i2pd/libi2pd/LeaseSet.cpp
Anatolii Cherednichenko 55534ea002 Reformat code
2022-08-30 02:11:28 +03:00

997 lines
48 KiB
C++

/*
* Copyright (c) 2013-2022, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include <string.h>
#include "I2PEndian.h"
#include "Crypto.h"
#include "Log.h"
#include "Tag.h"
#include "Timestamp.h"
#include "NetDb.hpp"
#include "Tunnel.h"
#include "LeaseSet.h"
namespace i2p {
namespace data {
LeaseSet::LeaseSet(bool storeLeases) :
m_IsValid(false), m_StoreLeases(storeLeases), m_ExpirationTime(0), m_EncryptionKey(nullptr),
m_Buffer(nullptr), m_BufferLen(0) {
}
LeaseSet::LeaseSet(const uint8_t *buf, size_t len, bool storeLeases) :
m_IsValid(true), m_StoreLeases(storeLeases), m_ExpirationTime(0), m_EncryptionKey(nullptr) {
m_Buffer = new uint8_t[len];
memcpy(m_Buffer, buf, len);
m_BufferLen = len;
ReadFromBuffer();
}
void LeaseSet::Update(const uint8_t *buf, size_t len, bool verifySignature) {
if (len > m_BufferLen) {
auto oldBuffer = m_Buffer;
m_Buffer = new uint8_t[len];
delete[] oldBuffer;
}
memcpy(m_Buffer, buf, len);
m_BufferLen = len;
ReadFromBuffer(false, verifySignature);
}
void LeaseSet::PopulateLeases() {
m_StoreLeases = true;
ReadFromBuffer(false);
}
void LeaseSet::ReadFromBuffer(bool readIdentity, bool verifySignature) {
if (readIdentity || !m_Identity)
m_Identity = std::make_shared<IdentityEx>(m_Buffer, m_BufferLen);
size_t size = m_Identity->GetFullLen();
if (size + 256 > m_BufferLen) {
LogPrint(eLogError, "LeaseSet: Identity length ", int(size), " exceeds buffer size ", int(m_BufferLen));
m_IsValid = false;
return;
}
if (m_StoreLeases) {
if (!m_EncryptionKey) m_EncryptionKey = new uint8_t[256];
memcpy(m_EncryptionKey, m_Buffer + size, 256);
}
size += 256; // encryption key
size += m_Identity->GetSigningPublicKeyLen(); // unused signing key
if (size + 1 > m_BufferLen) {
LogPrint(eLogError, "LeaseSet: ", int(size), " exceeds buffer size ", int(m_BufferLen));
m_IsValid = false;
return;
}
uint8_t num = m_Buffer[size];
size++; // num
LogPrint(eLogDebug, "LeaseSet: Read num=", (int) num);
if (!num || num > MAX_NUM_LEASES) {
LogPrint(eLogError, "LeaseSet: Rncorrect number of leases", (int) num);
m_IsValid = false;
return;
}
if (size + num * LEASE_SIZE > m_BufferLen) {
LogPrint(eLogError, "LeaseSet: ", int(size), " exceeds buffer size ", int(m_BufferLen));
m_IsValid = false;
return;
}
UpdateLeasesBegin();
// process leases
m_ExpirationTime = 0;
auto ts = i2p::util::GetMillisecondsSinceEpoch();
const uint8_t *leases = m_Buffer + size;
for (int i = 0; i < num; i++) {
Lease lease;
lease.tunnelGateway = leases;
leases += 32; // gateway
lease.tunnelID = bufbe32toh(leases);
leases += 4; // tunnel ID
lease.endDate = bufbe64toh(leases);
leases += 8; // end date
UpdateLease(lease, ts);
}
if (!m_ExpirationTime) {
LogPrint(eLogWarning, "LeaseSet: All leases are expired. Dropped");
m_IsValid = false;
return;
}
m_ExpirationTime += LEASE_ENDDATE_THRESHOLD;
UpdateLeasesEnd();
// verify
if (verifySignature) {
auto signedSize = leases - m_Buffer;
if (signedSize + m_Identity->GetSignatureLen() > m_BufferLen) {
LogPrint(eLogError, "LeaseSet: Signature exceeds buffer size ", int(m_BufferLen));
m_IsValid = false;
} else if (!m_Identity->Verify(m_Buffer, signedSize, leases)) {
LogPrint(eLogWarning, "LeaseSet: Verification failed");
m_IsValid = false;
}
}
}
void LeaseSet::UpdateLeasesBegin() {
// reset existing leases
if (m_StoreLeases)
for (auto &it: m_Leases)
it->isUpdated = false;
else
m_Leases.clear();
}
void LeaseSet::UpdateLeasesEnd() {
// delete old leases
if (m_StoreLeases) {
for (auto it = m_Leases.begin(); it != m_Leases.end();) {
if (!(*it)->isUpdated) {
(*it)->endDate = 0; // somebody might still hold it
m_Leases.erase(it++);
} else
++it;
}
}
}
void LeaseSet::UpdateLease(const Lease &lease, uint64_t ts) {
if (ts < lease.endDate + LEASE_ENDDATE_THRESHOLD) {
if (lease.endDate > m_ExpirationTime)
m_ExpirationTime = lease.endDate;
if (m_StoreLeases) {
auto ret = m_Leases.insert(i2p::data::netdb.NewLease(lease));
if (!ret.second) (*ret.first)->endDate = lease.endDate; // update existing
(*ret.first)->isUpdated = true;
}
} else
LogPrint(eLogWarning, "LeaseSet: Lease is expired already");
}
uint64_t LeaseSet::ExtractExpirationTimestamp(const uint8_t *buf, size_t len) const {
if (!m_Identity) return 0;
size_t size = m_Identity->GetFullLen();
if (size > len) return 0;
size += 256; // encryption key
size += m_Identity->GetSigningPublicKeyLen(); // unused signing key
if (size > len) return 0;
uint8_t num = buf[size];
size++; // num
if (size + num * LEASE_SIZE > len) return 0;
uint64_t timestamp = 0;
for (int i = 0; i < num; i++) {
size += 36; // gateway (32) + tunnelId(4)
auto endDate = bufbe64toh(buf + size);
size += 8; // end date
if (!timestamp || endDate < timestamp)
timestamp = endDate;
}
return timestamp;
}
bool LeaseSet::IsNewer(const uint8_t *buf, size_t len) const {
return ExtractExpirationTimestamp(buf, len) > ExtractExpirationTimestamp(m_Buffer, m_BufferLen);
}
bool LeaseSet::ExpiresSoon(const uint64_t dlt, const uint64_t fudge) const {
auto now = i2p::util::GetMillisecondsSinceEpoch();
if (fudge) now += rand() % fudge;
if (now >= m_ExpirationTime) return true;
return m_ExpirationTime - now <= dlt;
}
const std::vector<std::shared_ptr<const Lease> > LeaseSet::GetNonExpiredLeases(bool withThreshold) const {
return GetNonExpiredLeasesExcluding([](const Lease &l) -> bool { return false; }, withThreshold);
}
const std::vector<std::shared_ptr<const Lease> >
LeaseSet::GetNonExpiredLeasesExcluding(LeaseInspectFunc exclude, bool withThreshold) const {
auto ts = i2p::util::GetMillisecondsSinceEpoch();
std::vector<std::shared_ptr<const Lease> > leases;
for (const auto &it: m_Leases) {
auto endDate = it->endDate;
if (withThreshold)
endDate += LEASE_ENDDATE_THRESHOLD;
else
endDate -= LEASE_ENDDATE_THRESHOLD;
if (ts < endDate && !exclude(*it))
leases.push_back(it);
}
return leases;
}
bool LeaseSet::HasExpiredLeases() const {
auto ts = i2p::util::GetMillisecondsSinceEpoch();
for (const auto &it: m_Leases)
if (ts >= it->endDate) return true;
return false;
}
bool LeaseSet::IsExpired() const {
if (m_StoreLeases && IsEmpty()) return true;
auto ts = i2p::util::GetMillisecondsSinceEpoch();
return ts > m_ExpirationTime;
}
void LeaseSet::Encrypt(const uint8_t *data, uint8_t *encrypted) const {
if (!m_EncryptionKey) return;
auto encryptor = m_Identity->CreateEncryptor(m_EncryptionKey);
if (encryptor)
encryptor->Encrypt(data, encrypted);
}
void LeaseSet::SetBuffer(const uint8_t *buf, size_t len) {
if (m_Buffer) delete[] m_Buffer;
m_Buffer = new uint8_t[len];
m_BufferLen = len;
memcpy(m_Buffer, buf, len);
}
void LeaseSet::SetBufferLen(size_t len) {
if (len <= m_BufferLen) m_BufferLen = len;
else
LogPrint(eLogError, "LeaseSet2: Actual buffer size ", int(len), " exceeds full buffer size ",
int(m_BufferLen));
}
LeaseSet2::LeaseSet2(uint8_t storeType, const uint8_t *buf, size_t len, bool storeLeases,
CryptoKeyType preferredCrypto) :
LeaseSet(storeLeases), m_StoreType(storeType), m_EncryptionType(preferredCrypto) {
SetBuffer(buf, len);
if (storeType == NETDB_STORE_TYPE_ENCRYPTED_LEASESET2)
ReadFromBufferEncrypted(buf, len, nullptr, nullptr);
else
ReadFromBuffer(buf, len);
}
LeaseSet2::LeaseSet2(const uint8_t *buf, size_t len, std::shared_ptr<const BlindedPublicKey> key,
const uint8_t *secret, CryptoKeyType preferredCrypto) :
LeaseSet(true), m_StoreType(NETDB_STORE_TYPE_ENCRYPTED_LEASESET2), m_EncryptionType(preferredCrypto) {
ReadFromBufferEncrypted(buf, len, key, secret);
}
void LeaseSet2::Update(const uint8_t *buf, size_t len, bool verifySignature) {
SetBuffer(buf, len);
if (GetStoreType() != NETDB_STORE_TYPE_ENCRYPTED_LEASESET2)
ReadFromBuffer(buf, len, false, verifySignature);
// TODO: implement encrypted
}
bool LeaseSet2::IsNewer(const uint8_t *buf, size_t len) const {
uint64_t expiration;
return ExtractPublishedTimestamp(buf, len, expiration) > m_PublishedTimestamp;
}
void LeaseSet2::ReadFromBuffer(const uint8_t *buf, size_t len, bool readIdentity, bool verifySignature) {
// standard LS2 header
std::shared_ptr<const IdentityEx> identity;
if (readIdentity) {
identity = std::make_shared<IdentityEx>(buf, len);
SetIdentity(identity);
} else
identity = GetIdentity();
size_t offset = identity->GetFullLen();
if (offset + 8 > len) return;
m_PublishedTimestamp = bufbe32toh(buf + offset);
offset += 4; // published timestamp (seconds)
uint16_t expires = bufbe16toh(buf + offset);
offset += 2; // expires (seconds)
SetExpirationTime((m_PublishedTimestamp + expires) * 1000LL); // in milliseconds
uint16_t flags = bufbe16toh(buf + offset);
offset += 2; // flags
if (flags & LEASESET2_FLAG_OFFLINE_KEYS) {
// transient key
m_TransientVerifier = ProcessOfflineSignature(identity, buf, len, offset);
if (!m_TransientVerifier) {
LogPrint(eLogError, "LeaseSet2: Offline signature failed");
return;
}
}
if (flags & LEASESET2_FLAG_UNPUBLISHED_LEASESET) m_IsPublic = false;
if (flags & LEASESET2_FLAG_PUBLISHED_ENCRYPTED) {
m_IsPublishedEncrypted = true;
m_IsPublic = true;
}
// type specific part
size_t s = 0;
switch (m_StoreType) {
case NETDB_STORE_TYPE_STANDARD_LEASESET2:
s = ReadStandardLS2TypeSpecificPart(buf + offset, len - offset);
break;
case NETDB_STORE_TYPE_META_LEASESET2:
s = ReadMetaLS2TypeSpecificPart(buf + offset, len - offset);
break;
default:
LogPrint(eLogWarning, "LeaseSet2: Unexpected store type ", (int) m_StoreType);
}
if (!s) return;
offset += s;
if (verifySignature || m_TransientVerifier) {
// verify signature
bool verified = m_TransientVerifier ? VerifySignature(m_TransientVerifier, buf, len, offset) :
VerifySignature(identity, buf, len, offset);
SetIsValid(verified);
}
offset += m_TransientVerifier ? m_TransientVerifier->GetSignatureLen() : identity->GetSignatureLen();
if (offset > len) {
LogPrint(eLogWarning, "LeaseSet2: short buffer: wanted ", int(offset), "bytes, have ", int(len));
return;
}
SetBufferLen(offset);
}
template<typename Verifier>
bool LeaseSet2::VerifySignature(Verifier &verifier, const uint8_t *buf, size_t len, size_t signatureOffset) {
if (signatureOffset + verifier->GetSignatureLen() > len) return false;
// we assume buf inside DatabaseStore message, so buf[-1] is valid memory
// change it for signature verification, and restore back
uint8_t c = buf[-1];
const_cast<uint8_t *>(buf)[-1] = m_StoreType;
bool verified = verifier->Verify(buf - 1, signatureOffset + 1, buf + signatureOffset);
const_cast<uint8_t *>(buf)[-1] = c;
if (!verified)
LogPrint(eLogWarning, "LeaseSet2: Verification failed");
return verified;
}
size_t LeaseSet2::ReadStandardLS2TypeSpecificPart(const uint8_t *buf, size_t len) {
size_t offset = 0;
// properties
uint16_t propertiesLen = bufbe16toh(buf + offset);
offset += 2;
offset += propertiesLen; // skip for now. TODO: implement properties
// key sections
CryptoKeyType preferredKeyType = m_EncryptionType;
bool preferredKeyFound = false;
if (offset + 1 > len) return 0;
int numKeySections = buf[offset];
offset++;
for (int i = 0; i < numKeySections; i++) {
if (offset + 4 > len) return 0;
uint16_t keyType = bufbe16toh(buf + offset);
offset += 2; // encryption key type
uint16_t encryptionKeyLen = bufbe16toh(buf + offset);
offset += 2;
if (offset + encryptionKeyLen > len) return 0;
if (IsStoreLeases() && !preferredKeyFound) // create encryptor with leases only
{
// we pick first valid key if preferred not found
auto encryptor = i2p::data::IdentityEx::CreateEncryptor(keyType, buf + offset);
if (encryptor && (!m_Encryptor || keyType == preferredKeyType)) {
m_Encryptor = encryptor; // TODO: atomic
m_EncryptionType = keyType;
if (keyType == preferredKeyType) preferredKeyFound = true;
}
}
offset += encryptionKeyLen;
}
// leases
if (offset + 1 > len) return 0;
int numLeases = buf[offset];
offset++;
auto ts = i2p::util::GetMillisecondsSinceEpoch();
if (IsStoreLeases()) {
UpdateLeasesBegin();
for (int i = 0; i < numLeases; i++) {
if (offset + LEASE2_SIZE > len) return 0;
Lease lease;
lease.tunnelGateway = buf + offset;
offset += 32; // gateway
lease.tunnelID = bufbe32toh(buf + offset);
offset += 4; // tunnel ID
lease.endDate = bufbe32toh(buf + offset) * 1000LL;
offset += 4; // end date
UpdateLease(lease, ts);
}
UpdateLeasesEnd();
} else
offset += numLeases * LEASE2_SIZE; // 40 bytes per lease
return (offset > len ? 0 : offset);
}
size_t LeaseSet2::ReadMetaLS2TypeSpecificPart(const uint8_t *buf, size_t len) {
size_t offset = 0;
// properties
uint16_t propertiesLen = bufbe16toh(buf + offset);
offset += 2;
offset += propertiesLen; // skip for now. TODO: implement properties
// entries
if (offset + 1 > len) return 0;
int numEntries = buf[offset];
offset++;
for (int i = 0; i < numEntries; i++) {
if (offset + LEASE2_SIZE > len) return 0;
offset += 32; // hash
offset += 3; // flags
offset += 1; // cost
offset += 4; // expires
}
// revocations
if (offset + 1 > len) return 0;
int numRevocations = buf[offset];
offset++;
for (int i = 0; i < numRevocations; i++) {
if (offset + 32 > len) return 0;
offset += 32; // hash
}
return offset;
}
void
LeaseSet2::ReadFromBufferEncrypted(const uint8_t *buf, size_t len, std::shared_ptr<const BlindedPublicKey> key,
const uint8_t *secret) {
size_t offset = 0;
// blinded key
if (len < 2) return;
const uint8_t *stA1 = buf + offset; // stA1 = blinded signature type, 2 bytes big endian
uint16_t blindedKeyType = bufbe16toh(stA1);
offset += 2;
std::unique_ptr<i2p::crypto::Verifier> blindedVerifier(
i2p::data::IdentityEx::CreateVerifier(blindedKeyType));
if (!blindedVerifier) return;
auto blindedKeyLen = blindedVerifier->GetPublicKeyLen();
if (offset + blindedKeyLen >= len) return;
const uint8_t *blindedPublicKey = buf + offset;
blindedVerifier->SetPublicKey(blindedPublicKey);
offset += blindedKeyLen;
// expiration
if (offset + 8 >= len) return;
const uint8_t *publishedTimestamp = buf + offset;
m_PublishedTimestamp = bufbe32toh(publishedTimestamp);
offset += 4; // published timestamp (seconds)
uint16_t expires = bufbe16toh(buf + offset);
offset += 2; // expires (seconds)
SetExpirationTime((m_PublishedTimestamp + expires) * 1000LL); // in milliseconds
uint16_t flags = bufbe16toh(buf + offset);
offset += 2; // flags
if (flags & LEASESET2_FLAG_OFFLINE_KEYS) {
// transient key
m_TransientVerifier = ProcessOfflineSignature(blindedVerifier, buf, len, offset);
if (!m_TransientVerifier) {
LogPrint(eLogError, "LeaseSet2: Offline signature failed");
return;
}
}
// outer ciphertext
if (offset + 2 > len) return;
uint16_t lenOuterCiphertext = bufbe16toh(buf + offset);
offset += 2;
const uint8_t *outerCiphertext = buf + offset;
offset += lenOuterCiphertext;
// verify signature
bool verified = m_TransientVerifier ? VerifySignature(m_TransientVerifier, buf, len, offset) :
VerifySignature(blindedVerifier, buf, len, offset);
SetIsValid(verified);
// handle ciphertext
if (verified && key && lenOuterCiphertext >= 32) {
SetIsValid(false); // we must verify it again in Layer 2
if (blindedKeyType == key->GetBlindedSigType()) {
// verify blinding
char date[9];
i2p::util::GetDateString(m_PublishedTimestamp, date);
std::vector<uint8_t> blinded(blindedKeyLen);
key->GetBlindedKey(date, blinded.data());
if (memcmp(blindedPublicKey, blinded.data(), blindedKeyLen)) {
LogPrint(eLogError, "LeaseSet2: Blinded public key doesn't match");
return;
}
} else {
LogPrint(eLogError, "LeaseSet2: Unexpected blinded key type ", blindedKeyType, " instead ",
key->GetBlindedSigType());
return;
}
// outer key
// outerInput = subcredential || publishedTimestamp
uint8_t subcredential[36];
key->GetSubcredential(blindedPublicKey, blindedKeyLen, subcredential);
memcpy(subcredential + 32, publishedTimestamp, 4);
// outerSalt = outerCiphertext[0:32]
// keys = HKDF(outerSalt, outerInput, "ELS2_L1K", 44)
uint8_t keys[64]; // 44 bytes actual data
i2p::crypto::HKDF(outerCiphertext, subcredential, 36, "ELS2_L1K", keys);
// decrypt Layer 1
// outerKey = keys[0:31]
// outerIV = keys[32:43]
size_t lenOuterPlaintext = lenOuterCiphertext - 32;
std::vector<uint8_t> outerPlainText(lenOuterPlaintext);
i2p::crypto::ChaCha20(outerCiphertext + 32, lenOuterPlaintext, keys, keys + 32, outerPlainText.data());
// inner key
// innerInput = authCookie || subcredential || publishedTimestamp
// innerSalt = innerCiphertext[0:32]
// keys = HKDF(innerSalt, innerInput, "ELS2_L2K", 44)
uint8_t innerInput[68];
size_t authDataLen = ExtractClientAuthData(outerPlainText.data(), lenOuterPlaintext, secret,
subcredential, innerInput);
if (authDataLen > 0) {
memcpy(innerInput + 32, subcredential, 36);
i2p::crypto::HKDF(outerPlainText.data() + 1 + authDataLen, innerInput, 68, "ELS2_L2K", keys);
} else
// no authData presented, innerInput = subcredential || publishedTimestamp
// skip 1 byte flags
i2p::crypto::HKDF(outerPlainText.data() + 1, subcredential, 36, "ELS2_L2K", keys); // no authCookie
// decrypt Layer 2
// innerKey = keys[0:31]
// innerIV = keys[32:43]
size_t lenInnerPlaintext = lenOuterPlaintext - 32 - 1 - authDataLen;
std::vector<uint8_t> innerPlainText(lenInnerPlaintext);
i2p::crypto::ChaCha20(outerPlainText.data() + 32 + 1 + authDataLen, lenInnerPlaintext, keys, keys + 32,
innerPlainText.data());
if (innerPlainText[0] == NETDB_STORE_TYPE_STANDARD_LEASESET2 ||
innerPlainText[0] == NETDB_STORE_TYPE_META_LEASESET2) {
// override store type and buffer
m_StoreType = innerPlainText[0];
SetBuffer(innerPlainText.data() + 1, lenInnerPlaintext - 1);
// parse and verify Layer 2
ReadFromBuffer(innerPlainText.data() + 1, lenInnerPlaintext - 1);
} else
LogPrint(eLogError, "LeaseSet2: Unexpected LeaseSet type ", (int) innerPlainText[0],
" inside encrypted LeaseSet");
} else {
// we set actual length of encrypted buffer
offset += m_TransientVerifier ? m_TransientVerifier->GetSignatureLen()
: blindedVerifier->GetSignatureLen();
SetBufferLen(offset);
}
}
// helper for ExtractClientAuthData
static inline bool
GetAuthCookie(const uint8_t *authClients, int numClients, const uint8_t *okm, uint8_t *authCookie) {
// try to find clientCookie_i for clientID_i = okm[44:51]
for (int i = 0; i < numClients; i++) {
if (!memcmp(okm + 44, authClients + i * 40, 8)) // clientID_i
{
// clientKey_i = okm[0:31]
// clientIV_i = okm[32:43]
i2p::crypto::ChaCha20(authClients + i * 40 + 8, 32, okm, okm + 32, authCookie); // clientCookie_i
return true;
}
}
return false;
}
size_t LeaseSet2::ExtractClientAuthData(const uint8_t *buf, size_t len, const uint8_t *secret,
const uint8_t *subcredential, uint8_t *authCookie) const {
size_t offset = 0;
uint8_t flag = buf[offset];
offset++; // flag
if (flag & 0x01) // client auth
{
if (!(flag & 0x0E)) // DH, bit 1-3 all zeroes
{
const uint8_t *ephemeralPublicKey = buf + offset;
offset += 32; // ephemeralPublicKey
uint16_t numClients = bufbe16toh(buf + offset);
offset += 2; // clients
const uint8_t *authClients = buf + offset;
offset += numClients * 40; // authClients
if (offset > len) {
LogPrint(eLogError, "LeaseSet2: Too many clients ", numClients, " in DH auth data");
return 0;
}
// calculate authCookie
if (secret) {
i2p::crypto::X25519Keys ck(secret, nullptr); // derive cpk_i from csk_i
uint8_t authInput[100];
ck.Agree(ephemeralPublicKey, authInput); // sharedSecret is first 32 bytes of authInput
memcpy(authInput + 32, ck.GetPublicKey(), 32); // cpk_i
memcpy(authInput + 64, subcredential, 36);
uint8_t okm[64]; // 52 actual data
i2p::crypto::HKDF(ephemeralPublicKey, authInput, 100, "ELS2_XCA", okm);
if (!GetAuthCookie(authClients, numClients, okm, authCookie))
LogPrint(eLogError, "LeaseSet2: Client cookie DH not found");
} else
LogPrint(eLogError, "LeaseSet2: Can't calculate authCookie: csk_i is not provided");
} else if (flag & 0x02) // PSK, bit 1 is set to 1
{
const uint8_t *authSalt = buf + offset;
offset += 32; // authSalt
uint16_t numClients = bufbe16toh(buf + offset);
offset += 2; // clients
const uint8_t *authClients = buf + offset;
offset += numClients * 40; // authClients
if (offset > len) {
LogPrint(eLogError, "LeaseSet2: Too many clients ", numClients, " in PSK auth data");
return 0;
}
// calculate authCookie
if (secret) {
uint8_t authInput[68];
memcpy(authInput, secret, 32);
memcpy(authInput + 32, subcredential, 36);
uint8_t okm[64]; // 52 actual data
i2p::crypto::HKDF(authSalt, authInput, 68, "ELS2PSKA", okm);
if (!GetAuthCookie(authClients, numClients, okm, authCookie))
LogPrint(eLogError, "LeaseSet2: Client cookie PSK not found");
} else
LogPrint(eLogError, "LeaseSet2: Can't calculate authCookie: psk_i is not provided");
} else
LogPrint(eLogError, "LeaseSet2: Unknown client auth type ", (int) flag);
}
return offset - 1;
}
void LeaseSet2::Encrypt(const uint8_t *data, uint8_t *encrypted) const {
auto encryptor = m_Encryptor; // TODO: atomic
if (encryptor)
encryptor->Encrypt(data, encrypted);
}
uint64_t LeaseSet2::ExtractExpirationTimestamp(const uint8_t *buf, size_t len) const {
uint64_t expiration = 0;
ExtractPublishedTimestamp(buf, len, expiration);
return expiration;
}
uint64_t LeaseSet2::ExtractPublishedTimestamp(const uint8_t *buf, size_t len, uint64_t &expiration) const {
if (len < 8) return 0;
if (m_StoreType == NETDB_STORE_TYPE_ENCRYPTED_LEASESET2) {
// encrypted LS2
size_t offset = 0;
uint16_t blindedKeyType = bufbe16toh(buf + offset);
offset += 2;
std::unique_ptr<i2p::crypto::Verifier> blindedVerifier(
i2p::data::IdentityEx::CreateVerifier(blindedKeyType));
if (!blindedVerifier) return 0;
auto blindedKeyLen = blindedVerifier->GetPublicKeyLen();
if (offset + blindedKeyLen + 6 >= len) return 0;
offset += blindedKeyLen;
uint32_t timestamp = bufbe32toh(buf + offset);
offset += 4;
uint16_t expires = bufbe16toh(buf + offset);
offset += 2;
expiration = (timestamp + expires) * 1000LL;
return timestamp;
} else {
auto identity = GetIdentity();
if (!identity) return 0;
size_t offset = identity->GetFullLen();
if (offset + 6 >= len) return 0;
uint32_t timestamp = bufbe32toh(buf + offset);
offset += 4;
uint16_t expires = bufbe16toh(buf + offset);
offset += 2;
expiration = (timestamp + expires) * 1000LL;
return timestamp;
}
}
LocalLeaseSet::LocalLeaseSet(std::shared_ptr<const IdentityEx> identity, const uint8_t *encryptionPublicKey,
std::vector<std::shared_ptr<i2p::tunnel::InboundTunnel> > tunnels) :
m_ExpirationTime(0), m_Identity(identity) {
int num = tunnels.size();
if (num > MAX_NUM_LEASES) num = MAX_NUM_LEASES;
// identity
auto signingKeyLen = m_Identity->GetSigningPublicKeyLen();
m_BufferLen = m_Identity->GetFullLen() + 256 + signingKeyLen + 1 + num * LEASE_SIZE +
m_Identity->GetSignatureLen();
m_Buffer = new uint8_t[m_BufferLen];
auto offset = m_Identity->ToBuffer(m_Buffer, m_BufferLen);
memcpy(m_Buffer + offset, encryptionPublicKey, 256);
offset += 256;
memset(m_Buffer + offset, 0, signingKeyLen);
offset += signingKeyLen;
// num leases
m_Buffer[offset] = num;
offset++;
// leases
m_Leases = m_Buffer + offset;
auto currentTime = i2p::util::GetMillisecondsSinceEpoch();
for (int i = 0; i < num; i++) {
memcpy(m_Buffer + offset, tunnels[i]->GetNextIdentHash(), 32);
offset += 32; // gateway id
htobe32buf(m_Buffer + offset, tunnels[i]->GetNextTunnelID());
offset += 4; // tunnel id
uint64_t ts = tunnels[i]->GetCreationTime() + i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT -
i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD; // 1 minute before expiration
ts *= 1000; // in milliseconds
if (ts > m_ExpirationTime) m_ExpirationTime = ts;
// make sure leaseset is newer than previous, but adding some time to expiration date
ts += (currentTime - tunnels[i]->GetCreationTime() * 1000LL) * 2 /
i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT; // up to 2 secs
htobe64buf(m_Buffer + offset, ts);
offset += 8; // end date
}
// we don't sign it yet. must be signed later on
}
LocalLeaseSet::LocalLeaseSet(std::shared_ptr<const IdentityEx> identity, const uint8_t *buf, size_t len) :
m_ExpirationTime(0), m_Identity(identity) {
if (buf) {
m_BufferLen = len;
m_Buffer = new uint8_t[m_BufferLen];
memcpy(m_Buffer, buf, len);
} else {
m_Buffer = nullptr;
m_BufferLen = 0;
}
}
bool LocalLeaseSet::IsExpired() const {
auto ts = i2p::util::GetMillisecondsSinceEpoch();
return ts > m_ExpirationTime;
}
bool LeaseSetBufferValidate(const uint8_t *ptr, size_t sz, uint64_t &expires) {
IdentityEx ident(ptr, sz);
size_t size = ident.GetFullLen();
if (size > sz) {
LogPrint(eLogError, "LeaseSet: Identity length ", size, " exceeds buffer size ", sz);
return false;
}
// encryption key
size += 256;
// signing key (unused)
size += ident.GetSigningPublicKeyLen();
uint8_t numLeases = ptr[size];
++size;
if (!numLeases || numLeases > MAX_NUM_LEASES) {
LogPrint(eLogError, "LeaseSet: Incorrect number of leases", (int) numLeases);
return false;
}
const uint8_t *leases = ptr + size;
expires = 0;
/** find lease with the max expiration timestamp */
for (int i = 0; i < numLeases; i++) {
leases += 36; // gateway + tunnel ID
uint64_t endDate = bufbe64toh(leases);
leases += 8; // end date
if (endDate > expires)
expires = endDate;
}
return ident.Verify(ptr, leases - ptr, leases);
}
LocalLeaseSet2::LocalLeaseSet2(uint8_t storeType, const i2p::data::PrivateKeys &keys,
const KeySections &encryptionKeys,
const std::vector<std::shared_ptr<i2p::tunnel::InboundTunnel> > &tunnels,
bool isPublic, bool isPublishedEncrypted) :
LocalLeaseSet(keys.GetPublic(), nullptr, 0) {
auto identity = keys.GetPublic();
// assume standard LS2
int num = tunnels.size();
if (num > MAX_NUM_LEASES) num = MAX_NUM_LEASES;
size_t keySectionsLen = 0;
for (const auto &it: encryptionKeys)
keySectionsLen += 2/*key type*/ + 2/*key len*/ + it.keyLen/*key*/;
m_BufferLen = identity->GetFullLen() + 4/*published*/ + 2/*expires*/ + 2/*flag*/ + 2/*properties len*/ +
1/*num keys*/ + keySectionsLen + 1/*num leases*/ + num * LEASE2_SIZE + keys.GetSignatureLen();
uint16_t flags = 0;
if (keys.IsOfflineSignature()) {
flags |= LEASESET2_FLAG_OFFLINE_KEYS;
m_BufferLen += keys.GetOfflineSignature().size();
}
if (isPublishedEncrypted) {
flags |= LEASESET2_FLAG_PUBLISHED_ENCRYPTED;
isPublic = true;
}
if (!isPublic) flags |= LEASESET2_FLAG_UNPUBLISHED_LEASESET;
m_Buffer = new uint8_t[m_BufferLen + 1];
m_Buffer[0] = storeType;
// LS2 header
auto offset = identity->ToBuffer(m_Buffer + 1, m_BufferLen) + 1;
auto timestamp = i2p::util::GetSecondsSinceEpoch();
htobe32buf(m_Buffer + offset, timestamp);
offset += 4; // published timestamp (seconds)
uint8_t *expiresBuf = m_Buffer + offset;
offset += 2; // expires, fill later
htobe16buf(m_Buffer + offset, flags);
offset += 2; // flags
if (keys.IsOfflineSignature()) {
// offline signature
const auto &offlineSignature = keys.GetOfflineSignature();
memcpy(m_Buffer + offset, offlineSignature.data(), offlineSignature.size());
offset += offlineSignature.size();
}
htobe16buf(m_Buffer + offset, 0);
offset += 2; // properties len
// keys
m_Buffer[offset] = encryptionKeys.size();
offset++; // 1 key
for (const auto &it: encryptionKeys) {
htobe16buf(m_Buffer + offset, it.keyType);
offset += 2; // key type
htobe16buf(m_Buffer + offset, it.keyLen);
offset += 2; // key len
memcpy(m_Buffer + offset, it.encryptionPublicKey, it.keyLen);
offset += it.keyLen; // key
}
// leases
uint32_t expirationTime = 0; // in seconds
m_Buffer[offset] = num;
offset++; // num leases
for (int i = 0; i < num; i++) {
memcpy(m_Buffer + offset, tunnels[i]->GetNextIdentHash(), 32);
offset += 32; // gateway id
htobe32buf(m_Buffer + offset, tunnels[i]->GetNextTunnelID());
offset += 4; // tunnel id
auto ts = tunnels[i]->GetCreationTime() + i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT -
i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD; // in seconds, 1 minute before expiration
if (ts > expirationTime) expirationTime = ts;
htobe32buf(m_Buffer + offset, ts);
offset += 4; // end date
}
// update expiration
if (expirationTime) {
SetExpirationTime(expirationTime * 1000LL);
auto expires = (int) expirationTime - timestamp;
htobe16buf(expiresBuf, expires > 0 ? expires : 0);
} else {
// no tunnels or withdraw
SetExpirationTime(timestamp * 1000LL);
memset(expiresBuf, 0, 2); // expires immeditely
}
// sign
keys.Sign(m_Buffer, offset, m_Buffer + offset); // LS + leading store type
}
LocalLeaseSet2::LocalLeaseSet2(uint8_t storeType, std::shared_ptr<const IdentityEx> identity,
const uint8_t *buf, size_t len) :
LocalLeaseSet(identity, nullptr, 0) {
m_BufferLen = len;
m_Buffer = new uint8_t[m_BufferLen + 1];
memcpy(m_Buffer + 1, buf, len);
m_Buffer[0] = storeType;
}
LocalEncryptedLeaseSet2::LocalEncryptedLeaseSet2(std::shared_ptr<const LocalLeaseSet2> ls,
const i2p::data::PrivateKeys &keys,
int authType,
std::shared_ptr<std::vector<AuthPublicKey> > authKeys) :
LocalLeaseSet2(ls->GetIdentity()), m_InnerLeaseSet(ls) {
size_t lenInnerPlaintext = ls->GetBufferLen() + 1, lenOuterPlaintext = lenInnerPlaintext + 32 + 1;
uint8_t layer1Flags = 0;
if (authKeys) {
if (authType == ENCRYPTED_LEASESET_AUTH_TYPE_DH)
layer1Flags |= 0x01; // DH, authentication scheme 0, auth bit 1
else if (authType == ENCRYPTED_LEASESET_AUTH_TYPE_PSK)
layer1Flags |= 0x03; // PSK, authentication scheme 1, auth bit 1
if (layer1Flags)
lenOuterPlaintext += 32 + 2 + authKeys->size() * 40; // auth data len
}
size_t lenOuterCiphertext = lenOuterPlaintext + 32;
m_BufferLen = 2/*blinded sig type*/ + 32/*blinded pub key*/ + 4/*published*/ + 2/*expires*/ + 2/*flags*/ +
2/*lenOuterCiphertext*/ + lenOuterCiphertext + 64/*signature*/;
m_Buffer = new uint8_t[m_BufferLen + 1];
m_Buffer[0] = NETDB_STORE_TYPE_ENCRYPTED_LEASESET2;
BlindedPublicKey blindedKey(ls->GetIdentity());
auto timestamp = i2p::util::GetSecondsSinceEpoch();
char date[9];
i2p::util::GetDateString(timestamp, date);
uint8_t blindedPriv[64], blindedPub[128]; // 64 and 128 max
size_t publicKeyLen = blindedKey.BlindPrivateKey(keys.GetSigningPrivateKey(), date, blindedPriv,
blindedPub);
std::unique_ptr<i2p::crypto::Signer> blindedSigner(
i2p::data::PrivateKeys::CreateSigner(blindedKey.GetBlindedSigType(), blindedPriv));
if (!blindedSigner) {
LogPrint(eLogError, "LeaseSet2: Can't create blinded signer for signature type ",
blindedKey.GetSigType());
return;
}
auto offset = 1;
htobe16buf(m_Buffer + offset, blindedKey.GetBlindedSigType());
offset += 2; // Blinded Public Key Sig Type
memcpy(m_Buffer + offset, blindedPub, publicKeyLen);
offset += publicKeyLen; // Blinded Public Key
htobe32buf(m_Buffer + offset, timestamp);
offset += 4; // published timestamp (seconds)
auto nextMidnight = (timestamp / 86400LL + 1) * 86400LL; // 86400 = 24*3600 seconds
auto expirationTime = ls->GetExpirationTime() / 1000LL;
if (expirationTime > nextMidnight) expirationTime = nextMidnight;
SetExpirationTime(expirationTime * 1000LL);
htobe16buf(m_Buffer + offset, expirationTime > timestamp ? expirationTime - timestamp : 0);
offset += 2; // expires
uint16_t flags = 0;
htobe16buf(m_Buffer + offset, flags);
offset += 2; // flags
htobe16buf(m_Buffer + offset, lenOuterCiphertext);
offset += 2; // lenOuterCiphertext
// outerChipherText
// Layer 1
uint8_t subcredential[36];
blindedKey.GetSubcredential(blindedPub, 32, subcredential);
htobe32buf(subcredential + 32, timestamp); // outerInput = subcredential || publishedTimestamp
// keys = HKDF(outerSalt, outerInput, "ELS2_L1K", 44)
uint8_t keys1[64]; // 44 bytes actual data
RAND_bytes(m_Buffer + offset, 32); // outerSalt = CSRNG(32)
i2p::crypto::HKDF(m_Buffer + offset, subcredential, 36, "ELS2_L1K", keys1);
offset += 32; // outerSalt
uint8_t *outerPlainText = m_Buffer + offset;
m_Buffer[offset] = layer1Flags;
offset++; // layer 1 flags
// auth data
uint8_t innerInput[68]; // authCookie || subcredential || publishedTimestamp
if (layer1Flags) {
RAND_bytes(innerInput, 32); // authCookie
CreateClientAuthData(subcredential, authType, authKeys, innerInput, m_Buffer + offset);
offset += 32 + 2 + authKeys->size() * 40; // auth clients
}
// Layer 2
// keys = HKDF(outerSalt, outerInput, "ELS2_L2K", 44)
uint8_t keys2[64]; // 44 bytes actual data
RAND_bytes(m_Buffer + offset, 32); // innerSalt = CSRNG(32)
if (layer1Flags) {
memcpy(innerInput + 32, subcredential, 36); // + subcredential || publishedTimestamp
i2p::crypto::HKDF(m_Buffer + offset, innerInput, 68, "ELS2_L2K", keys2);
} else
i2p::crypto::HKDF(m_Buffer + offset, subcredential, 36, "ELS2_L2K", keys2); // no authCookie
offset += 32; // innerSalt
m_Buffer[offset] = ls->GetStoreType();
memcpy(m_Buffer + offset + 1, ls->GetBuffer(), ls->GetBufferLen());
i2p::crypto::ChaCha20(m_Buffer + offset, lenInnerPlaintext, keys2, keys2 + 32,
m_Buffer + offset); // encrypt Layer 2
offset += lenInnerPlaintext;
i2p::crypto::ChaCha20(outerPlainText, lenOuterPlaintext, keys1, keys1 + 32,
outerPlainText); // encrypt Layer 1
// signature
blindedSigner->Sign(m_Buffer, offset, m_Buffer + offset);
// store hash
m_StoreHash = blindedKey.GetStoreHash(date);
}
LocalEncryptedLeaseSet2::LocalEncryptedLeaseSet2(std::shared_ptr<const IdentityEx> identity, const uint8_t *buf,
size_t len) :
LocalLeaseSet2(NETDB_STORE_TYPE_ENCRYPTED_LEASESET2, identity, buf, len) {
// fill inner LeaseSet2
auto blindedKey = std::make_shared<BlindedPublicKey>(identity);
i2p::data::LeaseSet2 ls(buf, len, blindedKey); // inner layer
if (ls.IsValid()) {
m_InnerLeaseSet = std::make_shared<LocalLeaseSet2>(ls.GetStoreType(), identity, ls.GetBuffer(),
ls.GetBufferLen());
m_StoreHash = blindedKey->GetStoreHash();
} else
LogPrint(eLogError, "LeaseSet2: Couldn't extract inner layer");
}
void LocalEncryptedLeaseSet2::CreateClientAuthData(const uint8_t *subcredential, int authType,
std::shared_ptr<std::vector<AuthPublicKey> > authKeys,
const uint8_t *authCookie, uint8_t *authData) const {
if (authType == ENCRYPTED_LEASESET_AUTH_TYPE_DH) {
i2p::crypto::X25519Keys ek;
ek.GenerateKeys(); // esk and epk
memcpy(authData, ek.GetPublicKey(), 32);
authData += 32; // epk
htobe16buf(authData, authKeys->size());
authData += 2; // num clients
uint8_t authInput[100]; // sharedSecret || cpk_i || subcredential || publishedTimestamp
memcpy(authInput + 64, subcredential, 36);
for (auto &it: *authKeys) {
ek.Agree(it, authInput); // sharedSecret = DH(esk, cpk_i)
memcpy(authInput + 32, it, 32);
uint8_t okm[64]; // 52 actual data
i2p::crypto::HKDF(ek.GetPublicKey(), authInput, 100, "ELS2_XCA", okm);
memcpy(authData, okm + 44, 8);
authData += 8; // clientID_i
i2p::crypto::ChaCha20(authCookie, 32, okm, okm + 32, authData);
authData += 32; // clientCookie_i
}
} else // assume PSK
{
uint8_t authSalt[32];
RAND_bytes(authSalt, 32);
memcpy(authData, authSalt, 32);
authData += 32; // authSalt
htobe16buf(authData, authKeys->size());
authData += 2; // num clients
uint8_t authInput[68]; // authInput = psk_i || subcredential || publishedTimestamp
memcpy(authInput + 32, subcredential, 36);
for (auto &it: *authKeys) {
memcpy(authInput, it, 32);
uint8_t okm[64]; // 52 actual data
i2p::crypto::HKDF(authSalt, authInput, 68, "ELS2PSKA", okm);
memcpy(authData, okm + 44, 8);
authData += 8; // clientID_i
i2p::crypto::ChaCha20(authCookie, 32, okm, okm + 32, authData);
authData += 32; // clientCookie_i
}
}
}
}
}