ProcessData(uint8_t *buf, size_t len) {
Header header;
header.ll[0] = m_SourceConnID;
memcpy(header.buf + 8, buf + 8, 8);
header.ll[1] ^= CreateHeaderMask(m_KeyDataReceive + 32, buf + (len - 12));
if (header.h.type != eSSU2Data) {
LogPrint(eLogWarning, "SSU2: Unexpected message type ", (int) header.h.type, " instead ",
(int) eSSU2Data);
if (IsEstablished())
SendQuickAck(); // in case it was SessionConfirmed
else
ResendHandshakePacket(); // assume we receive
return;
}
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = len - 32;
uint32_t packetNum = be32toh(header.h.packetNum);
uint8_t nonce[12];
CreateNonce(packetNum, nonce);
if (!i2p::crypto::AEADChaCha20Poly1305(buf + 16, payloadSize, header.buf, 16,
m_KeyDataReceive, nonce, payload, payloadSize, false)) {
LogPrint(eLogWarning, "SSU2: Data AEAD verification failed ");
return;
}
m_LastActivityTimestamp = i2p::util::GetSecondsSinceEpoch();
m_NumReceivedBytes += len;
if (!packetNum || UpdateReceivePacketNum(packetNum))
HandlePayload(payload, payloadSize);
}
void SSU2Session::HandlePayload(const uint8_t *buf, size_t len) {
size_t offset = 0;
while (offset < len) {
uint8_t blk = buf[offset];
offset++;
auto size = bufbe16toh(buf + offset);
offset += 2;
LogPrint(eLogDebug, "SSU2: Block type ", (int) blk, " of size ", size);
if (size > len) {
LogPrint(eLogError, "SSU2: Unexpected block length ", size);
break;
}
switch (blk) {
case eSSU2BlkDateTime:
LogPrint(eLogDebug, "SSU2: Datetime");
HandleDateTime(buf + offset, size);
break;
case eSSU2BlkOptions:
LogPrint(eLogDebug, "SSU2: Options");
break;
case eSSU2BlkRouterInfo: {
// not from SessionConfirmed, we must add it instantly to use in next block
LogPrint(eLogDebug, "SSU2: RouterInfo");
auto ri = ExtractRouterInfo(buf + offset, size);
if (ri)
i2p::data::netdb.AddRouterInfo(ri->GetBuffer(), ri->GetBufferLen()); // TODO: add ri
break;
}
case eSSU2BlkI2NPMessage: {
LogPrint(eLogDebug, "SSU2: I2NP message");
auto nextMsg = (buf[offset] == eI2NPTunnelData) ? NewI2NPTunnelMessage(true)
: NewI2NPShortMessage();
nextMsg->len = nextMsg->offset + size + 7; // 7 more bytes for full I2NP header
memcpy(nextMsg->GetNTCP2Header(), buf + offset, size);
nextMsg->FromNTCP2(); // SSU2 has the same format as NTCP2
m_Handler.PutNextMessage(std::move(nextMsg));
m_IsDataReceived = true;
break;
}
case eSSU2BlkFirstFragment:
LogPrint(eLogDebug, "SSU2: First fragment");
HandleFirstFragment(buf + offset, size);
m_IsDataReceived = true;
break;
case eSSU2BlkFollowOnFragment:
LogPrint(eLogDebug, "SSU2: Follow-on fragment");
HandleFollowOnFragment(buf + offset, size);
m_IsDataReceived = true;
break;
case eSSU2BlkTermination:
LogPrint(eLogDebug, "SSU2: Termination reason=", (int) buf[11]);
if (IsEstablished() && buf[11] != eSSU2TerminationReasonTerminationReceived)
RequestTermination(eSSU2TerminationReasonTerminationReceived);
else
Done();
break;
case eSSU2BlkRelayRequest:
LogPrint(eLogDebug, "SSU2: RelayRequest");
HandleRelayRequest(buf + offset, size);
break;
case eSSU2BlkRelayResponse:
LogPrint(eLogDebug, "SSU2: RelayResponse");
HandleRelayResponse(buf + offset, size);
break;
case eSSU2BlkRelayIntro:
LogPrint(eLogDebug, "SSU2: RelayIntro");
HandleRelayIntro(buf + offset, size);
break;
case eSSU2BlkPeerTest:
LogPrint(eLogDebug, "SSU2: PeerTest msg=", (int) buf[offset], " code=", (int) buf[offset + 1]);
HandlePeerTest(buf + offset, size);
if (buf[offset] < 5)
m_IsDataReceived = true;
break;
case eSSU2BlkNextNonce:
break;
case eSSU2BlkAck:
LogPrint(eLogDebug, "SSU2: Ack");
HandleAck(buf + offset, size);
break;
case eSSU2BlkAddress:
LogPrint(eLogDebug, "SSU2: Address");
HandleAddress(buf + offset, size);
break;
case eSSU2BlkIntroKey:
break;
case eSSU2BlkRelayTagRequest:
LogPrint(eLogDebug, "SSU2: RelayTagRequest");
if (!m_RelayTag) {
RAND_bytes((uint8_t * ) & m_RelayTag, 4);
m_Server.AddRelay(m_RelayTag, shared_from_this());
}
break;
case eSSU2BlkRelayTag:
LogPrint(eLogDebug, "SSU2: RelayTag");
m_RelayTag = bufbe32toh(buf + offset);
break;
case eSSU2BlkNewToken: {
LogPrint(eLogDebug, "SSU2: New token");
uint64_t token;
memcpy(&token, buf + offset + 4, 8);
m_Server.UpdateOutgoingToken(m_RemoteEndpoint, token, bufbe32toh(buf + offset));
break;
}
case eSSU2BlkPathChallenge:
LogPrint(eLogDebug, "SSU2: Path challenge");
SendPathResponse(buf + offset, size);
break;
case eSSU2BlkPathResponse:
LogPrint(eLogDebug, "SSU2: Path response");
break;
case eSSU2BlkFirstPacketNumber:
break;
case eSSU2BlkPadding:
LogPrint(eLogDebug, "SSU2: Padding");
break;
default:
LogPrint(eLogWarning, "SSU2: Unknown block type ", (int) blk);
}
offset += size;
}
}
void SSU2Session::HandleDateTime(const uint8_t *buf, size_t len) {
int64_t offset = (int64_t) i2p::util::GetSecondsSinceEpoch() - (int64_t) bufbe32toh(buf);
switch (m_State) {
case eSSU2SessionStateSessionRequestReceived:
case eSSU2SessionStateTokenRequestReceived:
if (std::abs(offset) > SSU2_CLOCK_SKEW)
m_TerminationReason = eSSU2TerminationReasonClockSkew;
break;
case eSSU2SessionStateSessionCreatedReceived:
case eSSU2SessionStateTokenReceived:
if ((m_RemoteEndpoint.address().is_v4() && i2p::context.GetStatus() == eRouterStatusTesting) ||
(m_RemoteEndpoint.address().is_v6() && i2p::context.GetStatusV6() == eRouterStatusTesting)) {
if (m_Server.IsSyncClockFromPeers()) {
if (std::abs(offset) > SSU2_CLOCK_THRESHOLD) {
LogPrint(eLogWarning, "SSU2: Clock adjusted by ", -offset, " seconds");
i2p::util::AdjustTimeOffset(-offset);
}
} else if (std::abs(offset) > SSU2_CLOCK_SKEW) {
LogPrint(eLogError, "SSU2: Clock skew detected ", offset, ". Check your clock");
i2p::context.SetError(eRouterErrorClockSkew);
}
}
break;
default:;
}
}
void SSU2Session::HandleAck(const uint8_t *buf, size_t len) {
if (m_State == eSSU2SessionStateSessionConfirmedSent) {
Established();
return;
}
if (m_SentPackets.empty()) return;
if (len < 5) return;
// acnt
uint32_t ackThrough = bufbe32toh(buf);
uint32_t firstPacketNum = ackThrough > buf[4] ? ackThrough - buf[4] : 0;
HandleAckRange(firstPacketNum, ackThrough, i2p::util::GetMillisecondsSinceEpoch()); // acnt
// ranges
len -= 5;
const uint8_t *ranges = buf + 5;
while (len > 0 && firstPacketNum) {
uint32_t lastPacketNum = firstPacketNum - 1;
if (*ranges > lastPacketNum) break;
lastPacketNum -= *ranges;
ranges++; // nacks
if (*ranges > lastPacketNum + 1) break;
firstPacketNum = lastPacketNum - *ranges + 1;
ranges++; // acks
len -= 2;
HandleAckRange(firstPacketNum, lastPacketNum, 0);
}
}
void SSU2Session::HandleAckRange(uint32_t firstPacketNum, uint32_t lastPacketNum, uint64_t ts) {
if (firstPacketNum > lastPacketNum) return;
auto it = m_SentPackets.begin();
while (it != m_SentPackets.end() && it->first < firstPacketNum) it++; // find first acked packet
if (it == m_SentPackets.end() || it->first > lastPacketNum) return; // not found
auto it1 = it;
int numPackets = 0;
while (it1 != m_SentPackets.end() && it1->first <= lastPacketNum) {
if (ts && !it1->second->numResends) {
if (ts > it1->second->sendTime) {
auto rtt = ts - it1->second->sendTime;
m_RTT = (m_RTT * m_SendPacketNum + rtt) / (m_SendPacketNum + 1);
m_RTO = m_RTT * SSU2_kAPPA;
if (m_RTO < SSU2_MIN_RTO) m_RTO = SSU2_MIN_RTO;
if (m_RTO > SSU2_MAX_RTO) m_RTO = SSU2_MAX_RTO;
}
ts = 0; // update RTT one time per range
}
it1++;
numPackets++;
}
m_SentPackets.erase(it, it1);
if (numPackets > 0) {
m_WindowSize += numPackets;
if (m_WindowSize > SSU2_MAX_WINDOW_SIZE) m_WindowSize = SSU2_MAX_WINDOW_SIZE;
}
}
void SSU2Session::HandleAddress(const uint8_t *buf, size_t len) {
boost::asio::ip::udp::endpoint ep;
if (ExtractEndpoint(buf, len, ep)) {
LogPrint(eLogInfo, "SSU2: Our external address is ", ep);
if (!i2p::util::net::IsInReservedRange(ep.address())) {
i2p::context.UpdateAddress(ep.address());
// check our port
bool isV4 = ep.address().is_v4();
if (ep.port() != m_Server.GetPort(isV4)) {
if (isV4) {
if (i2p::context.GetStatus() == eRouterStatusTesting)
i2p::context.SetError(eRouterErrorSymmetricNAT);
} else {
if (i2p::context.GetStatusV6() == eRouterStatusTesting)
i2p::context.SetErrorV6(eRouterErrorSymmetricNAT);
}
} else {
if (isV4) {
if (i2p::context.GetStatus() == eRouterStatusError &&
i2p::context.GetError() == eRouterErrorSymmetricNAT)
i2p::context.SetStatus(eRouterStatusTesting);
} else {
if (i2p::context.GetStatusV6() == eRouterStatusError &&
i2p::context.GetErrorV6() == eRouterErrorSymmetricNAT)
i2p::context.SetStatusV6(eRouterStatusTesting);
}
}
}
}
}
void SSU2Session::HandleFirstFragment(const uint8_t *buf, size_t len) {
uint32_t msgID;
memcpy(&msgID, buf + 1, 4);
auto msg = NewI2NPShortMessage();
// same format as I2NP message block
msg->len = msg->offset + len + 7;
memcpy(msg->GetNTCP2Header(), buf, len);
std::shared_ptr<SSU2IncompleteMessage> m;
bool found = false;
auto it = m_IncompleteMessages.find(msgID);
if (it != m_IncompleteMessages.end()) {
found = true;
m = it->second;
} else {
m = std::make_shared<SSU2IncompleteMessage>();
m_IncompleteMessages.emplace(msgID, m);
}
m->msg = msg;
m->nextFragmentNum = 1;
m->lastFragmentInsertTime = i2p::util::GetSecondsSinceEpoch();
if (found && ConcatOutOfSequenceFragments(m)) {
// we have all follow-on fragments already
m->msg->FromNTCP2();
m_Handler.PutNextMessage(std::move(m->msg));
m_IncompleteMessages.erase(it);
}
}
void SSU2Session::HandleFollowOnFragment(const uint8_t *buf, size_t len) {
if (len < 5) return;
uint8_t fragmentNum = buf[0] >> 1;
bool isLast = buf[0] & 0x01;
uint32_t msgID;
memcpy(&msgID, buf + 1, 4);
auto it = m_IncompleteMessages.find(msgID);
if (it != m_IncompleteMessages.end()) {
if (it->second->nextFragmentNum == fragmentNum && fragmentNum < SSU2_MAX_NUM_FRAGMENTS &&
it->second->msg) {
// in sequence
it->second->AttachNextFragment(buf + 5, len - 5);
if (isLast) {
it->second->msg->FromNTCP2();
m_Handler.PutNextMessage(std::move(it->second->msg));
m_IncompleteMessages.erase(it);
} else {
if (ConcatOutOfSequenceFragments(it->second)) {
m_Handler.PutNextMessage(std::move(it->second->msg));
m_IncompleteMessages.erase(it);
} else
it->second->lastFragmentInsertTime = i2p::util::GetSecondsSinceEpoch();
}
return;
}
} else {
// follow-on fragment before first fragment
auto msg = std::make_shared<SSU2IncompleteMessage>();
msg->nextFragmentNum = 0;
it = m_IncompleteMessages.emplace(msgID, msg).first;
}
// insert out of sequence fragment
if (fragmentNum >= SSU2_MAX_NUM_FRAGMENTS) {
LogPrint(eLogWarning, "SSU2: Fragment number ", fragmentNum, " exceeds ", SSU2_MAX_NUM_FRAGMENTS);
return;
}
auto fragment = std::make_shared<SSU2IncompleteMessage::Fragment>();
memcpy(fragment->buf, buf + 5, len - 5);
fragment->len = len - 5;
fragment->isLast = isLast;
it->second->outOfSequenceFragments.emplace(fragmentNum, fragment);
it->second->lastFragmentInsertTime = i2p::util::GetSecondsSinceEpoch();
}
bool SSU2Session::ConcatOutOfSequenceFragments(std::shared_ptr<SSU2IncompleteMessage> m) {
if (!m) return false;
bool isLast = false;
for (auto it = m->outOfSequenceFragments.begin(); it != m->outOfSequenceFragments.end();)
if (it->first == m->nextFragmentNum) {
m->AttachNextFragment(it->second->buf, it->second->len);
isLast = it->second->isLast;
it = m->outOfSequenceFragments.erase(it);
} else
break;
return isLast;
}
void SSU2Session::HandleRelayRequest(const uint8_t *buf, size_t len) {
// we are Bob
uint32_t relayTag = bufbe32toh(buf + 5); // relay tag
auto session = m_Server.FindRelaySession(relayTag);
if (!session) {
LogPrint(eLogWarning, "SSU2: RelayRequest session with relay tag ", relayTag, " not found");
// send relay response back to Alice
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = CreateRelayResponseBlock(payload, m_MaxPayloadSize,
eSSU2RelayResponseCodeBobRelayTagNotFound,
bufbe32toh(buf + 1), 0, false);
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
SendData(payload, payloadSize);
return;
}
session->m_RelaySessions.emplace(bufbe32toh(buf + 1), // nonce
std::make_pair(shared_from_this(), i2p::util::GetSecondsSinceEpoch()));
// send relay intro to Charlie
auto r = i2p::data::netdb.FindRouter(GetRemoteIdentity()->GetIdentHash()); // Alice's RI
if (r)
i2p::data::netdb.PopulateRouterInfoBuffer(r);
else
LogPrint(eLogWarning, "SSU2: RelayRequest Alice's router info not found");
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = r ? CreateRouterInfoBlock(payload, m_MaxPayloadSize - len - 32, r) : 0;
if (!payloadSize && r)
session->SendFragmentedMessage(CreateDatabaseStoreMsg(r));
payloadSize += CreateRelayIntroBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize, buf + 1,
len - 1);
if (payloadSize < m_MaxPayloadSize)
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
session->SendData(payload, payloadSize);
}
void SSU2Session::HandleRelayIntro(const uint8_t *buf, size_t len) {
// we are Charlie
SSU2RelayResponseCode code = eSSU2RelayResponseCodeAccept;
uint64_t token = 0;
bool isV4 = false;
auto r = i2p::data::netdb.FindRouter(buf + 1); // Alice
if (r) {
SignedData s;
s.Insert((const uint8_t *) "RelayRequestData", 16); // prologue
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
s.Insert(i2p::context.GetIdentHash(), 32); // chash
s.Insert(buf + 33, 14); // nonce, relay tag, timestamp, ver, asz
uint8_t asz = buf[46];
s.Insert(buf + 47, asz); // Alice Port, Alice IP
if (s.Verify(r->GetIdentity(), buf + 47 + asz)) {
// send HolePunch
boost::asio::ip::udp::endpoint ep;
if (ExtractEndpoint(buf + 47, asz, ep)) {
auto addr = ep.address().is_v6() ? r->GetSSU2V6Address() : r->GetSSU2V4Address();
if (addr) {
if (m_Server.IsSupported(ep.address())) {
token = m_Server.GetIncomingToken(ep);
isV4 = ep.address().is_v4();
SendHolePunch(bufbe32toh(buf + 33), ep, addr->i, token);
} else {
LogPrint(eLogWarning, "SSU2: RelayIntro unsupported address");
code = eSSU2RelayResponseCodeCharlieUnsupportedAddress;
}
} else {
LogPrint(eLogWarning, "SSU2: RelayIntro unknown address");
code = eSSU2RelayResponseCodeCharlieAliceIsUnknown;
}
} else {
LogPrint(eLogWarning, "SSU2: RelayIntro can't extract endpoint");
code = eSSU2RelayResponseCodeCharlieAliceIsUnknown;
}
} else {
LogPrint(eLogWarning, "SSU2: RelayIntro signature verification failed");
code = eSSU2RelayResponseCodeCharlieSignatureFailure;
}
} else {
LogPrint(eLogError, "SSU2: RelayIntro unknown router to introduce");
code = eSSU2RelayResponseCodeCharlieAliceIsUnknown;
}
// send relay response to Bob
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = CreateRelayResponseBlock(payload, m_MaxPayloadSize,
code, bufbe32toh(buf + 33), token, isV4);
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
SendData(payload, payloadSize);
}
void SSU2Session::HandleRelayResponse(const uint8_t *buf, size_t len) {
uint32_t nonce = bufbe32toh(buf + 2);
if (m_State == eSSU2SessionStateIntroduced) {
// HolePunch from Charlie
// TODO: verify address and signature
// verify nonce
if (~htobe64(((uint64_t) nonce << 32) | nonce) != m_DestConnID)
LogPrint(eLogWarning, "SSU2: Relay response nonce mismatch ", nonce, " connID=", m_DestConnID);
if (len >= 8) {
// new token
uint64_t token;
memcpy(&token, buf + len - 8, 8);
m_Server.UpdateOutgoingToken(m_RemoteEndpoint, token,
i2p::util::GetSecondsSinceEpoch() + SSU2_TOKEN_EXPIRATION_TIMEOUT);
}
return;
}
auto it = m_RelaySessions.find(nonce);
if (it != m_RelaySessions.end()) {
if (it->second.first && it->second.first->IsEstablished()) {
// we are Bob, message from Charlie
uint8_t payload[SSU2_MAX_PACKET_SIZE];
payload[0] = eSSU2BlkRelayResponse;
htobe16buf(payload + 1, len);
memcpy(payload + 3, buf, len); // forward to Alice as is
size_t payloadSize = len + 3;
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
it->second.first->SendData(payload, payloadSize);
} else {
// we are Alice, message from Bob
if (!buf[1]) // status code accepted?
{
// verify signature
uint8_t csz = buf[11];
SignedData s;
s.Insert((const uint8_t *) "RelayAgreementOK", 16); // prologue
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
s.Insert(buf + 2, 10 + csz); // nonce, timestamp, ver, csz and Charlie's endpoint
if (s.Verify(it->second.first->GetRemoteIdentity(), buf + 12 + csz)) {
if (it->second.first->m_State == eSSU2SessionStateIntroduced) // HolePunch not received yet
{
// update Charlie's endpoint
if (ExtractEndpoint(buf + 12, csz, it->second.first->m_RemoteEndpoint)) {
// update token
uint64_t token;
memcpy(&token, buf + len - 8, 8);
m_Server.UpdateOutgoingToken(it->second.first->m_RemoteEndpoint,
token, i2p::util::GetSecondsSinceEpoch() +
SSU2_TOKEN_EXPIRATION_TIMEOUT);
// connect to Charlie, HolePunch will be ignored
it->second.first->ConnectAfterIntroduction();
} else
LogPrint(eLogWarning, "SSU2: RelayResponse can't extract endpoint");
}
} else {
LogPrint(eLogWarning, "SSU2: RelayResponse signature verification failed");
it->second.first->Done();
}
} else {
LogPrint(eLogInfo, "SSU2: RelayResponse status code=", (int) buf[1]);
it->second.first->Done();
}
}
m_RelaySessions.erase(it);
} else
LogPrint(eLogWarning, "SSU2: RelayResponse unknown nonce ", bufbe32toh(buf + 2));
}
void SSU2Session::HandlePeerTest(const uint8_t *buf, size_t len) {
if (len < 3) return;
uint8_t msg = buf[0];
size_t offset = 3; // points to signed data
if (msg == 2 || msg == 4) offset += 32; // hash is presented for msg 2 and 4 only
if (len < offset + 5) return;
uint32_t nonce = bufbe32toh(buf + offset + 1);
switch (msg) // msg
{
case 1: // Bob from Alice
{
auto session = m_Server.GetRandomSession(
(buf[12] == 6) ? i2p::data::RouterInfo::eSSU2V4 : i2p::data::RouterInfo::eSSU2V6,
GetRemoteIdentity()->GetIdentHash());
if (session) // session with Charlie
{
session->m_PeerTests.emplace(nonce, std::make_pair(shared_from_this(),
i2p::util::GetSecondsSinceEpoch()));
uint8_t payload[SSU2_MAX_PACKET_SIZE];
// Alice's RouterInfo
auto r = i2p::data::netdb.FindRouter(GetRemoteIdentity()->GetIdentHash());
if (r) i2p::data::netdb.PopulateRouterInfoBuffer(r);
size_t payloadSize = r ? CreateRouterInfoBlock(payload, m_MaxPayloadSize - len - 32, r) : 0;
if (!payloadSize && r)
session->SendFragmentedMessage(CreateDatabaseStoreMsg(r));
if (payloadSize + len + 48 > m_MaxPayloadSize) {
// doesn't fit one message, send RouterInfo in separate message
session->SendData(payload, payloadSize);
payloadSize = 0;
}
// PeerTest to Charlie
payloadSize += CreatePeerTestBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize, 2,
eSSU2PeerTestCodeAccept, GetRemoteIdentity()->GetIdentHash(),
buf + offset, len - offset);
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
session->SendData(payload, payloadSize);
} else {
// Charlie not found, send error back to Alice
uint8_t payload[SSU2_MAX_PACKET_SIZE], zeroHash[32] = {0};
size_t payloadSize = CreatePeerTestBlock(payload, m_MaxPayloadSize, 4,
eSSU2PeerTestCodeBobNoCharlieAvailable, zeroHash,
buf + offset, len - offset);
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
SendData(payload, payloadSize);
}
break;
}
case 2: // Charlie from Bob
{
// sign with Charlie's key
uint8_t asz = buf[offset + 9];
std::vector<uint8_t> newSignedData(asz + 10 + i2p::context.GetIdentity()->GetSignatureLen());
memcpy(newSignedData.data(), buf + offset, asz + 10);
SignedData s;
s.Insert((const uint8_t *) "PeerTestValidate", 16); // prologue
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
s.Insert(buf + 3, 32); // ahash
s.Insert(newSignedData.data(), asz + 10); // ver, nonce, ts, asz, Alice's endpoint
s.Sign(i2p::context.GetPrivateKeys(), newSignedData.data() + 10 + asz);
// send response (msg 3) back and msg 5 if accepted
SSU2PeerTestCode code = eSSU2PeerTestCodeAccept;
auto r = i2p::data::netdb.FindRouter(buf + 3); // find Alice
if (r) {
size_t signatureLen = r->GetIdentity()->GetSignatureLen();
if (len >= offset + asz + 10 + signatureLen) {
s.Reset();
s.Insert((const uint8_t *) "PeerTestValidate", 16); // prologue
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
s.Insert(buf + offset, asz + 10); // signed data
if (s.Verify(r->GetIdentity(), buf + offset + asz + 10)) {
if (!m_Server.FindSession(r->GetIdentity()->GetIdentHash())) {
boost::asio::ip::udp::endpoint ep;
std::shared_ptr<const i2p::data::RouterInfo::Address> addr;
if (ExtractEndpoint(buf + offset + 10, asz, ep))
addr = r->GetSSU2Address(ep.address().is_v4());
if (addr && m_Server.IsSupported(ep.address())) {
// send msg 5 to Alice
auto session = std::make_shared<SSU2Session>(m_Server, r, addr);
session->SetState(eSSU2SessionStatePeerTest);
session->m_RemoteEndpoint = ep; // might be different
session->m_DestConnID = htobe64(((uint64_t) nonce << 32) | nonce);
session->m_SourceConnID = ~session->m_DestConnID;
m_Server.AddSession(session);
session->SendPeerTest(5, newSignedData.data(), newSignedData.size(), addr->i);
} else
code = eSSU2PeerTestCodeCharlieUnsupportedAddress;
} else
code = eSSU2PeerTestCodeCharlieAliceIsAlreadyConnected;
} else
code = eSSU2PeerTestCodeCharlieSignatureFailure;
} else // maformed message
code = eSSU2PeerTestCodeCharlieReasonUnspecified;
} else
code = eSSU2PeerTestCodeCharlieAliceIsUnknown;
// send msg 3 back to Bob
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = CreatePeerTestBlock(payload, m_MaxPayloadSize, 3,
code, nullptr, newSignedData.data(), newSignedData.size());
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
SendData(payload, payloadSize);
break;
}
case 3: // Bob from Charlie
{
auto it = m_PeerTests.find(nonce);
if (it != m_PeerTests.end() && it->second.first) {
uint8_t payload[SSU2_MAX_PACKET_SIZE];
// Charlie's RouterInfo
auto r = i2p::data::netdb.FindRouter(GetRemoteIdentity()->GetIdentHash());
if (r) i2p::data::netdb.PopulateRouterInfoBuffer(r);
size_t payloadSize = r ? CreateRouterInfoBlock(payload, m_MaxPayloadSize - len - 32, r) : 0;
if (!payloadSize && r)
it->second.first->SendFragmentedMessage(CreateDatabaseStoreMsg(r));
if (payloadSize + len + 16 > m_MaxPayloadSize) {
// doesn't fit one message, send RouterInfo in separate message
it->second.first->SendData(payload, payloadSize);
payloadSize = 0;
}
// PeerTest to Alice
payloadSize += CreatePeerTestBlock(payload + payloadSize, m_MaxPayloadSize, 4,
(SSU2PeerTestCode) buf[1],
GetRemoteIdentity()->GetIdentHash(), buf + offset,
len - offset);
if (payloadSize < m_MaxPayloadSize)
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
it->second.first->SendData(payload, payloadSize);
m_PeerTests.erase(it);
} else
LogPrint(eLogWarning, "SSU2: Unknown peer test 3 nonce ", nonce);
break;
}
case 4: // Alice from Bob
{
auto it = m_PeerTests.find(nonce);
if (it != m_PeerTests.end()) {
if (buf[1] == eSSU2PeerTestCodeAccept) {
if (GetRouterStatus() == eRouterStatusUnknown)
SetRouterStatus(eRouterStatusTesting);
auto r = i2p::data::netdb.FindRouter(buf + 3); // find Charlie
if (r && it->second.first) {
uint8_t asz = buf[offset + 9];
SignedData s;
s.Insert((const uint8_t *) "PeerTestValidate", 16); // prologue
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
s.Insert(i2p::context.GetIdentity()->GetIdentHash(), 32); // ahash
s.Insert(buf + offset, asz + 10); // ver, nonce, ts, asz, Alice's endpoint
if (s.Verify(r->GetIdentity(), buf + offset + asz + 10)) {
it->second.first->SetRemoteIdentity(r->GetIdentity());
auto addr = r->GetSSU2Address(m_Address->IsV4());
if (addr) {
it->second.first->m_Address = addr;
if (it->second.first->m_State == eSSU2SessionStatePeerTestReceived) {
// msg 5 already received. send msg 6
SetRouterStatus(eRouterStatusOK);
it->second.first->m_State = eSSU2SessionStatePeerTest;
it->second.first->SendPeerTest(6, buf + offset, len - offset, addr->i);
} else {
if (GetRouterStatus() == eRouterStatusTesting) {
SetRouterStatus(eRouterStatusFirewalled);
if (m_Address->IsV4())
m_Server.RescheduleIntroducersUpdateTimer();
else
m_Server.RescheduleIntroducersUpdateTimerV6();
}
}
} else {
LogPrint(eLogWarning, "SSU2: Peer test 4 address not found");
it->second.first->Done();
}
} else {
LogPrint(eLogWarning, "SSU2: Peer test 4 signature verification failed");
it->second.first->Done();
}
}
} else {
LogPrint(eLogInfo, "SSU2: Peer test 4 error code ", (int) buf[1], " from ",
i2p::data::GetIdentHashAbbreviation(
buf[1] < 64 ? GetRemoteIdentity()->GetIdentHash() : i2p::data::IdentHash(
buf + 3)));
if (GetRouterStatus() == eRouterStatusTesting)
SetRouterStatus(eRouterStatusUnknown);
it->second.first->Done();
}
m_PeerTests.erase(it);
} else
LogPrint(eLogWarning, "SSU2: Unknown peer test 4 nonce ", nonce);
break;
}
case 5: // Alice from Charlie 1
if (htobe64(((uint64_t) nonce << 32) | nonce) == m_SourceConnID) {
if (m_Address) {
SetRouterStatus(eRouterStatusOK);
SendPeerTest(6, buf + offset, len - offset, m_Address->i);
} else
// we received msg 5 before msg 4
m_State = eSSU2SessionStatePeerTestReceived;
} else
LogPrint(eLogWarning, "SSU2: Peer test 5 nonce mismatch ", nonce, " connID=", m_SourceConnID);
break;
case 6: // Charlie from Alice
if (m_Address)
SendPeerTest(7, buf + offset, len - offset, m_Address->i);
else
LogPrint(eLogWarning, "SSU2: Unknown address for peer test 6");
m_Server.RemoveSession(~htobe64(((uint64_t) nonce << 32) | nonce));
break;
case 7: // Alice from Charlie 2
m_Server.RemoveSession(htobe64(((uint64_t) nonce << 32) | nonce));
if (m_Address->IsV6())
i2p::context.SetStatusV6(eRouterStatusOK); // set status OK for ipv6 even if from SSU2
break;
default:
LogPrint(eLogWarning, "SSU2: PeerTest unexpected msg num ", buf[0]);
}
}
bool SSU2Session::ExtractEndpoint(const uint8_t *buf, size_t size, boost::asio::ip::udp::endpoint &ep) {
if (size < 2) return false;
int port = bufbe16toh(buf);
if (size == 6) {
boost::asio::ip::address_v4::bytes_type bytes;
memcpy(bytes.data(), buf + 2, 4);
ep = boost::asio::ip::udp::endpoint(boost::asio::ip::address_v4(bytes), port);
} else if (size == 18) {
boost::asio::ip::address_v6::bytes_type bytes;
memcpy(bytes.data(), buf + 2, 16);
ep = boost::asio::ip::udp::endpoint(boost::asio::ip::address_v6(bytes), port);
} else {
LogPrint(eLogWarning, "SSU2: Address size ", int(size), " is not supported");
return false;
}
return true;
}
size_t SSU2Session::CreateEndpoint(uint8_t *buf, size_t len, const boost::asio::ip::udp::endpoint &ep) {
if (len < 6) return 0;
htobe16buf(buf, ep.port());
size_t size = 0;
if (ep.address().is_v4()) {
memcpy(buf + 2, ep.address().to_v4().to_bytes().data(), 4);
size = 6;
} else if (ep.address().is_v6()) {
if (len < 18) return 0;
memcpy(buf + 2, ep.address().to_v6().to_bytes().data(), 16);
size = 18;
} else {
LogPrint(eLogWarning, "SSU2: Wrong address type ", ep.address().to_string());
return 0;
}
return size;
}
std::shared_ptr<const i2p::data::RouterInfo::Address> SSU2Session::FindLocalAddress() const {
if (m_Address)
return i2p::context.GetRouterInfo().GetSSU2Address(m_Address->IsV4());
return nullptr;
}
void SSU2Session::AdjustMaxPayloadSize() {
auto addr = FindLocalAddress();
if (addr && addr->ssu) {
int mtu = addr->ssu->mtu;
if (!mtu && addr->IsV4()) mtu = SSU2_MAX_PACKET_SIZE;
if (m_Address && m_Address->ssu && (!mtu || m_Address->ssu->mtu < mtu))
mtu = m_Address->ssu->mtu;
if (mtu) {
m_MaxPayloadSize =
mtu - (addr->IsV6() ? IPV6_HEADER_SIZE : IPV4_HEADER_SIZE) - UDP_HEADER_SIZE - 32;
LogPrint(eLogDebug, "SSU2: Session MTU=", mtu, ", max payload size=", m_MaxPayloadSize);
}
}
}
RouterStatus SSU2Session::GetRouterStatus() const {
if (m_Address) {
if (m_Address->IsV4())
return i2p::context.GetStatus();
if (m_Address->IsV6())
return i2p::context.GetStatusV6();
}
return eRouterStatusUnknown;
}
void SSU2Session::SetRouterStatus(RouterStatus status) const {
if (m_Address) {
if (m_Address->IsV4())
i2p::context.SetStatusSSU2(status);
else if (m_Address->IsV6())
i2p::context.SetStatusV6SSU2(status);
}
}
size_t SSU2Session::CreateAddressBlock(uint8_t *buf, size_t len, const boost::asio::ip::udp::endpoint &ep) {
if (len < 9) return 0;
buf[0] = eSSU2BlkAddress;
size_t size = CreateEndpoint(buf + 3, len - 3, ep);
if (!size) return 0;
htobe16buf(buf + 1, size);
return size + 3;
}
size_t
SSU2Session::CreateRouterInfoBlock(uint8_t *buf, size_t len, std::shared_ptr<const i2p::data::RouterInfo> r) {
if (!r || !r->GetBuffer() || len < 5) return 0;
buf[0] = eSSU2BlkRouterInfo;
size_t size = r->GetBufferLen();
if (size + 5 < len) {
memcpy(buf + 5, r->GetBuffer(), size);
buf[3] = 0; // flag
} else {
i2p::data::GzipDeflator deflator;
deflator.SetCompressionLevel(9);
size = deflator.Deflate(r->GetBuffer(), r->GetBufferLen(), buf + 5, len - 5);
if (!size) return 0; // doesn't fit
buf[3] = SSU2_ROUTER_INFO_FLAG_GZIP; // flag
}
htobe16buf(buf + 1, size + 2); // size
buf[4] = 1; // frag
return size + 5;
}
size_t SSU2Session::CreateAckBlock(uint8_t *buf, size_t len) {
if (len < 8) return 0;
int maxNumRanges = (len - 8) >> 1;
if (maxNumRanges > SSU2_MAX_NUM_ACK_RANGES) maxNumRanges = SSU2_MAX_NUM_ACK_RANGES;
buf[0] = eSSU2BlkAck;
uint32_t ackThrough = m_OutOfSequencePackets.empty() ? m_ReceivePacketNum
: *m_OutOfSequencePackets.rbegin();
htobe32buf(buf + 3, ackThrough); // Ack Through
uint16_t acnt = 0;
int numRanges = 0;
if (ackThrough) {
if (m_OutOfSequencePackets.empty())
acnt = std::min((int) ackThrough, 255); // no gaps
else {
auto it = m_OutOfSequencePackets.rbegin();
it++; // prev packet num
while (it != m_OutOfSequencePackets.rend() && *it == ackThrough - acnt - 1) {
acnt++;
it++;
}
// ranges
uint32_t lastNum = ackThrough - acnt;
if (acnt > 255) {
auto d = std::div(acnt - 255, 255);
acnt = 255;
if (d.quot > maxNumRanges) {
d.quot = maxNumRanges;
d.rem = 0;
}
// Acks only ragnes for acnt
for (int i = 0; i < d.quot; i++) {
buf[8 + numRanges * 2] = 0;
buf[8 + numRanges * 2 + 1] = 255; // NACKs 0, Acks 255
numRanges++;
}
if (d.rem > 0) {
buf[8 + numRanges * 2] = 0;
buf[8 + numRanges * 2 + 1] = d.rem;
numRanges++;
}
}
while (it != m_OutOfSequencePackets.rend() && numRanges < maxNumRanges) {
if (lastNum - (*it) > 255) {
// NACKs only ranges
if (lastNum > (*it) + 255 * (maxNumRanges - numRanges)) break; // too many NACKs
while (lastNum - (*it) > 255) {
buf[8 + numRanges * 2] = 255;
buf[8 + numRanges * 2 + 1] = 0; // NACKs 255, Acks 0
lastNum -= 255;
numRanges++;
}
}
// NACKs and Acks ranges
buf[8 + numRanges * 2] = lastNum - (*it) - 1; // NACKs
lastNum = *it;
it++;
int numAcks = 1;
while (it != m_OutOfSequencePackets.rend() && lastNum > 0 && *it == lastNum - 1) {
numAcks++;
lastNum--;
it++;
}
while (numAcks > 255) {
// Acks only ranges
buf[8 + numRanges * 2 + 1] = 255; // Acks 255
numAcks -= 255;
numRanges++;
buf[8 + numRanges * 2] = 0; // NACKs 0
if (numRanges >= maxNumRanges) break;
}
if (numAcks > 255) numAcks = 255;
buf[8 + numRanges * 2 + 1] = (uint8_t) numAcks; // Acks
numRanges++;
}
if (numRanges < maxNumRanges && it == m_OutOfSequencePackets.rend()) {
// add range between out-of-seqence and received
int nacks = *m_OutOfSequencePackets.begin() - m_ReceivePacketNum - 1;
if (nacks > 0) {
if (nacks > 255) nacks = 255;
buf[8 + numRanges * 2] = nacks;
buf[8 + numRanges * 2 + 1] = std::min((int) m_ReceivePacketNum + 1, 255);
numRanges++;
}
}
}
}
buf[7] = (uint8_t) acnt; // acnt
htobe16buf(buf + 1, 5 + numRanges * 2);
return 8 + numRanges * 2;
}
size_t SSU2Session::CreatePaddingBlock(uint8_t *buf, size_t len, size_t minSize) {
if (len < minSize) return 0;
uint8_t paddingSize = rand() & 0x0F; // 0 - 15
if (paddingSize > len) paddingSize = len;
else if (paddingSize < minSize) paddingSize = minSize;
if (paddingSize) {
buf[0] = eSSU2BlkPadding;
htobe16buf(buf + 1, paddingSize);
memset(buf + 3, 0, paddingSize);
} else
return 0;
return paddingSize + 3;
}
size_t SSU2Session::CreateI2NPBlock(uint8_t *buf, size_t len, std::shared_ptr<I2NPMessage> &&msg) {
msg->ToNTCP2();
auto msgBuf = msg->GetNTCP2Header();
auto msgLen = msg->GetNTCP2Length();
if (msgLen + 3 > len) msgLen = len - 3;
buf[0] = eSSU2BlkI2NPMessage;
htobe16buf(buf + 1, msgLen); // size
memcpy(buf + 3, msgBuf, msgLen);
return msgLen + 3;
}
size_t SSU2Session::CreateFirstFragmentBlock(uint8_t *buf, size_t len, std::shared_ptr<I2NPMessage> msg) {
if (len < 12) return 0;
msg->ToNTCP2();
auto msgBuf = msg->GetNTCP2Header();
auto msgLen = msg->GetNTCP2Length();
if (msgLen + 3 <= len) return 0;
msgLen = len - 3;
buf[0] = eSSU2BlkFirstFragment;
htobe16buf(buf + 1, msgLen); // size
memcpy(buf + 3, msgBuf, msgLen);
msg->offset = (msgBuf - msg->buf) + msgLen;
return msgLen + 3;
}
size_t SSU2Session::CreateFollowOnFragmentBlock(uint8_t *buf, size_t len, std::shared_ptr<I2NPMessage> msg,
uint8_t &fragmentNum, uint32_t msgID) {
if (len < 8) return 0;
bool isLast = true;
auto msgLen = msg->len - msg->offset;
if (msgLen + 8 > len) {
msgLen = len - 8;
isLast = false;
}
buf[0] = eSSU2BlkFollowOnFragment;
htobe16buf(buf + 1, msgLen + 5); // size
fragmentNum++;
buf[3] = fragmentNum << 1;
if (isLast) buf[3] |= 0x01;
memcpy(buf + 4, &msgID, 4);
memcpy(buf + 8, msg->buf + msg->offset, msgLen);
msg->offset += msgLen;
return msgLen + 8;
}
size_t
SSU2Session::CreateRelayIntroBlock(uint8_t *buf, size_t len, const uint8_t *introData, size_t introDataLen) {
buf[0] = eSSU2BlkRelayIntro;
size_t payloadSize = 1/* flag */ + 32/* Alice router hash */ + introDataLen;
if (payloadSize + 3 > len) return 0;
htobe16buf(buf + 1, payloadSize); // size
buf[3] = 0; // flag
memcpy(buf + 4, GetRemoteIdentity()->GetIdentHash(), 32); // Alice router hash
memcpy(buf + 36, introData, introDataLen);
return payloadSize + 3;
}
size_t SSU2Session::CreateRelayResponseBlock(uint8_t *buf, size_t len,
SSU2RelayResponseCode code, uint32_t nonce, uint64_t token,
bool v4) {
buf[0] = eSSU2BlkRelayResponse;
buf[3] = 0; // flag
buf[4] = code; // code
htobe32buf(buf + 5, nonce); // nonce
htobe32buf(buf + 9, i2p::util::GetSecondsSinceEpoch()); // timestamp
buf[13] = 2; // ver
size_t csz = 0;
if (code == eSSU2RelayResponseCodeAccept) {
auto addr = i2p::context.GetRouterInfo().GetSSU2Address(v4);
if (!addr) {
LogPrint(eLogError, "SSU2: Can't find local address for RelayResponse");
return 0;
}
csz = CreateEndpoint(buf + 15, len - 15, boost::asio::ip::udp::endpoint(addr->host, addr->port));
if (!csz) {
LogPrint(eLogError, "SSU2: Can't create local endpoint for RelayResponse");
return 0;
}
}
buf[14] = csz; // csz
// signature
size_t signatureLen = i2p::context.GetIdentity()->GetSignatureLen();
if (15 + csz + signatureLen > len) {
LogPrint(eLogError, "SSU2: Buffer for RelayResponse signature is too small ", len);
return 0;
}
SignedData s;
s.Insert((const uint8_t *) "RelayAgreementOK", 16); // prologue
if (code == eSSU2RelayResponseCodeAccept || code >= 64) // Charlie
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
else // Bob's reject
s.Insert(i2p::context.GetIdentity()->GetIdentHash(), 32); // bhash
s.Insert(buf + 5, 10 + csz); // nonce, timestamp, ver, csz and Charlie's endpoint
s.Sign(i2p::context.GetPrivateKeys(), buf + 15 + csz);
size_t payloadSize = 12 + csz + signatureLen;
if (!code) {
if (payloadSize + 11 > len) {
LogPrint(eLogError, "SSU2: Buffer for RelayResponse token is too small ", len);
return 0;
}
memcpy(buf + 3 + payloadSize, &token, 8);
payloadSize += 8;
}
htobe16buf(buf + 1, payloadSize); // size
return payloadSize + 3;
}
size_t SSU2Session::CreatePeerTestBlock(uint8_t *buf, size_t len, uint8_t msg, SSU2PeerTestCode code,
const uint8_t *routerHash, const uint8_t *signedData,
size_t signedDataLen) {
buf[0] = eSSU2BlkPeerTest;
size_t payloadSize = 3/* msg, code, flag */ + signedDataLen;
if (routerHash) payloadSize += 32; // router hash
if (payloadSize + 3 > len) return 0;
htobe16buf(buf + 1, payloadSize); // size
buf[3] = msg; // msg
buf[4] = (uint8_t) code; // code
buf[5] = 0; //flag
size_t offset = 6;
if (routerHash) {
memcpy(buf + offset, routerHash, 32); // router hash
offset += 32;
}
memcpy(buf + offset, signedData, signedDataLen);
return payloadSize + 3;
}
size_t SSU2Session::CreatePeerTestBlock(uint8_t *buf, size_t len, uint32_t nonce) {
auto localAddress = FindLocalAddress();
if (!localAddress || !localAddress->port || localAddress->host.is_unspecified() ||
localAddress->host.is_v4() != m_RemoteEndpoint.address().is_v4()) {
LogPrint(eLogWarning, "SSU2: Can't find local address for peer test");
return 0;
}
// signed data
auto ts = i2p::util::GetSecondsSinceEpoch();
uint8_t signedData[96];
signedData[0] = 2; // ver
htobe32buf(signedData + 1, nonce);
htobe32buf(signedData + 5, ts);
size_t asz = CreateEndpoint(signedData + 10, 86,
boost::asio::ip::udp::endpoint(localAddress->host, localAddress->port));
signedData[9] = asz;
// signature
SignedData s;
s.Insert((const uint8_t *) "PeerTestValidate", 16); // prologue
s.Insert(GetRemoteIdentity()->GetIdentHash(), 32); // bhash
s.Insert(signedData, 10 + asz); // ver, nonce, ts, asz, Alice's endpoint
s.Sign(i2p::context.GetPrivateKeys(), signedData + 10 + asz);
return CreatePeerTestBlock(buf, len, 1, eSSU2PeerTestCodeAccept, nullptr,
signedData, 10 + asz + i2p::context.GetIdentity()->GetSignatureLen());
}
size_t SSU2Session::CreateTerminationBlock(uint8_t *buf, size_t len) {
buf[0] = eSSU2BlkTermination;
htobe16buf(buf + 1, 9);
htobe64buf(buf + 3, m_ReceivePacketNum);
buf[11] = (uint8_t) m_TerminationReason;
return 12;
}
std::shared_ptr<const i2p::data::RouterInfo> SSU2Session::ExtractRouterInfo(const uint8_t *buf, size_t size) {
if (size < 2) return nullptr;
// TODO: handle frag
std::shared_ptr<const i2p::data::RouterInfo> ri;
if (buf[0] & SSU2_ROUTER_INFO_FLAG_GZIP) {
i2p::data::GzipInflator inflator;
uint8_t uncompressed[i2p::data::MAX_RI_BUFFER_SIZE];
size_t uncompressedSize = inflator.Inflate(buf + 2, size - 2, uncompressed,
i2p::data::MAX_RI_BUFFER_SIZE);
if (uncompressedSize && uncompressedSize < i2p::data::MAX_RI_BUFFER_SIZE)
ri = std::make_shared<i2p::data::RouterInfo>(uncompressed, uncompressedSize);
else
LogPrint(eLogInfo, "SSU2: RouterInfo decompression failed ", uncompressedSize);
} else
ri = std::make_shared<i2p::data::RouterInfo>(buf + 2, size - 2);
return ri;
}
void SSU2Session::CreateNonce(uint64_t seqn, uint8_t *nonce) {
memset(nonce, 0, 4);
htole64buf(nonce + 4, seqn);
}
bool SSU2Session::UpdateReceivePacketNum(uint32_t packetNum) {
if (packetNum <= m_ReceivePacketNum) return false; // duplicate
if (packetNum == m_ReceivePacketNum + 1) {
for (auto it = m_OutOfSequencePackets.begin(); it != m_OutOfSequencePackets.end();) {
if (*it == packetNum + 1) {
packetNum++;
it = m_OutOfSequencePackets.erase(it);
} else
break;
}
m_ReceivePacketNum = packetNum;
} else
m_OutOfSequencePackets.insert(packetNum);
return true;
}
void SSU2Session::SendQuickAck() {
uint8_t payload[SSU2_MAX_PACKET_SIZE];
size_t payloadSize = CreateAckBlock(payload, m_MaxPayloadSize);
payloadSize += CreatePaddingBlock(payload + payloadSize, m_MaxPayloadSize - payloadSize);
SendData(payload, payloadSize);
}
void SSU2Session::SendTermination() {
uint8_t payload[32];
size_t payloadSize = CreateTerminationBlock(payload, 32);
payloadSize += CreatePaddingBlock(payload + payloadSize, 32 - payloadSize);
SendData(payload, payloadSize);
}
void SSU2Session::SendPathResponse(const uint8_t *data, size_t len) {
if (len < 8 || len > m_MaxPayloadSize - 3) {
LogPrint(eLogWarning, "SSU2: Incorrect data size for path response ", len);
return;
}
uint8_t payload[SSU2_MAX_PACKET_SIZE];
payload[0] = eSSU2BlkPathResponse;
htobe16buf(payload + 1, len);
memcpy(payload + 3, data, len);
SendData(payload, len + 3);
}
void SSU2Session::CleanUp(uint64_t ts) {
for (auto it = m_IncompleteMessages.begin(); it != m_IncompleteMessages.end();) {
if (ts > it->second->lastFragmentInsertTime + SSU2_INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT) {
LogPrint(eLogWarning, "SSU2: message ", it->first, " was not completed in ",
SSU2_INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT, " seconds, deleted");
it = m_IncompleteMessages.erase(it);
} else
++it;
}
if (!m_OutOfSequencePackets.empty()) {
if (m_OutOfSequencePackets.size() > 2 * SSU2_MAX_NUM_ACK_RANGES ||
*m_OutOfSequencePackets.rbegin() > m_ReceivePacketNum + 255 * 8) {
uint32_t packet = *m_OutOfSequencePackets.begin();
if (packet > m_ReceivePacketNum + 1) {
// like we've just received all packets before first
packet--;
m_ReceivePacketNum = packet - 1;
UpdateReceivePacketNum(packet);
} else
LogPrint(eLogError, "SSU2: Out of sequence packet ", packet, " is less than last received ",
m_ReceivePacketNum);
}
if (m_OutOfSequencePackets.size() > 255 * 4) {
// seems we have a serious network issue
m_ReceivePacketNum = *m_OutOfSequencePackets.rbegin();
m_OutOfSequencePackets.clear();
}
}
for (auto it = m_RelaySessions.begin(); it != m_RelaySessions.end();) {
if (ts > it->second.second + SSU2_RELAY_NONCE_EXPIRATION_TIMEOUT) {
LogPrint(eLogWarning, "SSU2: Relay nonce ", it->first, " was not responded in ",
SSU2_RELAY_NONCE_EXPIRATION_TIMEOUT, " seconds, deleted");
it = m_RelaySessions.erase(it);
} else
++it;
}
for (auto it = m_PeerTests.begin(); it != m_PeerTests.end();) {
if (ts > it->second.second + SSU2_PEER_TEST_EXPIRATION_TIMEOUT) {
LogPrint(eLogWarning, "SSU2: Peer test nonce ", it->first, " was not responded in ",
SSU2_PEER_TEST_EXPIRATION_TIMEOUT, " seconds, deleted");
it = m_PeerTests.erase(it);
} else
++it;
}
}
void SSU2Session::FlushData() {
bool sent = SendQueue(); // if we have something to send
if (m_IsDataReceived) {
if (!sent) SendQuickAck();
m_Handler.Flush();
m_IsDataReceived = false;
}
}
}
}