mirror of
https://github.com/PurpleI2P/i2pd.git
synced 2025-04-30 12:47:48 +02:00
218 lines
6.7 KiB
C++
218 lines
6.7 KiB
C++
/*
|
|
* Copyright (c) 2013-2020, The PurpleI2P Project
|
|
*
|
|
* This file is part of Purple i2pd project and licensed under BSD3
|
|
*
|
|
* See full license text in LICENSE file at top of project tree
|
|
*/
|
|
|
|
#include <openssl/rand.h>
|
|
#include "Crypto.h"
|
|
#include "Elligator.h"
|
|
|
|
namespace i2p {
|
|
namespace crypto {
|
|
|
|
Elligator2::Elligator2() {
|
|
// TODO: share with Ed22519
|
|
p = BN_new();
|
|
// 2^255-19
|
|
BN_set_bit(p, 255); // 2^255
|
|
BN_sub_word(p, 19);
|
|
p38 = BN_dup(p);
|
|
BN_add_word(p38, 3);
|
|
BN_div_word(p38, 8); // (p+3)/8
|
|
p12 = BN_dup(p);
|
|
BN_sub_word(p12, 1);
|
|
BN_div_word(p12, 2); // (p-1)/2
|
|
p14 = BN_dup(p);
|
|
BN_sub_word(p14, 1);
|
|
BN_div_word(p14, 4); // (p-1)/4
|
|
|
|
A = BN_new();
|
|
BN_set_word(A, 486662);
|
|
nA = BN_new();
|
|
BN_sub(nA, p, A);
|
|
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
// calculate sqrt(-1)
|
|
sqrtn1 = BN_new();
|
|
BN_set_word(sqrtn1, 2);
|
|
BN_mod_exp(sqrtn1, sqrtn1, p14, p, ctx); // 2^((p-1)/4
|
|
|
|
u = BN_new();
|
|
BN_set_word(u, 2);
|
|
iu = BN_new();
|
|
BN_mod_inverse(iu, u, p, ctx);
|
|
|
|
BN_CTX_free(ctx);
|
|
}
|
|
|
|
Elligator2::~Elligator2() {
|
|
BN_free(p);
|
|
BN_free(p38);
|
|
BN_free(p12);
|
|
BN_free(p14);
|
|
BN_free(sqrtn1);
|
|
BN_free(A);
|
|
BN_free(nA);
|
|
BN_free(u);
|
|
BN_free(iu);
|
|
}
|
|
|
|
bool Elligator2::Encode(const uint8_t *key, uint8_t *encoded, bool highY, bool random) const {
|
|
bool ret = true;
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
BN_CTX_start(ctx);
|
|
|
|
uint8_t key1[32];
|
|
for (size_t i = 0; i < 16; i++) // from Little Endian
|
|
{
|
|
key1[i] = key[31 - i];
|
|
key1[31 - i] = key[i];
|
|
}
|
|
|
|
BIGNUM *x = BN_CTX_get(ctx);
|
|
BN_bin2bn(key1, 32, x);
|
|
BIGNUM *xA = BN_CTX_get(ctx);
|
|
BN_add(xA, x, A); // x + A
|
|
BN_sub(xA, p, xA); // p - (x + A)
|
|
|
|
BIGNUM *uxxA = BN_CTX_get(ctx); // u*x*xA
|
|
BN_mod_mul(uxxA, u, x, p, ctx);
|
|
BN_mod_mul(uxxA, uxxA, xA, p, ctx);
|
|
|
|
if (Legendre(uxxA, ctx) != -1) {
|
|
uint8_t randByte = 0; // random highest bits and high y
|
|
if (random) {
|
|
RAND_bytes(&randByte, 1);
|
|
highY = randByte & 0x01;
|
|
}
|
|
|
|
BIGNUM *r = BN_CTX_get(ctx);
|
|
if (highY) {
|
|
BN_mod_inverse(r, x, p, ctx);
|
|
BN_mod_mul(r, r, xA, p, ctx);
|
|
} else {
|
|
BN_mod_inverse(r, xA, p, ctx);
|
|
BN_mod_mul(r, r, x, p, ctx);
|
|
}
|
|
BN_mod_mul(r, r, iu, p, ctx);
|
|
|
|
SquareRoot(r, r, ctx);
|
|
bn2buf(r, encoded, 32);
|
|
|
|
if (random)
|
|
encoded[0] |= (randByte & 0xC0); // copy two highest bits from randByte
|
|
for (size_t i = 0; i < 16; i++) // To Little Endian
|
|
{
|
|
uint8_t tmp = encoded[i];
|
|
encoded[i] = encoded[31 - i];
|
|
encoded[31 - i] = tmp;
|
|
}
|
|
} else
|
|
ret = false;
|
|
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
bool Elligator2::Decode(const uint8_t *encoded, uint8_t *key) const {
|
|
bool ret = true;
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
BN_CTX_start(ctx);
|
|
|
|
uint8_t encoded1[32];
|
|
for (size_t i = 0; i < 16; i++) // from Little Endian
|
|
{
|
|
encoded1[i] = encoded[31 - i];
|
|
encoded1[31 - i] = encoded[i];
|
|
}
|
|
encoded1[0] &= 0x3F; // drop two highest bits
|
|
|
|
BIGNUM *r = BN_CTX_get(ctx);
|
|
BN_bin2bn(encoded1, 32, r);
|
|
|
|
if (BN_cmp(r, p12) <= 0) // r < (p-1)/2
|
|
{
|
|
// v = -A/(1+u*r^2)
|
|
BIGNUM *v = BN_CTX_get(ctx);
|
|
BN_mod_sqr(v, r, p, ctx);
|
|
BN_mod_mul(v, v, u, p, ctx);
|
|
BN_add_word(v, 1);
|
|
BN_mod_inverse(v, v, p, ctx);
|
|
BN_mod_mul(v, v, nA, p, ctx);
|
|
|
|
BIGNUM *vpA = BN_CTX_get(ctx);
|
|
BN_add(vpA, v, A); // v + A
|
|
// t = v^3+A*v^2+v = v^2*(v+A)+v
|
|
BIGNUM *t = BN_CTX_get(ctx);
|
|
BN_mod_sqr(t, v, p, ctx);
|
|
BN_mod_mul(t, t, vpA, p, ctx);
|
|
BN_mod_add(t, t, v, p, ctx);
|
|
|
|
int legendre = Legendre(t, ctx);
|
|
BIGNUM *x = BN_CTX_get(ctx);
|
|
if (legendre == 1)
|
|
BN_copy(x, v);
|
|
else {
|
|
BN_sub(x, p, v);
|
|
BN_mod_sub(x, x, A, p, ctx);
|
|
}
|
|
|
|
bn2buf(x, key, 32);
|
|
for (size_t i = 0; i < 16; i++) // To Little Endian
|
|
{
|
|
uint8_t tmp = key[i];
|
|
key[i] = key[31 - i];
|
|
key[31 - i] = tmp;
|
|
}
|
|
} else
|
|
ret = false;
|
|
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void Elligator2::SquareRoot(const BIGNUM *x, BIGNUM *r, BN_CTX *ctx) const {
|
|
BIGNUM *t = BN_CTX_get(ctx);
|
|
BN_mod_exp(t, x, p14, p, ctx); // t = x^((p-1)/4)
|
|
BN_mod_exp(r, x, p38, p, ctx); // r = x^((p+3)/8)
|
|
BN_add_word(t, 1);
|
|
|
|
if (!BN_cmp(t, p))
|
|
BN_mod_mul(r, r, sqrtn1, p, ctx);
|
|
|
|
if (BN_cmp(r, p12) > 0) // r > (p-1)/2
|
|
BN_sub(r, p, r);
|
|
}
|
|
|
|
int Elligator2::Legendre(const BIGNUM *a, BN_CTX *ctx) const {
|
|
// assume a < p, so don't check for a % p = 0, but a = 0 only
|
|
if (BN_is_zero(a)) return 0;
|
|
BIGNUM *r = BN_CTX_get(ctx);
|
|
BN_mod_exp(r, a, p12, p, ctx); // r = a^((p-1)/2) mod p
|
|
if (BN_is_word(r, 1))
|
|
return 1;
|
|
else if (BN_is_zero(r))
|
|
return 0;
|
|
return -1;
|
|
}
|
|
|
|
static std::unique_ptr<Elligator2> g_Elligator;
|
|
|
|
std::unique_ptr<Elligator2> &GetElligator() {
|
|
if (!g_Elligator) {
|
|
auto el = new Elligator2();
|
|
if (!g_Elligator) // make sure it was not created already
|
|
g_Elligator.reset(el);
|
|
else
|
|
delete el;
|
|
}
|
|
return g_Elligator;
|
|
}
|
|
}
|
|
}
|