i2pd/libi2pd/Identity.cpp
Anatolii Cherednichenko 91a420433a small fixes
2022-08-30 03:29:03 +03:00

777 lines
35 KiB
C++

/*
* Copyright (c) 2013-2020, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include "Crypto.h"
#include "I2PEndian.h"
#include "Log.h"
#include "Timestamp.h"
#include "Identity.h"
namespace i2p {
namespace data {
Identity &Identity::operator=(const Keys &keys) {
// copy public and signing keys together
memcpy(publicKey, keys.publicKey, sizeof(publicKey));
memcpy(signingKey, keys.signingKey, sizeof(signingKey));
memset(certificate, 0, sizeof(certificate));
return *this;
}
size_t Identity::FromBuffer(const uint8_t *buf, size_t len) {
if (len < DEFAULT_IDENTITY_SIZE) {
// buffer too small, don't overflow
return 0;
}
memcpy(publicKey, buf, DEFAULT_IDENTITY_SIZE);
return DEFAULT_IDENTITY_SIZE;
}
IdentHash Identity::Hash() const {
IdentHash hash;
SHA256(publicKey, DEFAULT_IDENTITY_SIZE, hash);
return hash;
}
IdentityEx::IdentityEx() :
m_ExtendedLen(0) {
}
IdentityEx::IdentityEx(const uint8_t *publicKey, const uint8_t *signingKey, SigningKeyType type,
CryptoKeyType cryptoType) {
if (cryptoType == CRYPTO_KEY_TYPE_ECIES_X25519_AEAD) {
memcpy(m_StandardIdentity.publicKey, publicKey, 32);
RAND_bytes(m_StandardIdentity.publicKey + 32, 224);
} else
memcpy(m_StandardIdentity.publicKey, publicKey, 256);
if (type != SIGNING_KEY_TYPE_DSA_SHA1) {
size_t excessLen = 0;
uint8_t *excessBuf = nullptr;
switch (type) {
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: {
size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64
RAND_bytes(m_StandardIdentity.signingKey, padding);
memcpy(m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP256_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: {
size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96
RAND_bytes(m_StandardIdentity.signingKey, padding);
memcpy(m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP384_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: {
memcpy(m_StandardIdentity.signingKey, signingKey, 128);
excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132 - 128
excessBuf = new uint8_t[excessLen];
memcpy(excessBuf, signingKey + 128, excessLen);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint(eLogError, "Identity: RSA signing key type ", (int) type, " is not supported");
break;
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519: {
size_t padding = 128 - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH; // 96 = 128 - 32
RAND_bytes(m_StandardIdentity.signingKey, padding);
memcpy(m_StandardIdentity.signingKey + padding, signingKey,
i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: {
// 256
size_t padding = 128 - i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH; // 64 = 128 - 64
RAND_bytes(m_StandardIdentity.signingKey, padding);
memcpy(m_StandardIdentity.signingKey + padding, signingKey,
i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: {
// 512
// no padding, key length is 128
memcpy(m_StandardIdentity.signingKey, signingKey, i2p::crypto::GOSTR3410_512_PUBLIC_KEY_LENGTH);
break;
}
default:
LogPrint(eLogError, "Identity: Signing key type ", (int) type, " is not supported");
}
m_ExtendedLen = 4 + excessLen; // 4 bytes extra + excess length
// fill certificate
m_StandardIdentity.certificate[0] = CERTIFICATE_TYPE_KEY;
htobe16buf(m_StandardIdentity.certificate + 1, m_ExtendedLen);
// fill extended buffer
htobe16buf(m_ExtendedBuffer, type);
htobe16buf(m_ExtendedBuffer + 2, cryptoType);
if (excessLen && excessBuf) {
if (excessLen > MAX_EXTENDED_BUFFER_SIZE - 4) {
LogPrint(eLogError, "Identity: Unexpected excessive signing key len ", excessLen);
excessLen = MAX_EXTENDED_BUFFER_SIZE - 4;
}
memcpy(m_ExtendedBuffer + 4, excessBuf, excessLen);
delete[] excessBuf;
}
// calculate ident hash
RecalculateIdentHash();
} else // DSA-SHA1
{
memcpy(m_StandardIdentity.signingKey, signingKey, sizeof(m_StandardIdentity.signingKey));
memset(m_StandardIdentity.certificate, 0, sizeof(m_StandardIdentity.certificate));
m_IdentHash = m_StandardIdentity.Hash();
m_ExtendedLen = 0;
}
CreateVerifier();
}
void IdentityEx::RecalculateIdentHash(uint8_t *buf) {
bool dofree = buf == nullptr;
size_t sz = GetFullLen();
if (!buf)
buf = new uint8_t[sz];
ToBuffer(buf, sz);
SHA256(buf, sz, m_IdentHash);
if (dofree)
delete[] buf;
}
IdentityEx::IdentityEx(const uint8_t *buf, size_t len) :
m_ExtendedLen(0) {
FromBuffer(buf, len);
}
IdentityEx::IdentityEx(const IdentityEx &other) :
m_ExtendedLen(0) {
*this = other;
}
IdentityEx::IdentityEx(const Identity &standard) :
m_ExtendedLen(0) {
*this = standard;
}
IdentityEx::~IdentityEx() {
delete m_Verifier;
}
IdentityEx &IdentityEx::operator=(const IdentityEx &other) {
memcpy(&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
m_IdentHash = other.m_IdentHash;
m_ExtendedLen = other.m_ExtendedLen;
if (m_ExtendedLen > 0) {
if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE) m_ExtendedLen = MAX_EXTENDED_BUFFER_SIZE;
memcpy(m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen);
}
delete m_Verifier;
m_Verifier = nullptr;
return *this;
}
IdentityEx &IdentityEx::operator=(const Identity &standard) {
m_StandardIdentity = standard;
m_IdentHash = m_StandardIdentity.Hash();
m_ExtendedLen = 0;
delete m_Verifier;
m_Verifier = nullptr;
return *this;
}
size_t IdentityEx::FromBuffer(const uint8_t *buf, size_t len) {
if (len < DEFAULT_IDENTITY_SIZE) {
LogPrint(eLogError, "Identity: Buffer length ", len, " is too small");
return 0;
}
memcpy(&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE);
m_ExtendedLen = bufbe16toh(m_StandardIdentity.certificate + 1);
if (m_ExtendedLen) {
if (m_ExtendedLen + DEFAULT_IDENTITY_SIZE <= len) {
if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE) m_ExtendedLen = MAX_EXTENDED_BUFFER_SIZE;
memcpy(m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen);
} else {
LogPrint(eLogError, "Identity: Certificate length ", m_ExtendedLen, " exceeds buffer length ",
len - DEFAULT_IDENTITY_SIZE);
m_ExtendedLen = 0;
return 0;
}
} else
m_ExtendedLen = 0;
SHA256(buf, GetFullLen(), m_IdentHash);
delete m_Verifier;
m_Verifier = nullptr;
return GetFullLen();
}
size_t IdentityEx::ToBuffer(uint8_t *buf, size_t len) const {
const size_t fullLen = GetFullLen();
if (fullLen > len) return 0; // buffer is too small and may overflow somewhere else
memcpy(buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
if (m_ExtendedLen > 0)
memcpy(buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen);
return fullLen;
}
size_t IdentityEx::FromBase64(const std::string &s) {
const size_t slen = s.length();
std::vector<uint8_t> buf(slen); // binary data can't exceed base64
const size_t len = Base64ToByteStream(s.c_str(), slen, buf.data(), slen);
return FromBuffer(buf.data(), len);
}
std::string IdentityEx::ToBase64() const {
const size_t bufLen = GetFullLen();
const size_t strLen = Base64EncodingBufferSize(bufLen);
std::vector<uint8_t> buf(bufLen);
std::vector<char> str(strLen);
size_t l = ToBuffer(buf.data(), bufLen);
size_t l1 = i2p::data::ByteStreamToBase64(buf.data(), l, str.data(), strLen);
return std::string(str.data(), l1);
}
size_t IdentityEx::GetSigningPublicKeyLen() const {
if (!m_Verifier) CreateVerifier();
if (m_Verifier)
return m_Verifier->GetPublicKeyLen();
return 128;
}
const uint8_t *IdentityEx::GetSigningPublicKeyBuffer() const {
auto keyLen = GetSigningPublicKeyLen();
if (keyLen > 128) return nullptr; // P521
return m_StandardIdentity.signingKey + 128 - keyLen;
}
size_t IdentityEx::GetSigningPrivateKeyLen() const {
if (!m_Verifier) CreateVerifier();
if (m_Verifier)
return m_Verifier->GetPrivateKeyLen();
return GetSignatureLen() / 2;
}
size_t IdentityEx::GetSignatureLen() const {
if (!m_Verifier) CreateVerifier();
if (m_Verifier)
return m_Verifier->GetSignatureLen();
return i2p::crypto::DSA_SIGNATURE_LENGTH;
}
bool IdentityEx::Verify(const uint8_t *buf, size_t len, const uint8_t *signature) const {
if (!m_Verifier) CreateVerifier();
if (m_Verifier)
return m_Verifier->Verify(buf, len, signature);
return false;
}
SigningKeyType IdentityEx::GetSigningKeyType() const {
if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 2)
return bufbe16toh(m_ExtendedBuffer); // signing key
return SIGNING_KEY_TYPE_DSA_SHA1;
}
bool IdentityEx::IsRSA() const {
auto sigType = GetSigningKeyType();
return sigType <= SIGNING_KEY_TYPE_RSA_SHA512_4096 && sigType >= SIGNING_KEY_TYPE_RSA_SHA256_2048;
}
CryptoKeyType IdentityEx::GetCryptoKeyType() const {
if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 4)
return bufbe16toh(m_ExtendedBuffer + 2); // crypto key
return CRYPTO_KEY_TYPE_ELGAMAL;
}
i2p::crypto::Verifier *IdentityEx::CreateVerifier(SigningKeyType keyType) {
switch (keyType) {
case SIGNING_KEY_TYPE_DSA_SHA1:
return new i2p::crypto::DSAVerifier();
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
return new i2p::crypto::ECDSAP256Verifier();
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
return new i2p::crypto::ECDSAP384Verifier();
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
return new i2p::crypto::ECDSAP521Verifier();
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
return new i2p::crypto::EDDSA25519Verifier();
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
return new i2p::crypto::GOSTR3410_256_Verifier(i2p::crypto::eGOSTR3410CryptoProA);
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
return new i2p::crypto::GOSTR3410_512_Verifier(i2p::crypto::eGOSTR3410TC26A512);
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
return new i2p::crypto::RedDSA25519Verifier();
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint(eLogError, "Identity: RSA signing key type ", (int) keyType, " is not supported");
break;
default:
LogPrint(eLogError, "Identity: Signing key type ", (int) keyType, " is not supported");
}
return nullptr;
}
void IdentityEx::CreateVerifier() const {
if (m_Verifier) return; // don't create again
auto verifier = CreateVerifier(GetSigningKeyType());
if (verifier) {
auto keyLen = verifier->GetPublicKeyLen();
if (keyLen <= 128)
verifier->SetPublicKey(m_StandardIdentity.signingKey + 128 - keyLen);
else {
// for P521
uint8_t *signingKey = new uint8_t[keyLen];
memcpy(signingKey, m_StandardIdentity.signingKey, 128);
size_t excessLen = keyLen - 128;
memcpy(signingKey + 128, m_ExtendedBuffer + 4,
excessLen); // right after signing and crypto key types
verifier->SetPublicKey(signingKey);
delete[] signingKey;
}
}
UpdateVerifier(verifier);
}
void IdentityEx::UpdateVerifier(i2p::crypto::Verifier *verifier) const {
bool del = false;
{
std::lock_guard<std::mutex> l(m_VerifierMutex);
if (!m_Verifier)
m_Verifier = verifier;
else
del = true;
}
if (del)
delete verifier;
}
void IdentityEx::DropVerifier() const {
i2p::crypto::Verifier *verifier;
{
std::lock_guard<std::mutex> l(m_VerifierMutex);
verifier = m_Verifier;
m_Verifier = nullptr;
}
delete verifier;
}
std::shared_ptr<i2p::crypto::CryptoKeyEncryptor>
IdentityEx::CreateEncryptor(CryptoKeyType keyType, const uint8_t *key) {
switch (keyType) {
case CRYPTO_KEY_TYPE_ELGAMAL:
return std::make_shared<i2p::crypto::ElGamalEncryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
return std::make_shared<i2p::crypto::ECIESX25519AEADRatchetEncryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST:
return std::make_shared<i2p::crypto::ECIESP256Encryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC:
return std::make_shared<i2p::crypto::ECIESGOSTR3410Encryptor>(key);
break;
default:
LogPrint(eLogError, "Identity: Unknown crypto key type ", (int) keyType);
}
return nullptr;
}
std::shared_ptr<i2p::crypto::CryptoKeyEncryptor> IdentityEx::CreateEncryptor(const uint8_t *key) const {
if (!key) key = GetEncryptionPublicKey(); // use publicKey
return CreateEncryptor(GetCryptoKeyType(), key);
}
PrivateKeys &PrivateKeys::operator=(const Keys &keys) {
m_Public = std::make_shared<IdentityEx>(Identity(keys));
memcpy(m_PrivateKey, keys.privateKey, 256); // 256
memcpy(m_SigningPrivateKey, keys.signingPrivateKey, m_Public->GetSigningPrivateKeyLen());
m_OfflineSignature.resize(0);
m_TransientSignatureLen = 0;
m_TransientSigningPrivateKeyLen = 0;
m_Signer = nullptr;
CreateSigner();
return *this;
}
PrivateKeys &PrivateKeys::operator=(const PrivateKeys &other) {
m_Public = std::make_shared<IdentityEx>(*other.m_Public);
memcpy(m_PrivateKey, other.m_PrivateKey, 256); // 256
m_OfflineSignature = other.m_OfflineSignature;
m_TransientSignatureLen = other.m_TransientSignatureLen;
m_TransientSigningPrivateKeyLen = other.m_TransientSigningPrivateKeyLen;
memcpy(m_SigningPrivateKey, other.m_SigningPrivateKey,
m_TransientSigningPrivateKeyLen > 0 ? m_TransientSigningPrivateKeyLen
: m_Public->GetSigningPrivateKeyLen());
m_Signer = nullptr;
CreateSigner();
return *this;
}
size_t PrivateKeys::GetFullLen() const {
size_t ret = m_Public->GetFullLen() + GetPrivateKeyLen() + m_Public->GetSigningPrivateKeyLen();
if (IsOfflineSignature())
ret += m_OfflineSignature.size() + m_TransientSigningPrivateKeyLen;
return ret;
}
size_t PrivateKeys::FromBuffer(const uint8_t *buf, size_t len) {
m_Public = std::make_shared<IdentityEx>();
size_t ret = m_Public->FromBuffer(buf, len);
auto cryptoKeyLen = GetPrivateKeyLen();
if (!ret || ret + cryptoKeyLen > len) return 0; // overflow
memcpy(m_PrivateKey, buf + ret, cryptoKeyLen);
ret += cryptoKeyLen;
size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen();
if (signingPrivateKeySize + ret > len || signingPrivateKeySize > 128) return 0; // overflow
memcpy(m_SigningPrivateKey, buf + ret, signingPrivateKeySize);
ret += signingPrivateKeySize;
m_Signer = nullptr;
// check if signing private key is all zeros
bool allzeros = true;
for (size_t i = 0; i < signingPrivateKeySize; i++)
if (m_SigningPrivateKey[i]) {
allzeros = false;
break;
}
if (allzeros) {
// offline information
const uint8_t *offlineInfo = buf + ret;
ret += 4; // expires timestamp
SigningKeyType keyType = bufbe16toh(buf + ret);
ret += 2; // key type
std::unique_ptr<i2p::crypto::Verifier> transientVerifier(IdentityEx::CreateVerifier(keyType));
if (!transientVerifier) return 0;
auto keyLen = transientVerifier->GetPublicKeyLen();
if (keyLen + ret > len) return 0;
transientVerifier->SetPublicKey(buf + ret);
ret += keyLen;
if (m_Public->GetSignatureLen() + ret > len) return 0;
if (!m_Public->Verify(offlineInfo, keyLen + 6, buf + ret)) {
LogPrint(eLogError, "Identity: Offline signature verification failed");
return 0;
}
ret += m_Public->GetSignatureLen();
m_TransientSignatureLen = transientVerifier->GetSignatureLen();
// copy offline signature
size_t offlineInfoLen = buf + ret - offlineInfo;
m_OfflineSignature.resize(offlineInfoLen);
memcpy(m_OfflineSignature.data(), offlineInfo, offlineInfoLen);
// override signing private key
m_TransientSigningPrivateKeyLen = transientVerifier->GetPrivateKeyLen();
if (m_TransientSigningPrivateKeyLen + ret > len || m_TransientSigningPrivateKeyLen > 128) return 0;
memcpy(m_SigningPrivateKey, buf + ret, m_TransientSigningPrivateKeyLen);
ret += m_TransientSigningPrivateKeyLen;
CreateSigner(keyType);
} else
CreateSigner(m_Public->GetSigningKeyType());
return ret;
}
size_t PrivateKeys::ToBuffer(uint8_t *buf, size_t len) const {
size_t ret = m_Public->ToBuffer(buf, len);
auto cryptoKeyLen = GetPrivateKeyLen();
memcpy(buf + ret, m_PrivateKey, cryptoKeyLen);
ret += cryptoKeyLen;
size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen();
if (ret + signingPrivateKeySize > len) return 0; // overflow
if (IsOfflineSignature())
memset(buf + ret, 0, signingPrivateKeySize);
else
memcpy(buf + ret, m_SigningPrivateKey, signingPrivateKeySize);
ret += signingPrivateKeySize;
if (IsOfflineSignature()) {
// offline signature
auto offlineSignatureLen = m_OfflineSignature.size();
if (ret + offlineSignatureLen > len) return 0;
memcpy(buf + ret, m_OfflineSignature.data(), offlineSignatureLen);
ret += offlineSignatureLen;
// transient private key
if (ret + m_TransientSigningPrivateKeyLen > len) return 0;
memcpy(buf + ret, m_SigningPrivateKey, m_TransientSigningPrivateKeyLen);
ret += m_TransientSigningPrivateKeyLen;
}
return ret;
}
size_t PrivateKeys::FromBase64(const std::string &s) {
uint8_t *buf = new uint8_t[s.length()];
size_t l = i2p::data::Base64ToByteStream(s.c_str(), s.length(), buf, s.length());
size_t ret = FromBuffer(buf, l);
delete[] buf;
return ret;
}
std::string PrivateKeys::ToBase64() const {
uint8_t *buf = new uint8_t[GetFullLen()];
char *str = new char[GetFullLen() * 2];
size_t l = ToBuffer(buf, GetFullLen());
size_t l1 = i2p::data::ByteStreamToBase64(buf, l, str, GetFullLen() * 2);
str[l1] = 0;
delete[] buf;
std::string ret(str);
delete[] str;
return ret;
}
void PrivateKeys::Sign(const uint8_t *buf, int len, uint8_t *signature) const {
if (!m_Signer)
CreateSigner();
m_Signer->Sign(buf, len, signature);
}
void PrivateKeys::CreateSigner() const {
if (IsOfflineSignature())
CreateSigner(bufbe16toh(m_OfflineSignature.data() + 4)); // key type
else
CreateSigner(m_Public->GetSigningKeyType());
}
void PrivateKeys::CreateSigner(SigningKeyType keyType) const {
if (m_Signer) return;
if (keyType == SIGNING_KEY_TYPE_DSA_SHA1)
m_Signer.reset(
new i2p::crypto::DSASigner(m_SigningPrivateKey, m_Public->GetStandardIdentity().signingKey));
else if (keyType == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519 && !IsOfflineSignature())
m_Signer.reset(new i2p::crypto::EDDSA25519Signer(m_SigningPrivateKey,
m_Public->GetStandardIdentity().certificate -
i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH)); // TODO: remove public key check
else {
// public key is not required
auto signer = CreateSigner(keyType, m_SigningPrivateKey);
if (signer) m_Signer.reset(signer);
}
}
i2p::crypto::Signer *PrivateKeys::CreateSigner(SigningKeyType keyType, const uint8_t *priv) {
switch (keyType) {
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
return new i2p::crypto::ECDSAP256Signer(priv);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
return new i2p::crypto::ECDSAP384Signer(priv);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
return new i2p::crypto::ECDSAP521Signer(priv);
break;
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint(eLogError, "Identity: RSA signing key type ", (int) keyType, " is not supported");
break;
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
return new i2p::crypto::EDDSA25519Signer(priv, nullptr);
break;
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
return new i2p::crypto::GOSTR3410_256_Signer(i2p::crypto::eGOSTR3410CryptoProA, priv);
break;
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
return new i2p::crypto::GOSTR3410_512_Signer(i2p::crypto::eGOSTR3410TC26A512, priv);
break;
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
return new i2p::crypto::RedDSA25519Signer(priv);
break;
default:
LogPrint(eLogError, "Identity: Signing key type ", (int) keyType, " is not supported");
}
return nullptr;
}
size_t PrivateKeys::GetSignatureLen() const {
return IsOfflineSignature() ? m_TransientSignatureLen : m_Public->GetSignatureLen();
}
size_t PrivateKeys::GetPrivateKeyLen() const {
// private key length always 256, but type 4
return (m_Public->GetCryptoKeyType() == CRYPTO_KEY_TYPE_ECIES_X25519_AEAD) ? 32 : 256;
}
uint8_t *PrivateKeys::GetPadding() {
if (m_Public->GetSigningKeyType() == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519)
return m_Public->GetEncryptionPublicKeyBuffer() + 256;
else
return nullptr; // TODO: implement me
}
std::shared_ptr<i2p::crypto::CryptoKeyDecryptor> PrivateKeys::CreateDecryptor(const uint8_t *key) const {
if (!key) key = m_PrivateKey; // use privateKey
return CreateDecryptor(m_Public->GetCryptoKeyType(), key);
}
std::shared_ptr<i2p::crypto::CryptoKeyDecryptor>
PrivateKeys::CreateDecryptor(CryptoKeyType cryptoType, const uint8_t *key) {
if (!key) return nullptr;
switch (cryptoType) {
case CRYPTO_KEY_TYPE_ELGAMAL:
return std::make_shared<i2p::crypto::ElGamalDecryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
return std::make_shared<i2p::crypto::ECIESX25519AEADRatchetDecryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST:
return std::make_shared<i2p::crypto::ECIESP256Decryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC:
return std::make_shared<i2p::crypto::ECIESGOSTR3410Decryptor>(key);
break;
default:
LogPrint(eLogError, "Identity: Unknown crypto key type ", (int) cryptoType);
}
return nullptr;
}
PrivateKeys PrivateKeys::CreateRandomKeys(SigningKeyType type, CryptoKeyType cryptoType) {
if (type != SIGNING_KEY_TYPE_DSA_SHA1) {
PrivateKeys keys;
// signature
uint8_t signingPublicKey[512]; // signing public key is 512 bytes max
GenerateSigningKeyPair(type, keys.m_SigningPrivateKey, signingPublicKey);
// encryption
uint8_t publicKey[256];
GenerateCryptoKeyPair(cryptoType, keys.m_PrivateKey, publicKey);
// identity
keys.m_Public = std::make_shared<IdentityEx>(publicKey, signingPublicKey, type, cryptoType);
keys.CreateSigner();
return keys;
}
return PrivateKeys(i2p::data::CreateRandomKeys()); // DSA-SHA1
}
void PrivateKeys::GenerateSigningKeyPair(SigningKeyType type, uint8_t *priv, uint8_t *pub) {
switch (type) {
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
i2p::crypto::CreateECDSAP256RandomKeys(priv, pub);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
i2p::crypto::CreateECDSAP384RandomKeys(priv, pub);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
i2p::crypto::CreateECDSAP521RandomKeys(priv, pub);
break;
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint(eLogWarning, "Identity: RSA signature type is not supported. Creating EdDSA");
#if (__cplusplus >= 201703L) // C++ 17 or higher
[[fallthrough]];
#endif
// no break here
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
i2p::crypto::CreateEDDSA25519RandomKeys(priv, pub);
break;
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
i2p::crypto::CreateGOSTR3410RandomKeys(i2p::crypto::eGOSTR3410CryptoProA, priv, pub);
break;
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
i2p::crypto::CreateGOSTR3410RandomKeys(i2p::crypto::eGOSTR3410TC26A512, priv, pub);
break;
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
i2p::crypto::CreateRedDSA25519RandomKeys(priv, pub);
break;
default:
LogPrint(eLogWarning, "Identity: Signing key type ", (int) type,
" is not supported. Create DSA-SHA1");
i2p::crypto::CreateDSARandomKeys(priv, pub); // DSA-SHA1
}
}
void PrivateKeys::GenerateCryptoKeyPair(CryptoKeyType type, uint8_t *priv, uint8_t *pub) {
switch (type) {
case CRYPTO_KEY_TYPE_ELGAMAL:
i2p::crypto::GenerateElGamalKeyPair(priv, pub);
break;
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST:
i2p::crypto::CreateECIESP256RandomKeys(priv, pub);
break;
case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC:
i2p::crypto::CreateECIESGOSTR3410RandomKeys(priv, pub);
break;
case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
i2p::crypto::CreateECIESX25519AEADRatchetRandomKeys(priv, pub);
break;
default:
LogPrint(eLogError, "Identity: Crypto key type ", (int) type, " is not supported");
}
}
PrivateKeys PrivateKeys::CreateOfflineKeys(SigningKeyType type, uint32_t expires) const {
PrivateKeys keys(*this);
std::unique_ptr<i2p::crypto::Verifier> verifier(IdentityEx::CreateVerifier(type));
if (verifier) {
size_t pubKeyLen = verifier->GetPublicKeyLen();
keys.m_TransientSigningPrivateKeyLen = verifier->GetPrivateKeyLen();
keys.m_TransientSignatureLen = verifier->GetSignatureLen();
keys.m_OfflineSignature.resize(pubKeyLen + m_Public->GetSignatureLen() + 6);
htobe32buf(keys.m_OfflineSignature.data(), expires); // expires
htobe16buf(keys.m_OfflineSignature.data() + 4, type); // type
GenerateSigningKeyPair(type, keys.m_SigningPrivateKey,
keys.m_OfflineSignature.data() + 6); // public key
Sign(keys.m_OfflineSignature.data(), pubKeyLen + 6,
keys.m_OfflineSignature.data() + 6 + pubKeyLen); // signature
// recreate signer
keys.m_Signer = nullptr;
keys.CreateSigner(type);
}
return keys;
}
Keys CreateRandomKeys() {
Keys keys;
// encryption
i2p::crypto::GenerateElGamalKeyPair(keys.privateKey, keys.publicKey);
// signing
i2p::crypto::CreateDSARandomKeys(keys.signingPrivateKey, keys.signingKey);
return keys;
}
IdentHash CreateRoutingKey(const IdentHash &ident) {
uint8_t buf[41]; // ident + yyyymmdd
memcpy(buf, (const uint8_t *) ident, 32);
i2p::util::GetCurrentDate((char *) (buf + 32));
IdentHash key;
SHA256(buf, 40, key);
return key;
}
XORMetric operator^(const IdentHash &key1, const IdentHash &key2) {
XORMetric m;
#if (defined(__x86_64__) || defined(__i386__)) && defined(__AVX__) // not all X86 targets supports AVX (like old Pentium, see #1600)
if(i2p::cpu::avx)
{
__asm__
(
"vmovups %1, %%ymm0 \n"
"vmovups %2, %%ymm1 \n"
"vxorps %%ymm0, %%ymm1, %%ymm1 \n"
"vmovups %%ymm1, %0 \n"
: "=m"(*m.metric)
: "m"(*key1), "m"(*key2)
: "memory", "%xmm0", "%xmm1" // should be replaced by %ymm0/1 once supported by compiler
);
}
else
#endif
{
const uint64_t *hash1 = key1.GetLL(), *hash2 = key2.GetLL();
m.metric_ll[0] = hash1[0] ^ hash2[0];
m.metric_ll[1] = hash1[1] ^ hash2[1];
m.metric_ll[2] = hash1[2] ^ hash2[2];
m.metric_ll[3] = hash1[3] ^ hash2[3];
}
return m;
}
}
}