i2pd/libi2pd/Streaming.cpp
orignal 3474538697
Some checks are pending
Build Debian packages / ${{ matrix.dist }} (bookworm) (push) Waiting to run
Build Debian packages / ${{ matrix.dist }} (bullseye) (push) Waiting to run
Build Debian packages / ${{ matrix.dist }} (buster) (push) Waiting to run
Build on FreeBSD / with UPnP (push) Waiting to run
Build on OSX / With USE_UPNP=${{ matrix.with_upnp }} (no) (push) Waiting to run
Build on OSX / With USE_UPNP=${{ matrix.with_upnp }} (yes) (push) Waiting to run
Build on Windows / ${{ matrix.arch }} (clang-x86_64, x64-clang, clang, CLANG64) (push) Waiting to run
Build on Windows / ${{ matrix.arch }} (i686, x86, gcc, MINGW32) (push) Waiting to run
Build on Windows / ${{ matrix.arch }} (ucrt-x86_64, x64-ucrt, gcc, UCRT64) (push) Waiting to run
Build on Windows / ${{ matrix.arch }} (x86_64, x64, gcc, MINGW64) (push) Waiting to run
Build on Windows / CMake ${{ matrix.arch }} (clang-x86_64, x64-clang, clang, CLANG64) (push) Waiting to run
Build on Windows / CMake ${{ matrix.arch }} (i686, x86, gcc, MINGW32) (push) Waiting to run
Build on Windows / CMake ${{ matrix.arch }} (ucrt-x86_64, x64-ucrt, gcc, UCRT64) (push) Waiting to run
Build on Windows / CMake ${{ matrix.arch }} (x86_64, x64, gcc, MINGW64) (push) Waiting to run
Build on Windows / XP (push) Waiting to run
Build on Ubuntu / Make with USE_UPNP=${{ matrix.with_upnp }} (no) (push) Waiting to run
Build on Ubuntu / Make with USE_UPNP=${{ matrix.with_upnp }} (yes) (push) Waiting to run
Build on Ubuntu / CMake with -DWITH_UPNP=${{ matrix.with_upnp }} (OFF) (push) Waiting to run
Build on Ubuntu / CMake with -DWITH_UPNP=${{ matrix.with_upnp }} (ON) (push) Waiting to run
Build containers / Building container for ${{ matrix.platform }} (i386, linux/386) (push) Waiting to run
Build containers / Building container for ${{ matrix.platform }} (armv7, linux/arm/v7) (push) Waiting to run
Build containers / Building container for ${{ matrix.platform }} (amd64, linux/amd64) (push) Waiting to run
Build containers / Building container for ${{ matrix.platform }} (arm64, linux/arm64) (push) Waiting to run
Build containers / Pushing merged manifest (push) Blocked by required conditions
replaced boost::asio::io_service by boost::asio:io_context
2024-11-25 10:08:27 -05:00

1996 lines
64 KiB
C++

/*
* Copyright (c) 2013-2024, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include "Crypto.h"
#include "Log.h"
#include "RouterInfo.h"
#include "RouterContext.h"
#include "Tunnel.h"
#include "Timestamp.h"
#include "Destination.h"
#include "Streaming.h"
namespace i2p
{
namespace stream
{
void SendBufferQueue::Add (std::shared_ptr<SendBuffer> buf)
{
if (buf)
{
m_Buffers.push_back (buf);
m_Size += buf->len;
}
}
size_t SendBufferQueue::Get (uint8_t * buf, size_t len)
{
size_t offset = 0;
while (!m_Buffers.empty () && offset < len)
{
auto nextBuffer = m_Buffers.front ();
auto rem = nextBuffer->GetRemainingSize ();
if (offset + rem <= len)
{
// whole buffer
memcpy (buf + offset, nextBuffer->GetRemaningBuffer (), rem);
offset += rem;
m_Buffers.pop_front (); // delete it
}
else
{
// partially
rem = len - offset;
memcpy (buf + offset, nextBuffer->GetRemaningBuffer (), rem);
nextBuffer->offset += rem;
offset = len; // break
}
}
m_Size -= offset;
return offset;
}
void SendBufferQueue::CleanUp ()
{
if (!m_Buffers.empty ())
{
for (auto it: m_Buffers)
it->Cancel ();
m_Buffers.clear ();
m_Size = 0;
}
}
Stream::Stream (boost::asio::io_context& service, StreamingDestination& local,
std::shared_ptr<const i2p::data::LeaseSet> remote, int port): m_Service (service),
m_SendStreamID (0), m_SequenceNumber (0), m_DropWindowDelaySequenceNumber (0),
m_TunnelsChangeSequenceNumber (0), m_LastReceivedSequenceNumber (-1), m_PreviousReceivedSequenceNumber (-1),
m_LastConfirmedReceivedSequenceNumber (0), // for limit inbound speed
m_Status (eStreamStatusNew), m_IsIncoming (false), m_IsAckSendScheduled (false), m_IsNAcked (false), m_IsFirstACK (false),
m_IsResendNeeded (false), m_IsFirstRttSample (false), m_IsSendTime (true), m_IsWinDropped (false),
m_IsTimeOutResend (false), m_IsImmediateAckRequested (false), m_IsRemoteLeaseChangeInProgress (false), m_LocalDestination (local),
m_RemoteLeaseSet (remote), m_ReceiveTimer (m_Service), m_SendTimer (m_Service), m_ResendTimer (m_Service),
m_AckSendTimer (m_Service), m_NumSentBytes (0), m_NumReceivedBytes (0), m_Port (port),
m_RTT (INITIAL_RTT), m_SlowRTT (INITIAL_RTT), m_SlowRTT2 (INITIAL_RTT), m_WindowSize (INITIAL_WINDOW_SIZE), m_LastWindowDropSize (0),
m_WindowDropTargetSize (0), m_WindowIncCounter (0), m_RTO (INITIAL_RTO),
m_AckDelay (local.GetOwner ()->GetStreamingAckDelay ()), m_PrevRTTSample (INITIAL_RTT),
m_Jitter (0), m_MinPacingTime (0),
m_PacingTime (INITIAL_PACING_TIME), m_PacingTimeRem (0), m_LastSendTime (0), m_RemoteLeaseChangeTime (0),
m_LastACKSendTime (0), m_PacketACKInterval (1), m_PacketACKIntervalRem (0), // for limit inbound speed
m_NumResendAttempts (0), m_NumPacketsToSend (0), m_MTU (STREAMING_MTU)
{
RAND_bytes ((uint8_t *)&m_RecvStreamID, 4);
m_RemoteIdentity = remote->GetIdentity ();
auto outboundSpeed = local.GetOwner ()->GetStreamingOutboundSpeed ();
if (outboundSpeed)
m_MinPacingTime = (1000000LL*STREAMING_MTU)/outboundSpeed;
auto inboundSpeed = local.GetOwner ()->GetStreamingInboundSpeed (); // for limit inbound speed
if (inboundSpeed)
m_PacketACKInterval = (1000000LL*STREAMING_MTU)/inboundSpeed;
}
Stream::Stream (boost::asio::io_context& service, StreamingDestination& local):
m_Service (service), m_SendStreamID (0), m_SequenceNumber (0), m_DropWindowDelaySequenceNumber (0),
m_TunnelsChangeSequenceNumber (0), m_LastReceivedSequenceNumber (-1), m_PreviousReceivedSequenceNumber (-1),
m_LastConfirmedReceivedSequenceNumber (0), // for limit inbound speed
m_Status (eStreamStatusNew), m_IsIncoming (true), m_IsAckSendScheduled (false), m_IsNAcked (false), m_IsFirstACK (false),
m_IsResendNeeded (false), m_IsFirstRttSample (false), m_IsSendTime (true), m_IsWinDropped (false),
m_IsTimeOutResend (false), m_IsImmediateAckRequested (false), m_IsRemoteLeaseChangeInProgress (false), m_LocalDestination (local),
m_ReceiveTimer (m_Service), m_SendTimer (m_Service), m_ResendTimer (m_Service), m_AckSendTimer (m_Service),
m_NumSentBytes (0), m_NumReceivedBytes (0), m_Port (0), m_RTT (INITIAL_RTT), m_SlowRTT (INITIAL_RTT), m_SlowRTT2 (INITIAL_RTT),
m_WindowSize (INITIAL_WINDOW_SIZE), m_LastWindowDropSize (0), m_WindowDropTargetSize (0), m_WindowIncCounter (0),
m_RTO (INITIAL_RTO), m_AckDelay (local.GetOwner ()->GetStreamingAckDelay ()),
m_PrevRTTSample (INITIAL_RTT), m_Jitter (0), m_MinPacingTime (0),
m_PacingTime (INITIAL_PACING_TIME), m_PacingTimeRem (0), m_LastSendTime (0), m_RemoteLeaseChangeTime (0),
m_LastACKSendTime (0), m_PacketACKInterval (1), m_PacketACKIntervalRem (0), // for limit inbound speed
m_NumResendAttempts (0), m_NumPacketsToSend (0), m_MTU (STREAMING_MTU)
{
RAND_bytes ((uint8_t *)&m_RecvStreamID, 4);
auto outboundSpeed = local.GetOwner ()->GetStreamingOutboundSpeed ();
if (outboundSpeed)
m_MinPacingTime = (1000000LL*STREAMING_MTU)/outboundSpeed;
auto inboundSpeed = local.GetOwner ()->GetStreamingInboundSpeed (); // for limit inbound speed
if (inboundSpeed)
m_PacketACKInterval = (1000000LL*STREAMING_MTU)/inboundSpeed;
}
Stream::~Stream ()
{
CleanUp ();
LogPrint (eLogDebug, "Streaming: Stream deleted");
}
void Stream::Terminate (bool deleteFromDestination) // should be called from StreamingDestination::Stop only
{
m_Status = eStreamStatusTerminated;
m_AckSendTimer.cancel ();
m_ReceiveTimer.cancel ();
m_ResendTimer.cancel ();
m_SendTimer.cancel ();
//CleanUp (); /* Need to recheck - broke working on windows */
if (deleteFromDestination)
m_LocalDestination.DeleteStream (shared_from_this ());
}
void Stream::CleanUp ()
{
m_SendBuffer.CleanUp ();
while (!m_ReceiveQueue.empty ())
{
auto packet = m_ReceiveQueue.front ();
m_ReceiveQueue.pop ();
m_LocalDestination.DeletePacket (packet);
}
m_NACKedPackets.clear ();
for (auto it: m_SentPackets)
m_LocalDestination.DeletePacket (it);
m_SentPackets.clear ();
for (auto it: m_SavedPackets)
m_LocalDestination.DeletePacket (it);
m_SavedPackets.clear ();
}
void Stream::HandleNextPacket (Packet * packet)
{
if (m_Status == eStreamStatusTerminated)
{
m_LocalDestination.DeletePacket (packet);
return;
}
m_NumReceivedBytes += packet->GetLength ();
if (!m_SendStreamID)
{
m_SendStreamID = packet->GetReceiveStreamID ();
if (!m_RemoteIdentity && packet->GetNACKCount () == 8 && // first incoming packet
memcmp (packet->GetNACKs (), m_LocalDestination.GetOwner ()->GetIdentHash (), 32))
{
LogPrint (eLogWarning, "Streaming: Destination mismatch for ", m_LocalDestination.GetOwner ()->GetIdentHash ().ToBase32 ());
m_LocalDestination.DeletePacket (packet);
return;
}
}
if (!packet->IsNoAck ()) // ack received
ProcessAck (packet);
int32_t receivedSeqn = packet->GetSeqn ();
if (!receivedSeqn && m_LastReceivedSequenceNumber >= 0)
{
uint16_t flags = packet->GetFlags ();
if (flags)
// plain ack with options
ProcessOptions (flags, packet);
else
// plain ack
{
LogPrint (eLogDebug, "Streaming: Plain ACK received");
if (m_IsImmediateAckRequested)
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
if (m_IsFirstRttSample)
{
m_RTT = ts - m_LastSendTime;
m_IsFirstRttSample = false;
}
else
m_RTT = (m_RTT + (ts - m_LastSendTime)) / 2;
m_IsImmediateAckRequested = false;
}
}
m_LocalDestination.DeletePacket (packet);
return;
}
LogPrint (eLogDebug, "Streaming: Received seqn=", receivedSeqn, " on sSID=", m_SendStreamID);
if (receivedSeqn == m_LastReceivedSequenceNumber + 1)
{
// we have received next in sequence message
ProcessPacket (packet);
if (m_Status == eStreamStatusTerminated) return;
// we should also try stored messages if any
for (auto it = m_SavedPackets.begin (); it != m_SavedPackets.end ();)
{
if ((*it)->GetSeqn () == (uint32_t)(m_LastReceivedSequenceNumber + 1))
{
Packet * savedPacket = *it;
m_SavedPackets.erase (it++);
ProcessPacket (savedPacket);
if (m_Status == eStreamStatusTerminated) return;
}
else
break;
}
// schedule ack for last message
if (m_Status == eStreamStatusOpen)
{
if (!m_IsAckSendScheduled)
{
auto ackTimeout = m_RTT/10;
if (ackTimeout > m_AckDelay) ackTimeout = m_AckDelay;
ScheduleAck (ackTimeout);
}
}
else if (packet->IsSYN ())
// we have to send SYN back to incoming connection
SendBuffer (); // also sets m_IsOpen
}
else
{
if (receivedSeqn <= m_LastReceivedSequenceNumber)
{
// we have received duplicate
LogPrint (eLogWarning, "Streaming: Duplicate message ", receivedSeqn, " on sSID=", m_SendStreamID);
if (receivedSeqn <= m_PreviousReceivedSequenceNumber || receivedSeqn == m_LastReceivedSequenceNumber)
{
m_CurrentOutboundTunnel = m_LocalDestination.GetOwner ()->GetTunnelPool ()->GetNextOutboundTunnel (m_CurrentOutboundTunnel);
CancelRemoteLeaseChange ();
UpdateCurrentRemoteLease ();
}
m_PreviousReceivedSequenceNumber = receivedSeqn;
m_LocalDestination.DeletePacket (packet); // packet dropped
if (!m_IsAckSendScheduled)
{
SendQuickAck (); // resend ack for previous message again
auto ackTimeout = m_RTT/10;
if (ackTimeout > m_AckDelay) ackTimeout = m_AckDelay;
ScheduleAck (ackTimeout);
}
}
else
{
LogPrint (eLogWarning, "Streaming: Missing messages on sSID=", m_SendStreamID, ": from ", m_LastReceivedSequenceNumber + 1, " to ", receivedSeqn - 1);
// save message and wait for missing message again
SavePacket (packet);
if (m_LastReceivedSequenceNumber >= 0)
{
if (!m_IsAckSendScheduled)
{
// send NACKs for missing messages
SendQuickAck ();
auto ackTimeout = m_RTT/10;
if (ackTimeout > m_AckDelay) ackTimeout = m_AckDelay;
ScheduleAck (ackTimeout);
}
}
else
// wait for SYN
ScheduleAck (SYN_TIMEOUT);
}
}
}
void Stream::SavePacket (Packet * packet)
{
if (!m_SavedPackets.insert (packet).second)
m_LocalDestination.DeletePacket (packet);
}
void Stream::ProcessPacket (Packet * packet)
{
uint32_t receivedSeqn = packet->GetSeqn ();
uint16_t flags = packet->GetFlags ();
LogPrint (eLogDebug, "Streaming: Process seqn=", receivedSeqn, ", flags=", flags);
if (!ProcessOptions (flags, packet))
{
m_LocalDestination.DeletePacket (packet);
Terminate ();
return;
}
packet->offset = packet->GetPayload () - packet->buf;
if (packet->GetLength () > 0)
{
m_ReceiveQueue.push (packet);
m_ReceiveTimer.cancel ();
}
else
m_LocalDestination.DeletePacket (packet);
m_LastReceivedSequenceNumber = receivedSeqn;
if (flags & PACKET_FLAG_RESET)
{
LogPrint (eLogDebug, "Streaming: closing stream sSID=", m_SendStreamID, ", rSID=", m_RecvStreamID, ": reset flag received in packet #", receivedSeqn);
m_Status = eStreamStatusReset;
Close ();
}
else if (flags & PACKET_FLAG_CLOSE)
{
if (m_Status != eStreamStatusClosed)
SendClose ();
m_Status = eStreamStatusClosed;
Terminate ();
}
}
bool Stream::ProcessOptions (uint16_t flags, Packet * packet)
{
const uint8_t * optionData = packet->GetOptionData ();
size_t optionSize = packet->GetOptionSize ();
if (optionSize > packet->len)
{
LogPrint (eLogInfo, "Streaming: Invalid option size ", optionSize, " Discarded");
return false;
}
if (!flags) return true;
bool immediateAckRequested = false;
if (flags & PACKET_FLAG_DELAY_REQUESTED)
{
uint16_t delayRequested = bufbe16toh (optionData);
if (!delayRequested) // 0 requests an immediate ack
immediateAckRequested = true;
else if (!m_IsAckSendScheduled)
{
if (delayRequested < m_RTT)
{
m_IsAckSendScheduled = true;
m_AckSendTimer.expires_from_now (boost::posix_time::milliseconds(delayRequested));
m_AckSendTimer.async_wait (std::bind (&Stream::HandleAckSendTimer,
shared_from_this (), std::placeholders::_1));
}
if (delayRequested >= DELAY_CHOKING)
{
if (!m_IsWinDropped)
{
m_WindowDropTargetSize = MIN_WINDOW_SIZE;
m_LastWindowDropSize = 0;
m_WindowIncCounter = 0;
m_IsWinDropped = true; // don't drop window twice
m_DropWindowDelaySequenceNumber = m_SequenceNumber;
UpdatePacingTime ();
}
}
}
optionData += 2;
}
if (flags & PACKET_FLAG_FROM_INCLUDED)
{
if (m_RemoteLeaseSet) m_RemoteIdentity = m_RemoteLeaseSet->GetIdentity ();
if (!m_RemoteIdentity)
m_RemoteIdentity = std::make_shared<i2p::data::IdentityEx>(optionData, optionSize);
if (m_RemoteIdentity->IsRSA ())
{
LogPrint (eLogInfo, "Streaming: Incoming stream from RSA destination ", m_RemoteIdentity->GetIdentHash ().ToBase64 (), " Discarded");
return false;
}
optionData += m_RemoteIdentity->GetFullLen ();
if (!m_RemoteLeaseSet)
LogPrint (eLogDebug, "Streaming: Incoming stream from ", m_RemoteIdentity->GetIdentHash ().ToBase64 (), ", sSID=", m_SendStreamID, ", rSID=", m_RecvStreamID);
}
if (flags & PACKET_FLAG_MAX_PACKET_SIZE_INCLUDED)
{
uint16_t maxPacketSize = bufbe16toh (optionData);
LogPrint (eLogDebug, "Streaming: Max packet size ", maxPacketSize);
optionData += 2;
}
if (flags & PACKET_FLAG_OFFLINE_SIGNATURE)
{
if (!m_RemoteIdentity)
{
LogPrint (eLogInfo, "Streaming: offline signature without identity");
return false;
}
// if we have it in LeaseSet already we don't need to parse it again
if (m_RemoteLeaseSet) m_TransientVerifier = m_RemoteLeaseSet->GetTransientVerifier ();
if (m_TransientVerifier)
{
// skip option data
optionData += 6; // timestamp and key type
optionData += m_TransientVerifier->GetPublicKeyLen (); // public key
optionData += m_RemoteIdentity->GetSignatureLen (); // signature
}
else
{
// transient key
size_t offset = 0;
m_TransientVerifier = i2p::data::ProcessOfflineSignature (m_RemoteIdentity, optionData, optionSize - (optionData - packet->GetOptionData ()), offset);
optionData += offset;
if (!m_TransientVerifier)
{
LogPrint (eLogError, "Streaming: offline signature failed");
return false;
}
}
}
if (flags & PACKET_FLAG_SIGNATURE_INCLUDED)
{
uint8_t signature[256];
auto signatureLen = m_TransientVerifier ? m_TransientVerifier->GetSignatureLen () : m_RemoteIdentity->GetSignatureLen ();
if(signatureLen <= sizeof(signature))
{
memcpy (signature, optionData, signatureLen);
memset (const_cast<uint8_t *>(optionData), 0, signatureLen);
bool verified = m_TransientVerifier ?
m_TransientVerifier->Verify (packet->GetBuffer (), packet->GetLength (), signature) :
m_RemoteIdentity->Verify (packet->GetBuffer (), packet->GetLength (), signature);
if (!verified)
{
LogPrint (eLogError, "Streaming: Signature verification failed, sSID=", m_SendStreamID, ", rSID=", m_RecvStreamID);
Close ();
flags |= PACKET_FLAG_CLOSE;
}
memcpy (const_cast<uint8_t *>(optionData), signature, signatureLen);
optionData += signatureLen;
}
else
{
LogPrint (eLogError, "Streaming: Signature too big, ", signatureLen, " bytes");
return false;
}
}
if (immediateAckRequested)
SendQuickAck ();
return true;
}
void Stream::HandlePing (Packet * packet)
{
uint16_t flags = packet->GetFlags ();
if (ProcessOptions (flags, packet) && m_RemoteIdentity)
{
// send pong
Packet p;
memset (p.buf, 0, 22); // minimal header all zeroes
memcpy (p.buf + 4, packet->buf, 4); // but receiveStreamID is the sendStreamID from the ping
htobe16buf (p.buf + 18, PACKET_FLAG_ECHO); // and echo flag
auto payloadLen = int(packet->len) - (packet->GetPayload () - packet->buf);
if (payloadLen > 0)
memcpy (p.buf + 22, packet->GetPayload (), payloadLen);
else
payloadLen = 0;
p.len = payloadLen + 22;
SendPackets (std::vector<Packet *> { &p });
LogPrint (eLogDebug, "Streaming: Pong of ", p.len, " bytes sent");
}
m_LocalDestination.DeletePacket (packet);
}
void Stream::ProcessAck (Packet * packet)
{
bool acknowledged = false;
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
uint32_t ackThrough = packet->GetAckThrough ();
m_NACKedPackets.clear ();
if (ackThrough > m_SequenceNumber)
{
LogPrint (eLogError, "Streaming: Unexpected ackThrough=", ackThrough, " > seqn=", m_SequenceNumber);
return;
}
int rttSample = INT_MAX;
m_IsNAcked = false;
m_IsResendNeeded = false;
int nackCount = packet->GetNACKCount ();
for (auto it = m_SentPackets.begin (); it != m_SentPackets.end ();)
{
auto seqn = (*it)->GetSeqn ();
if (seqn <= ackThrough)
{
if (nackCount > 0)
{
bool nacked = false;
for (int i = 0; i < nackCount; i++)
if (seqn == packet->GetNACK (i))
{
m_NACKedPackets.insert (*it);
m_IsNAcked = true;
nacked = true;
break;
}
if (nacked)
{
LogPrint (eLogDebug, "Streaming: Packet ", seqn, " NACK");
++it;
continue;
}
}
auto sentPacket = *it;
int64_t rtt = (int64_t)ts - (int64_t)sentPacket->sendTime;
if (rtt < 0)
LogPrint (eLogError, "Streaming: Packet ", seqn, "sent from the future, sendTime=", sentPacket->sendTime);
if (!seqn)
{
m_IsFirstRttSample = true;
rttSample = rtt < 0 ? 1 : rtt;
}
else if (!sentPacket->resent && seqn > m_TunnelsChangeSequenceNumber && rtt >= 0)
rttSample = std::min (rttSample, (int)rtt);
LogPrint (eLogDebug, "Streaming: Packet ", seqn, " acknowledged rtt=", rtt, " sentTime=", sentPacket->sendTime);
m_SentPackets.erase (it++);
m_LocalDestination.DeletePacket (sentPacket);
acknowledged = true;
if (m_WindowSize < MAX_WINDOW_SIZE && !m_IsFirstACK)
if (m_RTT < m_LocalDestination.GetRandom () % INITIAL_RTO) // dirty
m_WindowIncCounter++;
}
else
break;
}
if (rttSample != INT_MAX)
{
if (m_IsFirstRttSample && !m_IsFirstACK)
{
m_RTT = rttSample;
m_SlowRTT = rttSample;
m_SlowRTT2 = rttSample;
m_PrevRTTSample = rttSample;
m_Jitter = rttSample / 10; // 10%
m_Jitter += 5; // for low-latency connections
m_IsFirstRttSample = false;
}
else
m_RTT = (m_PrevRTTSample + rttSample) / 2;
if (!m_IsWinDropped)
{
m_SlowRTT = SLOWRTT_EWMA_ALPHA * m_RTT + (1.0 - SLOWRTT_EWMA_ALPHA) * m_SlowRTT;
m_SlowRTT2 = RTT_EWMA_ALPHA * m_RTT + (1.0 - RTT_EWMA_ALPHA) * m_SlowRTT2;
// calculate jitter
double jitter = 0;
if (rttSample > m_PrevRTTSample)
jitter = rttSample - m_PrevRTTSample;
else if (rttSample < m_PrevRTTSample)
jitter = m_PrevRTTSample - rttSample;
else
jitter = rttSample / 10; // 10%
jitter += 5; // for low-latency connections
m_Jitter = (0.05 * jitter) + (1.0 - 0.05) * m_Jitter;
}
//
// delay-based CC
if ((m_SlowRTT2 > m_SlowRTT + m_Jitter && rttSample > m_SlowRTT2 && rttSample > m_PrevRTTSample) && !m_IsWinDropped) // Drop window if RTT grows too fast, late detection
ProcessWindowDrop ();
UpdatePacingTime ();
m_PrevRTTSample = rttSample;
bool wasInitial = m_RTO == INITIAL_RTO;
m_RTO = std::max (MIN_RTO, (int)(m_RTT * 1.3 + m_Jitter)); // TODO: implement it better
if (wasInitial)
ScheduleResend ();
}
if (m_IsWinDropped && ackThrough > m_DropWindowDelaySequenceNumber)
{
m_IsFirstRttSample = true;
m_IsWinDropped = false;
}
if (m_WindowDropTargetSize && m_WindowSize <= m_WindowDropTargetSize)
{
m_WindowDropTargetSize = 0;
m_DropWindowDelaySequenceNumber = m_SequenceNumber;
}
if (acknowledged && m_WindowDropTargetSize && m_WindowSize > m_WindowDropTargetSize)
{
m_RTO = std::max (MIN_RTO, (int)(m_RTT * 1.5 + m_Jitter)); // we assume that the next rtt sample may be much larger than the current
m_IsResendNeeded = true;
m_WindowSize = m_SentPackets.size () + 1; // if there are no packets to resend, just send one regular packet
if (m_WindowSize < MIN_WINDOW_SIZE) m_WindowSize = MIN_WINDOW_SIZE;
if (m_WindowSize > MAX_WINDOW_SIZE) m_WindowSize = MAX_WINDOW_SIZE;
m_WindowIncCounter = 0;
UpdatePacingTime ();
}
if (acknowledged || m_IsNAcked)
{
ScheduleResend ();
}
if (m_SendBuffer.IsEmpty () && m_SentPackets.size () > 0) // tail loss
{
m_IsResendNeeded = true;
m_RTO = std::max (MIN_RTO, (int)(m_RTT * 1.5 + m_Jitter)); // to prevent spurious retransmit
}
if (m_SentPackets.empty () && m_SendBuffer.IsEmpty ())
{
m_ResendTimer.cancel ();
m_SendTimer.cancel ();
}
if (acknowledged && m_IsFirstACK)
{
if (m_RoutingSession)
m_RoutingSession->SetSharedRoutingPath (
std::make_shared<i2p::garlic::GarlicRoutingPath> (
i2p::garlic::GarlicRoutingPath{m_CurrentOutboundTunnel, m_CurrentRemoteLease, (int)m_RTT, 0}));
m_IsFirstACK = false;
}
if (acknowledged)
{
m_NumResendAttempts = 0;
m_IsTimeOutResend = false;
SendBuffer ();
}
if (m_Status == eStreamStatusClosed)
Terminate ();
else if (m_Status == eStreamStatusClosing)
Close (); // check is all outgoing messages have been sent and we can send close
}
size_t Stream::Receive (uint8_t * buf, size_t len, int timeout)
{
if (!len) return 0;
size_t ret = 0;
volatile bool done = false;
std::condition_variable newDataReceived;
std::mutex newDataReceivedMutex;
AsyncReceive (boost::asio::buffer (buf, len),
[&ret, &done, &newDataReceived, &newDataReceivedMutex](const boost::system::error_code& ecode, std::size_t bytes_transferred)
{
if (ecode == boost::asio::error::timed_out)
ret = 0;
else
ret = bytes_transferred;
std::unique_lock<std::mutex> l(newDataReceivedMutex);
newDataReceived.notify_all ();
done = true;
},
timeout);
if (!done)
{ std::unique_lock<std::mutex> l(newDataReceivedMutex);
if (!done && newDataReceived.wait_for (l, std::chrono::seconds (timeout)) == std::cv_status::timeout)
ret = 0;
}
if (!done)
{
// make sure that AsycReceive complete
auto s = shared_from_this();
m_Service.post ([s]()
{
s->m_ReceiveTimer.cancel ();
});
int i = 0;
while (!done && i < 100) // 1 sec
{
std::this_thread::sleep_for (std::chrono::milliseconds(10));
i++;
}
}
return ret;
}
size_t Stream::Send (const uint8_t * buf, size_t len)
{
AsyncSend (buf, len, nullptr);
return len;
}
void Stream::AsyncSend (const uint8_t * buf, size_t len, SendHandler handler)
{
std::shared_ptr<i2p::stream::SendBuffer> buffer;
if (len > 0 && buf)
buffer = std::make_shared<i2p::stream::SendBuffer>(buf, len, handler);
else if (handler)
handler(boost::system::error_code ());
auto s = shared_from_this ();
m_Service.post ([s, buffer]()
{
if (buffer)
s->m_SendBuffer.Add (buffer);
s->SendBuffer ();
});
}
void Stream::SendBuffer ()
{
if (m_RemoteLeaseSet) // don't scheudle send for first SYN for incoming stream
ScheduleSend ();
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
int numMsgs = m_WindowSize - m_SentPackets.size ();
if (numMsgs <= 0 || !m_IsSendTime) // window is full
{
m_LastSendTime = ts;
return;
}
else if (numMsgs > m_NumPacketsToSend)
numMsgs = m_NumPacketsToSend;
bool isNoAck = m_LastReceivedSequenceNumber < 0; // first packet
std::vector<Packet *> packets;
while ((m_Status == eStreamStatusNew) || (IsEstablished () && !m_SendBuffer.IsEmpty () && numMsgs > 0))
{
Packet * p = m_LocalDestination.NewPacket ();
uint8_t * packet = p->GetBuffer ();
// TODO: implement setters
size_t size = 0;
htobe32buf (packet + size, m_SendStreamID);
size += 4; // sendStreamID
htobe32buf (packet + size, m_RecvStreamID);
size += 4; // receiveStreamID
htobe32buf (packet + size, m_SequenceNumber++);
size += 4; // sequenceNum
if (isNoAck)
htobuf32 (packet + size, 0);
else
htobe32buf (packet + size, m_LastReceivedSequenceNumber);
size += 4; // ack Through
if (m_Status == eStreamStatusNew && !m_SendStreamID && m_RemoteIdentity)
{
// first SYN packet
packet[size] = 8;
size++; // NACK count
memcpy (packet + size, m_RemoteIdentity->GetIdentHash (), 32);
size += 32;
}
else
{
packet[size] = 0;
size++; // NACK count
}
packet[size] = m_RTO/1000;
size++; // resend delay
if (m_Status == eStreamStatusNew)
{
// initial packet
m_Status = eStreamStatusOpen;
if (!m_RemoteLeaseSet) m_RemoteLeaseSet = m_LocalDestination.GetOwner ()->FindLeaseSet (m_RemoteIdentity->GetIdentHash ());;
if (m_RemoteLeaseSet)
{
m_RoutingSession = m_LocalDestination.GetOwner ()->GetRoutingSession (m_RemoteLeaseSet, true, !m_IsIncoming);
m_MTU = (m_RoutingSession && m_RoutingSession->IsRatchets ()) ? STREAMING_MTU_RATCHETS : STREAMING_MTU;
}
uint16_t flags = PACKET_FLAG_SYNCHRONIZE | PACKET_FLAG_FROM_INCLUDED |
PACKET_FLAG_SIGNATURE_INCLUDED | PACKET_FLAG_MAX_PACKET_SIZE_INCLUDED;
if (isNoAck) flags |= PACKET_FLAG_NO_ACK;
bool isOfflineSignature = m_LocalDestination.GetOwner ()->GetPrivateKeys ().IsOfflineSignature ();
if (isOfflineSignature) flags |= PACKET_FLAG_OFFLINE_SIGNATURE;
htobe16buf (packet + size, flags);
size += 2; // flags
size_t identityLen = m_LocalDestination.GetOwner ()->GetIdentity ()->GetFullLen ();
size_t signatureLen = m_LocalDestination.GetOwner ()->GetPrivateKeys ().GetSignatureLen ();
uint8_t * optionsSize = packet + size; // set options size later
size += 2; // options size
m_LocalDestination.GetOwner ()->GetIdentity ()->ToBuffer (packet + size, identityLen);
size += identityLen; // from
htobe16buf (packet + size, m_MTU);
size += 2; // max packet size
if (isOfflineSignature)
{
const auto& offlineSignature = m_LocalDestination.GetOwner ()->GetPrivateKeys ().GetOfflineSignature ();
memcpy (packet + size, offlineSignature.data (), offlineSignature.size ());
size += offlineSignature.size (); // offline signature
}
uint8_t * signature = packet + size; // set it later
memset (signature, 0, signatureLen); // zeroes for now
size += signatureLen; // signature
htobe16buf (optionsSize, packet + size - 2 - optionsSize); // actual options size
size += m_SendBuffer.Get (packet + size, m_MTU); // payload
m_LocalDestination.GetOwner ()->Sign (packet, size, signature);
}
else
{
// follow on packet
htobuf16 (packet + size, 0);
size += 2; // flags
htobuf16 (packet + size, 0); // no options
size += 2; // options size
size += m_SendBuffer.Get(packet + size, m_MTU); // payload
}
p->len = size;
packets.push_back (p);
numMsgs--;
}
if (packets.size () > 0)
{
if (m_SavedPackets.empty ()) // no NACKS
{
m_IsAckSendScheduled = false;
m_AckSendTimer.cancel ();
}
bool isEmpty = m_SentPackets.empty ();
// auto ts = i2p::util::GetMillisecondsSinceEpoch ();
for (auto& it: packets)
{
it->sendTime = ts;
m_SentPackets.insert (it);
}
SendPackets (packets);
m_LastSendTime = ts;
m_IsSendTime = false;
if (m_Status == eStreamStatusClosing && m_SendBuffer.IsEmpty ())
SendClose ();
if (isEmpty)
ScheduleResend ();
}
}
void Stream::SendQuickAck ()
{
int32_t lastReceivedSeqn = m_LastReceivedSequenceNumber;
// for limit inbound speed
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
int numPackets = 0;
bool lostPackets = false;
int64_t passedTime = m_PacketACKInterval * INITIAL_WINDOW_SIZE; // in microseconds // while m_LastACKSendTime == 0
if (m_LastACKSendTime)
passedTime = (ts - m_LastACKSendTime)*1000; // in microseconds
numPackets = (passedTime + m_PacketACKIntervalRem) / m_PacketACKInterval;
m_PacketACKIntervalRem = (passedTime + m_PacketACKIntervalRem) - (numPackets * m_PacketACKInterval);
if (m_LastConfirmedReceivedSequenceNumber + numPackets < m_LastReceivedSequenceNumber)
{
lastReceivedSeqn = m_LastConfirmedReceivedSequenceNumber + numPackets;
if (!m_IsAckSendScheduled)
{
auto ackTimeout = m_RTT/10;
if (ackTimeout > m_AckDelay) ackTimeout = m_AckDelay;
ScheduleAck (ackTimeout);
}
}
if (numPackets == 0) return;
// for limit inbound speed
if (!m_SavedPackets.empty ())
{
for (auto it: m_SavedPackets)
{
auto seqn = it->GetSeqn ();
// for limit inbound speed
if (m_LastConfirmedReceivedSequenceNumber + numPackets < int(seqn))
{
if (!m_IsAckSendScheduled)
{
auto ackTimeout = m_RTT/10;
if (ackTimeout > m_AckDelay) ackTimeout = m_AckDelay;
ScheduleAck (ackTimeout);
}
if (lostPackets)
break;
else
return;
}
// for limit inbound speed
if ((int)seqn > lastReceivedSeqn)
{
lastReceivedSeqn = seqn;
lostPackets = true; // for limit inbound speed
}
}
}
if (lastReceivedSeqn < 0)
{
LogPrint (eLogError, "Streaming: No packets have been received yet");
return;
}
Packet p;
uint8_t * packet = p.GetBuffer ();
size_t size = 0;
htobe32buf (packet + size, m_SendStreamID);
size += 4; // sendStreamID
htobe32buf (packet + size, m_RecvStreamID);
size += 4; // receiveStreamID
htobuf32 (packet + size, 0); // this is plain Ack message
size += 4; // sequenceNum
htobe32buf (packet + size, lastReceivedSeqn);
size += 4; // ack Through
uint8_t numNacks = 0;
bool choking = false;
if (lastReceivedSeqn > m_LastReceivedSequenceNumber)
{
// fill NACKs
uint8_t * nacks = packet + size + 1;
auto nextSeqn = m_LastReceivedSequenceNumber + 1;
for (auto it: m_SavedPackets)
{
auto seqn = it->GetSeqn ();
if (m_LastConfirmedReceivedSequenceNumber + numPackets < int(seqn)) // for limit inbound speed
{
htobe32buf (packet + 12, nextSeqn - 1);
break;
}
if (numNacks + (seqn - nextSeqn) >= 256)
{
LogPrint (eLogError, "Streaming: Number of NACKs exceeds 256. seqn=", seqn, " nextSeqn=", nextSeqn);
htobe32buf (packet + 12, nextSeqn - 1); // change ack Through back
choking = true;
break;
}
for (uint32_t i = nextSeqn; i < seqn; i++)
{
htobe32buf (nacks, i);
nacks += 4;
numNacks++;
}
nextSeqn = seqn + 1;
}
packet[size] = numNacks;
size++; // NACK count
size += numNacks*4; // NACKs
}
else
{
// No NACKs
packet[size] = 0;
size++; // NACK count
}
packet[size] = 0;
size++; // resend delay
bool requestImmediateAck = false;
if (!choking)
requestImmediateAck = m_LastSendTime && ts > m_LastSendTime + REQUEST_IMMEDIATE_ACK_INTERVAL &&
ts > m_LastSendTime + REQUEST_IMMEDIATE_ACK_INTERVAL + m_LocalDestination.GetRandom () % REQUEST_IMMEDIATE_ACK_INTERVAL_VARIANCE;
htobe16buf (packet + size, (choking || requestImmediateAck) ? PACKET_FLAG_DELAY_REQUESTED : 0); // no flags set or delay requested
size += 2; // flags
if (choking || requestImmediateAck)
{
htobe16buf (packet + size, 2); // 2 bytes delay interval
htobe16buf (packet + size + 2, choking ? DELAY_CHOKING : 0); // set choking or immediated ack interval
size += 2;
if (requestImmediateAck) // ack request sent
{
m_LastSendTime = ts;
m_IsImmediateAckRequested = true;
}
}
else
htobuf16 (packet + size, 0); // no options
size += 2; // options size
p.len = size;
SendPackets (std::vector<Packet *> { &p });
m_LastACKSendTime = ts; // for limit inbound speed
m_LastConfirmedReceivedSequenceNumber = lastReceivedSeqn; // for limit inbound speed
LogPrint (eLogDebug, "Streaming: Quick Ack sent. ", (int)numNacks, " NACKs");
}
void Stream::SendPing ()
{
Packet p;
uint8_t * packet = p.GetBuffer ();
size_t size = 0;
htobe32buf (packet, m_RecvStreamID);
size += 4; // sendStreamID
memset (packet + size, 0, 14);
size += 14; // all zeroes
uint16_t flags = PACKET_FLAG_ECHO | PACKET_FLAG_SIGNATURE_INCLUDED | PACKET_FLAG_FROM_INCLUDED;
bool isOfflineSignature = m_LocalDestination.GetOwner ()->GetPrivateKeys ().IsOfflineSignature ();
if (isOfflineSignature) flags |= PACKET_FLAG_OFFLINE_SIGNATURE;
htobe16buf (packet + size, flags);
size += 2; // flags
size_t identityLen = m_LocalDestination.GetOwner ()->GetIdentity ()->GetFullLen ();
size_t signatureLen = m_LocalDestination.GetOwner ()->GetPrivateKeys ().GetSignatureLen ();
uint8_t * optionsSize = packet + size; // set options size later
size += 2; // options size
m_LocalDestination.GetOwner ()->GetIdentity ()->ToBuffer (packet + size, identityLen);
size += identityLen; // from
if (isOfflineSignature)
{
const auto& offlineSignature = m_LocalDestination.GetOwner ()->GetPrivateKeys ().GetOfflineSignature ();
memcpy (packet + size, offlineSignature.data (), offlineSignature.size ());
size += offlineSignature.size (); // offline signature
}
uint8_t * signature = packet + size; // set it later
memset (signature, 0, signatureLen); // zeroes for now
size += signatureLen; // signature
htobe16buf (optionsSize, packet + size - 2 - optionsSize); // actual options size
m_LocalDestination.GetOwner ()->Sign (packet, size, signature);
p.len = size;
SendPackets (std::vector<Packet *> { &p });
LogPrint (eLogDebug, "Streaming: Ping of ", p.len, " bytes sent");
}
void Stream::Close ()
{
LogPrint(eLogDebug, "Streaming: closing stream with sSID=", m_SendStreamID, ", rSID=", m_RecvStreamID, ", status=", m_Status);
switch (m_Status)
{
case eStreamStatusOpen:
m_Status = eStreamStatusClosing;
Close (); // recursion
if (m_Status == eStreamStatusClosing) //still closing
LogPrint (eLogDebug, "Streaming: Trying to send stream data before closing, sSID=", m_SendStreamID);
break;
case eStreamStatusReset:
// TODO: send reset
Terminate ();
break;
case eStreamStatusClosing:
if (m_SentPackets.empty () && m_SendBuffer.IsEmpty ()) // nothing to send
{
m_Status = eStreamStatusClosed;
SendClose();
}
break;
case eStreamStatusClosed:
// already closed
Terminate ();
break;
default:
LogPrint (eLogWarning, "Streaming: Unexpected stream status=", (int)m_Status, " for sSID=", m_SendStreamID);
};
}
void Stream::SendClose ()
{
Packet * p = m_LocalDestination.NewPacket ();
uint8_t * packet = p->GetBuffer ();
size_t size = 0;
htobe32buf (packet + size, m_SendStreamID);
size += 4; // sendStreamID
htobe32buf (packet + size, m_RecvStreamID);
size += 4; // receiveStreamID
htobe32buf (packet + size, m_SequenceNumber++);
size += 4; // sequenceNum
htobe32buf (packet + size, m_LastReceivedSequenceNumber >= 0 ? m_LastReceivedSequenceNumber : 0);
size += 4; // ack Through
packet[size] = 0;
size++; // NACK count
packet[size] = 0;
size++; // resend delay
htobe16buf (packet + size, PACKET_FLAG_CLOSE | PACKET_FLAG_SIGNATURE_INCLUDED);
size += 2; // flags
size_t signatureLen = m_LocalDestination.GetOwner ()->GetPrivateKeys ().GetSignatureLen ();
htobe16buf (packet + size, signatureLen); // signature only
size += 2; // options size
uint8_t * signature = packet + size;
memset (packet + size, 0, signatureLen);
size += signatureLen; // signature
m_LocalDestination.GetOwner ()->Sign (packet, size, signature);
p->len = size;
m_Service.post (std::bind (&Stream::SendPacket, shared_from_this (), p));
LogPrint (eLogDebug, "Streaming: FIN sent, sSID=", m_SendStreamID);
}
size_t Stream::ConcatenatePackets (uint8_t * buf, size_t len)
{
size_t pos = 0;
while (pos < len && !m_ReceiveQueue.empty ())
{
Packet * packet = m_ReceiveQueue.front ();
size_t l = std::min (packet->GetLength (), len - pos);
memcpy (buf + pos, packet->GetBuffer (), l);
pos += l;
packet->offset += l;
if (!packet->GetLength ())
{
m_ReceiveQueue.pop ();
m_LocalDestination.DeletePacket (packet);
}
}
return pos;
}
bool Stream::SendPacket (Packet * packet)
{
if (packet)
{
if (m_IsAckSendScheduled)
{
m_IsAckSendScheduled = false;
m_AckSendTimer.cancel ();
}
if (!packet->sendTime) packet->sendTime = i2p::util::GetMillisecondsSinceEpoch ();
SendPackets (std::vector<Packet *> { packet });
bool isEmpty = m_SentPackets.empty ();
m_SentPackets.insert (packet);
if (isEmpty)
ScheduleResend ();
return true;
}
else
return false;
}
void Stream::SendPackets (const std::vector<Packet *>& packets)
{
if (!m_RemoteLeaseSet)
{
CancelRemoteLeaseChange ();
UpdateCurrentRemoteLease ();
if (!m_RemoteLeaseSet)
{
LogPrint (eLogError, "Streaming: Can't send packets, missing remote LeaseSet, sSID=", m_SendStreamID);
return;
}
}
if (!m_RoutingSession || m_RoutingSession->IsTerminated () || !m_RoutingSession->IsReadyToSend ()) // expired and detached or new session sent
{
m_RoutingSession = m_LocalDestination.GetOwner ()->GetRoutingSession (m_RemoteLeaseSet, true, !m_IsIncoming || m_SequenceNumber > 1);
if (!m_RoutingSession)
{
LogPrint (eLogError, "Streaming: Can't obtain routing session, sSID=", m_SendStreamID);
Terminate ();
return;
}
}
if (!m_CurrentOutboundTunnel && m_RoutingSession) // first message to send
{
// try to get shared path first
auto routingPath = m_RoutingSession->GetSharedRoutingPath ();
if (routingPath)
{
m_CurrentOutboundTunnel = routingPath->outboundTunnel;
m_CurrentRemoteLease = routingPath->remoteLease;
m_RTT = routingPath->rtt;
m_RTO = std::max (MIN_RTO, (int)(m_RTT * 1.3 + m_Jitter)); // TODO: implement it better
}
}
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
if (!m_CurrentRemoteLease || !m_CurrentRemoteLease->endDate) // excluded from LeaseSet
{
CancelRemoteLeaseChange ();
UpdateCurrentRemoteLease (true);
}
if (m_RemoteLeaseChangeTime && m_IsRemoteLeaseChangeInProgress && ts > m_RemoteLeaseChangeTime + INITIAL_RTO)
{
CancelRemoteLeaseChange ();
m_CurrentRemoteLease = m_NextRemoteLease;
HalveWindowSize ();
}
auto currentRemoteLease = m_CurrentRemoteLease;
if (!m_IsRemoteLeaseChangeInProgress && m_RemoteLeaseSet && m_CurrentRemoteLease && ts >= m_CurrentRemoteLease->endDate - i2p::data::LEASE_ENDDATE_THRESHOLD)
{
auto leases = m_RemoteLeaseSet->GetNonExpiredLeases (false);
if (leases.size ())
{
m_IsRemoteLeaseChangeInProgress = true;
UpdateCurrentRemoteLease (true);
m_NextRemoteLease = m_CurrentRemoteLease;
}
else
UpdateCurrentRemoteLease (true);
}
if (m_CurrentRemoteLease && ts < m_CurrentRemoteLease->endDate + i2p::data::LEASE_ENDDATE_THRESHOLD)
{
bool freshTunnel = false;
if (!m_CurrentOutboundTunnel)
{
auto leaseRouter = i2p::data::netdb.FindRouter (m_CurrentRemoteLease->tunnelGateway);
m_CurrentOutboundTunnel = m_LocalDestination.GetOwner ()->GetTunnelPool ()->GetNextOutboundTunnel (nullptr,
leaseRouter ? leaseRouter->GetCompatibleTransports (false) : (i2p::data::RouterInfo::CompatibleTransports)i2p::data::RouterInfo::eAllTransports);
freshTunnel = true;
}
else if (!m_CurrentOutboundTunnel->IsEstablished ())
std::tie(m_CurrentOutboundTunnel, freshTunnel) = m_LocalDestination.GetOwner ()->GetTunnelPool ()->GetNewOutboundTunnel (m_CurrentOutboundTunnel);
if (!m_CurrentOutboundTunnel)
{
LogPrint (eLogError, "Streaming: No outbound tunnels in the pool, sSID=", m_SendStreamID);
m_CurrentRemoteLease = nullptr;
return;
}
if (freshTunnel)
{
m_RTO = INITIAL_RTO;
// m_TunnelsChangeSequenceNumber = m_SequenceNumber; // should be determined more precisely
}
std::vector<i2p::tunnel::TunnelMessageBlock> msgs;
for (const auto& it: packets)
{
auto msg = m_RoutingSession->WrapSingleMessage (m_LocalDestination.CreateDataMessage (
it->GetBuffer (), it->GetLength (), m_Port, !m_RoutingSession->IsRatchets (), it->IsSYN ()));
msgs.push_back (i2p::tunnel::TunnelMessageBlock
{
i2p::tunnel::eDeliveryTypeTunnel,
m_CurrentRemoteLease->tunnelGateway, m_CurrentRemoteLease->tunnelID,
msg
});
m_NumSentBytes += it->GetLength ();
if (m_IsRemoteLeaseChangeInProgress && !m_RemoteLeaseChangeTime)
{
m_RemoteLeaseChangeTime = ts;
m_CurrentRemoteLease = currentRemoteLease; // change it back before new lease is confirmed
}
}
m_CurrentOutboundTunnel->SendTunnelDataMsgs (msgs);
}
else
{
LogPrint (eLogWarning, "Streaming: Remote lease is not available, sSID=", m_SendStreamID);
if (m_RoutingSession)
m_RoutingSession->SetSharedRoutingPath (nullptr); // invalidate routing path
}
}
void Stream::SendUpdatedLeaseSet ()
{
if (m_RoutingSession && !m_RoutingSession->IsTerminated ())
{
if (m_RoutingSession->IsLeaseSetNonConfirmed ())
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
if (ts > m_RoutingSession->GetLeaseSetSubmissionTime () + i2p::garlic::LEASESET_CONFIRMATION_TIMEOUT)
{
// LeaseSet was not confirmed, should try other tunnels
LogPrint (eLogWarning, "Streaming: LeaseSet was not confirmed in ", i2p::garlic::LEASESET_CONFIRMATION_TIMEOUT, " milliseconds. Trying to resubmit");
m_RoutingSession->SetSharedRoutingPath (nullptr);
m_CurrentOutboundTunnel = nullptr;
m_CurrentRemoteLease = nullptr;
SendQuickAck ();
}
}
else if (m_RoutingSession->IsLeaseSetUpdated ())
{
LogPrint (eLogDebug, "Streaming: sending updated LeaseSet");
SendQuickAck ();
}
}
else
SendQuickAck ();
}
void Stream::ScheduleSend ()
{
if (m_Status != eStreamStatusTerminated)
{
m_SendTimer.cancel ();
m_SendTimer.expires_from_now (boost::posix_time::microseconds(
SEND_INTERVAL + m_LocalDestination.GetRandom () % SEND_INTERVAL_VARIANCE));
m_SendTimer.async_wait (std::bind (&Stream::HandleSendTimer,
shared_from_this (), std::placeholders::_1));
}
}
void Stream::HandleSendTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
if (m_LastSendTime && ts*1000 > m_LastSendTime*1000 + m_PacingTime)
{
if (m_PacingTime)
{
auto numPackets = std::lldiv (m_PacingTimeRem + ts*1000 - m_LastSendTime*1000, m_PacingTime);
m_NumPacketsToSend = numPackets.quot;
m_PacingTimeRem = numPackets.rem;
}
else
{
LogPrint (eLogError, "Streaming: pacing time is zero");
m_NumPacketsToSend = 1; m_PacingTimeRem = 0;
}
m_IsSendTime = true;
if (m_WindowIncCounter && m_WindowSize < MAX_WINDOW_SIZE && !m_SendBuffer.IsEmpty () && m_PacingTime > m_MinPacingTime)
{
for (int i = 0; i < m_NumPacketsToSend; i++)
{
if (m_WindowIncCounter)
{
if (m_LastWindowDropSize && (m_LastWindowDropSize >= m_WindowSize))
m_WindowSize += 1 - (1 / ((m_LastWindowDropSize + PREV_SPEED_KEEP_TIME_COEFF) / m_WindowSize)); // some magic here
else if (m_LastWindowDropSize && (m_LastWindowDropSize < m_WindowSize))
m_WindowSize += (m_WindowSize - (m_LastWindowDropSize - PREV_SPEED_KEEP_TIME_COEFF)) / m_WindowSize; // some magic here
else
m_WindowSize += (m_WindowSize - (1 - PREV_SPEED_KEEP_TIME_COEFF)) / m_WindowSize;
if (m_WindowSize > MAX_WINDOW_SIZE) m_WindowSize = MAX_WINDOW_SIZE;
m_WindowIncCounter--;
}
else
break;
}
UpdatePacingTime ();
}
if (m_IsNAcked)
ResendPacket ();
else if (m_IsResendNeeded) // resend packets
ResendPacket ();
// delay-based CC
else if (!m_IsWinDropped && int(m_SentPackets.size ()) == m_WindowSize) // we sending packets too fast, early detection
ProcessWindowDrop ();
else if (m_WindowSize > int(m_SentPackets.size ())) // send packets
SendBuffer ();
}
else // pass
ScheduleSend ();
}
}
void Stream::ScheduleResend ()
{
if (m_Status != eStreamStatusTerminated)
{
m_ResendTimer.cancel ();
// check for invalid value
if (m_RTO <= 0) m_RTO = INITIAL_RTO;
m_ResendTimer.expires_from_now (boost::posix_time::milliseconds(m_RTO));
m_ResendTimer.async_wait (std::bind (&Stream::HandleResendTimer,
shared_from_this (), std::placeholders::_1));
}
}
void Stream::HandleResendTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
m_IsSendTime = true;
if (m_RTO > INITIAL_RTO) m_RTO = INITIAL_RTO;
m_SendTimer.cancel (); // if no ack's in RTO, disable fast retransmit
m_IsTimeOutResend = true;
m_IsNAcked = false;
m_IsResendNeeded = false;
m_NumPacketsToSend = 1;
ResendPacket (); // send one packet per RTO, waiting for ack
}
}
void Stream::ResendPacket ()
{
// check for resend attempts
if (m_IsIncoming && m_SequenceNumber == 1 && m_NumResendAttempts > 0)
{
LogPrint (eLogWarning, "Streaming: SYNACK packet was not ACKed after ", m_NumResendAttempts, " attempts, terminate, rSID=", m_RecvStreamID, ", sSID=", m_SendStreamID);
m_Status = eStreamStatusReset;
Close ();
return;
}
if (m_NumResendAttempts >= MAX_NUM_RESEND_ATTEMPTS)
{
LogPrint (eLogWarning, "Streaming: packet was not ACKed after ", MAX_NUM_RESEND_ATTEMPTS, " attempts, terminate, rSID=", m_RecvStreamID, ", sSID=", m_SendStreamID);
m_Status = eStreamStatusReset;
Close ();
return;
}
// collect packets to resend
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
std::vector<Packet *> packets;
if (m_IsNAcked)
{
for (auto it : m_NACKedPackets)
{
if (ts >= it->sendTime + m_RTO)
{
if (ts < it->sendTime + m_RTO*2)
it->resent = true;
else
it->resent = false;
it->sendTime = ts;
packets.push_back (it);
if ((int)packets.size () >= m_NumPacketsToSend) break;
}
}
}
else
{
for (auto it : m_SentPackets)
{
if (ts >= it->sendTime + m_RTO)
{
if (ts < it->sendTime + m_RTO*2)
it->resent = true;
else
it->resent = false;
it->sendTime = ts;
packets.push_back (it);
if ((int)packets.size () >= m_NumPacketsToSend) break;
}
}
}
// select tunnels if necessary and send
if (packets.size () > 0 && m_IsSendTime)
{
if (m_IsNAcked) m_NumResendAttempts = 1;
else if (m_IsTimeOutResend) m_NumResendAttempts++;
if (m_NumResendAttempts == 1 && m_RTO != INITIAL_RTO)
{
// loss-based CC
if (!m_IsWinDropped && LOSS_BASED_CONTROL_ENABLED)
ProcessWindowDrop ();
}
else if (m_IsTimeOutResend)
{
m_IsTimeOutResend = false;
m_RTO = INITIAL_RTO; // drop RTO to initial upon tunnels pair change
m_WindowDropTargetSize = INITIAL_WINDOW_SIZE;
m_LastWindowDropSize = 0;
m_WindowIncCounter = 0;
m_IsWinDropped = true;
m_IsFirstRttSample = true;
m_DropWindowDelaySequenceNumber = 0;
m_IsFirstACK = true;
UpdatePacingTime ();
if (m_RoutingSession) m_RoutingSession->SetSharedRoutingPath (nullptr);
if (m_NumResendAttempts & 1)
{
// pick another outbound tunnel
m_CurrentOutboundTunnel = m_LocalDestination.GetOwner ()->GetTunnelPool ()->GetNextOutboundTunnel (m_CurrentOutboundTunnel);
LogPrint (eLogWarning, "Streaming: Resend #", m_NumResendAttempts,
", another outbound tunnel has been selected for stream with sSID=", m_SendStreamID);
}
else
{
CancelRemoteLeaseChange ();
UpdateCurrentRemoteLease (); // pick another lease
LogPrint (eLogWarning, "Streaming: Resend #", m_NumResendAttempts,
", another remote lease has been selected for stream with rSID=", m_RecvStreamID, ", sSID=", m_SendStreamID);
}
}
SendPackets (packets);
m_LastSendTime = ts;
m_IsSendTime = false;
if (m_IsNAcked || m_IsResendNeeded) ScheduleSend ();
}
else
SendBuffer ();
if (!m_IsNAcked && !m_IsResendNeeded) ScheduleResend ();
}
void Stream::ScheduleAck (int timeout)
{
if (m_IsAckSendScheduled)
m_AckSendTimer.cancel ();
m_IsAckSendScheduled = true;
if (timeout < MIN_SEND_ACK_TIMEOUT) timeout = MIN_SEND_ACK_TIMEOUT;
m_AckSendTimer.expires_from_now (boost::posix_time::milliseconds(timeout));
m_AckSendTimer.async_wait (std::bind (&Stream::HandleAckSendTimer,
shared_from_this (), std::placeholders::_1));
}
void Stream::HandleAckSendTimer (const boost::system::error_code& ecode)
{
if (m_IsAckSendScheduled)
{
if (m_LastReceivedSequenceNumber < 0)
{
LogPrint (eLogWarning, "Streaming: SYN has not been received after ", SYN_TIMEOUT, " milliseconds after follow on, terminate rSID=", m_RecvStreamID, ", sSID=", m_SendStreamID);
m_Status = eStreamStatusReset;
Close ();
return;
}
if (m_Status == eStreamStatusOpen)
{
if (m_RoutingSession && m_RoutingSession->IsLeaseSetNonConfirmed ())
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
if (ts > m_RoutingSession->GetLeaseSetSubmissionTime () + i2p::garlic::LEASESET_CONFIRMATION_TIMEOUT)
{
// seems something went wrong and we should re-select tunnels
m_CurrentOutboundTunnel = nullptr;
m_CurrentRemoteLease = nullptr;
}
}
SendQuickAck ();
}
m_IsAckSendScheduled = false;
}
}
void Stream::UpdateCurrentRemoteLease (bool expired)
{
bool isLeaseChanged = true;
if (!m_RemoteLeaseSet || m_RemoteLeaseSet->IsExpired ())
{
auto remoteLeaseSet = m_LocalDestination.GetOwner ()->FindLeaseSet (m_RemoteIdentity->GetIdentHash ());
if (!remoteLeaseSet)
{
LogPrint (eLogWarning, "Streaming: LeaseSet ", m_RemoteIdentity->GetIdentHash ().ToBase64 (), m_RemoteLeaseSet ? " expired" : " not found");
if (!m_IsIncoming) // outgoing
{
if (m_RemoteLeaseSet && m_RemoteLeaseSet->IsPublishedEncrypted ())
{
m_LocalDestination.GetOwner ()->RequestDestinationWithEncryptedLeaseSet (
std::make_shared<i2p::data::BlindedPublicKey>(m_RemoteIdentity));
return; // we keep m_RemoteLeaseSet for possible next request
}
else
{
m_RemoteLeaseSet = nullptr;
m_LocalDestination.GetOwner ()->RequestDestination (m_RemoteIdentity->GetIdentHash ()); // try to request for a next attempt
}
}
else // incoming
{
// just close the socket without sending FIN or RST
m_Status = eStreamStatusClosed;
AsyncClose ();
}
}
else
{
// LeaseSet updated
m_RemoteLeaseSet = remoteLeaseSet;
m_RemoteIdentity = m_RemoteLeaseSet->GetIdentity ();
m_TransientVerifier = m_RemoteLeaseSet->GetTransientVerifier ();
}
}
if (m_RemoteLeaseSet)
{
if (!m_RoutingSession)
m_RoutingSession = m_LocalDestination.GetOwner ()->GetRoutingSession (m_RemoteLeaseSet, true);
auto leases = m_RemoteLeaseSet->GetNonExpiredLeases (false); // try without threshold first
if (leases.empty ())
{
expired = false;
// time to request
if (m_RemoteLeaseSet->IsPublishedEncrypted ())
m_LocalDestination.GetOwner ()->RequestDestinationWithEncryptedLeaseSet (
std::make_shared<i2p::data::BlindedPublicKey>(m_RemoteIdentity));
else
m_LocalDestination.GetOwner ()->RequestDestination (m_RemoteIdentity->GetIdentHash ());
leases = m_RemoteLeaseSet->GetNonExpiredLeases (true); // then with threshold
}
if (!leases.empty ())
{
bool updated = false;
if (expired && m_CurrentRemoteLease)
{
for (const auto& it: leases)
if ((it->tunnelGateway == m_CurrentRemoteLease->tunnelGateway) && (it->tunnelID != m_CurrentRemoteLease->tunnelID))
{
m_CurrentRemoteLease = it;
updated = true;
break;
}
}
if (!updated)
{
uint32_t i = m_LocalDestination.GetRandom () % leases.size ();
if (m_CurrentRemoteLease && leases[i]->tunnelID == m_CurrentRemoteLease->tunnelID)
{
// make sure we don't select previous
if (leases.size () > 1)
i = (i + 1) % leases.size (); // if so, pick next
else
isLeaseChanged = false;
}
m_CurrentRemoteLease = leases[i];
}
}
else
{
LogPrint (eLogWarning, "Streaming: All remote leases are expired");
m_RemoteLeaseSet = nullptr;
m_CurrentRemoteLease = nullptr;
// we have requested expired before, no need to do it twice
}
}
else
{
LogPrint (eLogWarning, "Streaming: Remote LeaseSet not found");
m_CurrentRemoteLease = nullptr;
}
if (isLeaseChanged && !m_IsRemoteLeaseChangeInProgress)
{
HalveWindowSize ();
}
}
void Stream::ResetRoutingPath ()
{
m_CurrentOutboundTunnel = nullptr;
m_CurrentRemoteLease = nullptr;
m_RTT = INITIAL_RTT;
m_RTO = INITIAL_RTO;
if (m_RoutingSession)
m_RoutingSession->SetSharedRoutingPath (nullptr); // TODO: count failures
}
void Stream::UpdatePacingTime ()
{
m_PacingTime = std::round (m_RTT*1000/m_WindowSize);
if (m_MinPacingTime && m_PacingTime < m_MinPacingTime)
m_PacingTime = m_MinPacingTime;
}
void Stream::ProcessWindowDrop ()
{
if (m_WindowSize > m_LastWindowDropSize)
m_LastWindowDropSize = (m_LastWindowDropSize + m_WindowSize) / 2;
else
m_LastWindowDropSize = m_WindowSize;
m_WindowDropTargetSize = m_LastWindowDropSize - (m_LastWindowDropSize / 4); // -25%;
if (m_WindowDropTargetSize < MIN_WINDOW_SIZE + 1)
m_WindowDropTargetSize = MIN_WINDOW_SIZE + 1;
m_WindowSize = m_SentPackets.size (); // stop sending now
if (m_WindowSize < MIN_WINDOW_SIZE) m_WindowSize = MIN_WINDOW_SIZE;
m_WindowIncCounter = 0; // disable window growth
m_DropWindowDelaySequenceNumber = m_SequenceNumber;
m_IsFirstACK = true; // ignore first RTT sample
m_IsWinDropped = true; // don't drop window twice
UpdatePacingTime ();
}
void Stream::HalveWindowSize ()
{
m_RTO = INITIAL_RTO;
if (m_WindowSize > INITIAL_WINDOW_SIZE)
{
m_WindowDropTargetSize = std::max (m_WindowSize/2, (float)INITIAL_WINDOW_SIZE);
m_IsWinDropped = true;
}
else
m_WindowSize = INITIAL_WINDOW_SIZE;
m_LastWindowDropSize = 0;
m_WindowIncCounter = 0;
m_IsFirstRttSample = true;
m_IsFirstACK = true;
UpdatePacingTime ();
}
void Stream::CancelRemoteLeaseChange ()
{
m_RemoteLeaseChangeTime = 0;
m_IsRemoteLeaseChangeInProgress = false;
}
StreamingDestination::StreamingDestination (std::shared_ptr<i2p::client::ClientDestination> owner, uint16_t localPort, bool gzip):
m_Owner (owner), m_LocalPort (localPort), m_Gzip (gzip),
m_PendingIncomingTimer (m_Owner->GetService ()),
m_LastCleanupTime (i2p::util::GetSecondsSinceEpoch ())
{
}
StreamingDestination::~StreamingDestination ()
{
for (auto& it: m_SavedPackets)
{
for (auto it1: it.second) DeletePacket (it1);
it.second.clear ();
}
m_SavedPackets.clear ();
}
void StreamingDestination::Start ()
{
}
void StreamingDestination::Stop ()
{
ResetAcceptor ();
m_PendingIncomingTimer.cancel ();
m_PendingIncomingStreams.clear ();
{
std::unique_lock<std::mutex> l(m_StreamsMutex);
for (auto it: m_Streams)
it.second->Terminate (false); // we delete here
m_Streams.clear ();
m_IncomingStreams.clear ();
m_LastStream = nullptr;
}
}
void StreamingDestination::HandleNextPacket (Packet * packet)
{
uint32_t sendStreamID = packet->GetSendStreamID ();
if (sendStreamID)
{
if (!m_LastStream || sendStreamID != m_LastStream->GetRecvStreamID ())
{
auto it = m_Streams.find (sendStreamID);
if (it != m_Streams.end ())
m_LastStream = it->second;
else
m_LastStream = nullptr;
}
if (m_LastStream)
m_LastStream->HandleNextPacket (packet);
else if (packet->IsEcho () && m_Owner->IsStreamingAnswerPings ())
{
// ping
LogPrint (eLogInfo, "Streaming: Ping received sSID=", sendStreamID);
auto s = std::make_shared<Stream> (m_Owner->GetService (), *this);
s->HandlePing (packet);
}
else
{
LogPrint (eLogInfo, "Streaming: Unknown stream sSID=", sendStreamID);
DeletePacket (packet);
}
}
else
{
if (packet->IsEcho ())
{
// pong
LogPrint (eLogInfo, "Streaming: Pong received rSID=", packet->GetReceiveStreamID ());
DeletePacket (packet);
return;
}
if (packet->IsSYN () && !packet->GetSeqn ()) // new incoming stream
{
uint32_t receiveStreamID = packet->GetReceiveStreamID ();
auto it1 = m_IncomingStreams.find (receiveStreamID);
if (it1 != m_IncomingStreams.end ())
{
// already pending
LogPrint(eLogWarning, "Streaming: Incoming streaming with rSID=", receiveStreamID, " already exists");
it1->second->ResetRoutingPath (); // Ack was not delivered, changing path
DeletePacket (packet); // drop it, because previous should be connected
return;
}
if (m_Owner->GetStreamingMaxConcurrentStreams () > 0 && (int)m_Streams.size () > m_Owner->GetStreamingMaxConcurrentStreams ())
{
LogPrint(eLogWarning, "Streaming: Number of streams exceeds ", m_Owner->GetStreamingMaxConcurrentStreams ());
DeletePacket (packet);
return;
}
auto incomingStream = CreateNewIncomingStream (receiveStreamID);
incomingStream->HandleNextPacket (packet); // SYN
if (!incomingStream->GetRemoteLeaseSet ())
{
LogPrint (eLogWarning, "Streaming: No remote LeaseSet for incoming stream. Terminated");
incomingStream->Terminate (); // can't send FIN anyway
return;
}
// handle saved packets if any
{
auto it = m_SavedPackets.find (receiveStreamID);
if (it != m_SavedPackets.end ())
{
LogPrint (eLogDebug, "Streaming: Processing ", it->second.size (), " saved packets for rSID=", receiveStreamID);
for (auto it1: it->second)
incomingStream->HandleNextPacket (it1);
m_SavedPackets.erase (it);
}
}
// accept
if (m_Acceptor != nullptr)
m_Acceptor (incomingStream);
else
{
LogPrint (eLogWarning, "Streaming: Acceptor for incoming stream is not set");
if (m_PendingIncomingStreams.size () < MAX_PENDING_INCOMING_BACKLOG)
{
m_PendingIncomingStreams.push_back (incomingStream);
m_PendingIncomingTimer.cancel ();
m_PendingIncomingTimer.expires_from_now (boost::posix_time::seconds(PENDING_INCOMING_TIMEOUT));
m_PendingIncomingTimer.async_wait (std::bind (&StreamingDestination::HandlePendingIncomingTimer,
shared_from_this (), std::placeholders::_1));
LogPrint (eLogDebug, "Streaming: Pending incoming stream added, rSID=", receiveStreamID);
}
else
{
LogPrint (eLogWarning, "Streaming: Pending incoming streams backlog exceeds ", MAX_PENDING_INCOMING_BACKLOG);
incomingStream->Close ();
}
}
}
else // follow on packet without SYN
{
uint32_t receiveStreamID = packet->GetReceiveStreamID ();
auto it1 = m_IncomingStreams.find (receiveStreamID);
if (it1 != m_IncomingStreams.end ())
{
// found
it1->second->HandleNextPacket (packet);
return;
}
// save follow on packet
auto it = m_SavedPackets.find (receiveStreamID);
if (it != m_SavedPackets.end ())
it->second.push_back (packet);
else
{
m_SavedPackets[receiveStreamID] = std::list<Packet *>{ packet };
auto timer = std::make_shared<boost::asio::deadline_timer> (m_Owner->GetService ());
timer->expires_from_now (boost::posix_time::seconds(PENDING_INCOMING_TIMEOUT));
auto s = shared_from_this ();
timer->async_wait ([s,timer,receiveStreamID](const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
auto it = s->m_SavedPackets.find (receiveStreamID);
if (it != s->m_SavedPackets.end ())
{
for (auto it1: it->second) s->DeletePacket (it1);
it->second.clear ();
s->m_SavedPackets.erase (it);
}
}
});
}
}
}
}
std::shared_ptr<Stream> StreamingDestination::CreateNewOutgoingStream (std::shared_ptr<const i2p::data::LeaseSet> remote, int port)
{
auto s = std::make_shared<Stream> (m_Owner->GetService (), *this, remote, port);
std::unique_lock<std::mutex> l(m_StreamsMutex);
m_Streams.emplace (s->GetRecvStreamID (), s);
return s;
}
void StreamingDestination::SendPing (std::shared_ptr<const i2p::data::LeaseSet> remote)
{
auto s = std::make_shared<Stream> (m_Owner->GetService (), *this, remote, 0);
s->SendPing ();
}
std::shared_ptr<Stream> StreamingDestination::CreateNewIncomingStream (uint32_t receiveStreamID)
{
auto s = std::make_shared<Stream> (m_Owner->GetService (), *this);
std::unique_lock<std::mutex> l(m_StreamsMutex);
m_Streams.emplace (s->GetRecvStreamID (), s);
m_IncomingStreams.emplace (receiveStreamID, s);
return s;
}
void StreamingDestination::DeleteStream (std::shared_ptr<Stream> stream)
{
if (stream)
{
std::unique_lock<std::mutex> l(m_StreamsMutex);
m_Streams.erase (stream->GetRecvStreamID ());
if (stream->IsIncoming ())
m_IncomingStreams.erase (stream->GetSendStreamID ());
if (m_LastStream == stream) m_LastStream = nullptr;
}
auto ts = i2p::util::GetSecondsSinceEpoch ();
if (m_Streams.empty () || ts > m_LastCleanupTime + STREAMING_DESTINATION_POOLS_CLEANUP_INTERVAL)
{
m_PacketsPool.CleanUp ();
m_I2NPMsgsPool.CleanUp ();
m_LastCleanupTime = ts;
}
}
bool StreamingDestination::DeleteStream (uint32_t recvStreamID)
{
auto it = m_Streams.find (recvStreamID);
if (it == m_Streams.end ())
return false;
auto s = it->second;
m_Owner->GetService ().post ([this, s] ()
{
s->Close (); // try to send FIN
s->Terminate (false);
DeleteStream (s);
});
return true;
}
void StreamingDestination::SetAcceptor (const Acceptor& acceptor)
{
m_Acceptor = acceptor; // we must set it immediately for IsAcceptorSet
auto s = shared_from_this ();
m_Owner->GetService ().post([s](void)
{
// take care about incoming queue
for (auto& it: s->m_PendingIncomingStreams)
if (it->GetStatus () == eStreamStatusOpen) // still open?
s->m_Acceptor (it);
s->m_PendingIncomingStreams.clear ();
s->m_PendingIncomingTimer.cancel ();
});
}
void StreamingDestination::ResetAcceptor ()
{
if (m_Acceptor) m_Acceptor (nullptr);
m_Acceptor = nullptr;
}
void StreamingDestination::AcceptOnce (const Acceptor& acceptor)
{
m_Owner->GetService ().post([acceptor, this](void)
{
if (!m_PendingIncomingStreams.empty ())
{
acceptor (m_PendingIncomingStreams.front ());
m_PendingIncomingStreams.pop_front ();
if (m_PendingIncomingStreams.empty ())
m_PendingIncomingTimer.cancel ();
}
else // we must save old acceptor and set it back
{
m_Acceptor = std::bind (&StreamingDestination::AcceptOnceAcceptor, this,
std::placeholders::_1, acceptor, m_Acceptor);
}
});
}
void StreamingDestination::AcceptOnceAcceptor (std::shared_ptr<Stream> stream, Acceptor acceptor, Acceptor prev)
{
m_Acceptor = prev;
acceptor (stream);
}
std::shared_ptr<Stream> StreamingDestination::AcceptStream (int timeout)
{
std::shared_ptr<i2p::stream::Stream> stream;
std::condition_variable streamAccept;
std::mutex streamAcceptMutex;
std::unique_lock<std::mutex> l(streamAcceptMutex);
AcceptOnce (
[&streamAccept, &streamAcceptMutex, &stream](std::shared_ptr<i2p::stream::Stream> s)
{
stream = s;
std::unique_lock<std::mutex> l(streamAcceptMutex);
streamAccept.notify_all ();
});
if (timeout)
streamAccept.wait_for (l, std::chrono::seconds (timeout));
else
streamAccept.wait (l);
return stream;
}
void StreamingDestination::HandlePendingIncomingTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
LogPrint (eLogWarning, "Streaming: Pending incoming timeout expired");
for (auto& it: m_PendingIncomingStreams)
it->Close ();
m_PendingIncomingStreams.clear ();
}
}
void StreamingDestination::HandleDataMessagePayload (const uint8_t * buf, size_t len)
{
// unzip it
Packet * uncompressed = NewPacket ();
uncompressed->offset = 0;
uncompressed->len = m_Inflator.Inflate (buf, len, uncompressed->buf, MAX_PACKET_SIZE);
if (uncompressed->len)
HandleNextPacket (uncompressed);
else
DeletePacket (uncompressed);
}
std::shared_ptr<I2NPMessage> StreamingDestination::CreateDataMessage (
const uint8_t * payload, size_t len, uint16_t toPort, bool checksum, bool gzip)
{
size_t size;
auto msg = (len <= STREAMING_MTU_RATCHETS) ? m_I2NPMsgsPool.AcquireShared () : NewI2NPMessage ();
uint8_t * buf = msg->GetPayload ();
buf += 4; // reserve for lengthlength
msg->len += 4;
if (m_Gzip || gzip)
size = m_Deflator.Deflate (payload, len, buf, msg->maxLen - msg->len);
else
size = i2p::data::GzipNoCompression (payload, len, buf, msg->maxLen - msg->len);
if (size)
{
htobe32buf (msg->GetPayload (), size); // length
htobe16buf (buf + 4, m_LocalPort); // source port
htobe16buf (buf + 6, toPort); // destination port
buf[9] = i2p::client::PROTOCOL_TYPE_STREAMING; // streaming protocol
msg->len += size;
msg->FillI2NPMessageHeader (eI2NPData, 0, checksum);
}
else
msg = nullptr;
return msg;
}
uint32_t StreamingDestination::GetRandom ()
{
if (m_Owner)
{
auto pool = m_Owner->GetTunnelPool ();
if (pool)
return pool->GetRng ()();
}
return rand ();
}
}
}