/* * Copyright (c) 2013-2023, The PurpleI2P Project * * This file is part of Purple i2pd project and licensed under BSD3 * * See full license text in LICENSE file at top of project tree */ #include #include #include #include #include "SOCKS.h" #include "Identity.h" #include "Streaming.h" #include "Destination.h" #include "ClientContext.h" #include "I2PEndian.h" #include "I2PTunnel.h" #include "I2PService.h" #include "util.h" namespace i2p { namespace proxy { static const size_t socks_buffer_size = 8192; static const size_t max_socks_hostname_size = 255; // Limit for socks5 and bad idea to traverse //static const size_t SOCKS_FORWARDER_BUFFER_SIZE = 8192; static const size_t SOCKS_UPSTREAM_SOCKS4A_REPLY_SIZE = 8; struct SOCKSDnsAddress { uint8_t size; char value[max_socks_hostname_size]; void FromString (const std::string& str) { size = str.length(); if (str.length() > max_socks_hostname_size) size = max_socks_hostname_size; memcpy(value,str.c_str(),size); } std::string ToString() { return std::string(value, size); } void push_back (char c) { value[size++] = c; } }; class SOCKSServer; class SOCKSHandler: public i2p::client::I2PServiceHandler, public std::enable_shared_from_this { private: enum state { GET_SOCKSV, GET_COMMAND, GET_PORT, GET_IPV4, GET4_IDENT, GET4A_HOST, GET5_AUTHNUM, GET5_AUTH, GET5_REQUESTV, GET5_GETRSV, GET5_GETADDRTYPE, GET5_IPV6, GET5_HOST_SIZE, GET5_HOST, GET5_USERPASSWD, GET5_USER_SIZE, GET5_USER, GET5_PASSWD_SIZE, GET5_PASSWD, READY, UPSTREAM_RESOLVE, UPSTREAM_CONNECT, UPSTREAM_HANDSHAKE }; enum authMethods { AUTH_NONE = 0, //No authentication, skip to next step AUTH_GSSAPI = 1, //GSSAPI authentication AUTH_USERPASSWD = 2, //Username and password AUTH_UNACCEPTABLE = 0xff //No acceptable method found }; enum addrTypes { ADDR_IPV4 = 1, //IPv4 address (4 octets) ADDR_DNS = 3, // DNS name (up to 255 octets) ADDR_IPV6 = 4 //IPV6 address (16 octets) }; enum errTypes { SOCKS5_OK = 0, // No error for SOCKS5 SOCKS5_GEN_FAIL = 1, // General server failure SOCKS5_RULE_DENIED = 2, // Connection disallowed by ruleset SOCKS5_NET_UNREACH = 3, // Network unreachable SOCKS5_HOST_UNREACH = 4, // Host unreachable SOCKS5_CONN_REFUSED = 5, // Connection refused by the peer SOCKS5_TTL_EXPIRED = 6, // TTL Expired SOCKS5_CMD_UNSUP = 7, // Command unsupported SOCKS5_ADDR_UNSUP = 8, // Address type unsupported SOCKS4_OK = 90, // No error for SOCKS4 SOCKS4_FAIL = 91, // Failed establishing connecting or not allowed SOCKS4_IDENTD_MISSING = 92, // Couldn't connect to the identd server SOCKS4_IDENTD_DIFFER = 93 // The ID reported by the application and by identd differ }; enum cmdTypes { CMD_CONNECT = 1, // TCP Connect CMD_BIND = 2, // TCP Bind CMD_UDP = 3 // UDP associate }; enum socksVersions { SOCKS4 = 4, // SOCKS4 SOCKS5 = 5 // SOCKS5 }; union address { uint32_t ip; SOCKSDnsAddress dns; uint8_t ipv6[16]; }; void EnterState(state nstate, uint8_t parseleft = 1); bool HandleData(uint8_t *sock_buff, std::size_t len); bool ValidateSOCKSRequest(); void HandleSockRecv(const boost::system::error_code & ecode, std::size_t bytes_transfered); void Terminate(); void AsyncSockRead(); boost::asio::const_buffers_1 GenerateSOCKS5SelectAuth(authMethods method); boost::asio::const_buffers_1 GenerateSOCKS4Response(errTypes error, uint32_t ip, uint16_t port); boost::asio::const_buffers_1 GenerateSOCKS5Response(errTypes error, addrTypes type, const address &addr, uint16_t port); boost::asio::const_buffers_1 GenerateUpstreamRequest(); bool Socks5ChooseAuth(); void Socks5UserPasswdResponse (); void SocksRequestFailed(errTypes error); void SocksRequestSuccess(); void SentSocksFailed(const boost::system::error_code & ecode); void SentSocksDone(const boost::system::error_code & ecode); void SentSocksResponse(const boost::system::error_code & ecode); void HandleStreamRequestComplete (std::shared_ptr stream); void ForwardSOCKS(); void SocksUpstreamSuccess(); void AsyncUpstreamSockRead(); void SendUpstreamRequest(); void HandleUpstreamData(uint8_t * buff, std::size_t len); void HandleUpstreamSockSend(const boost::system::error_code & ecode, std::size_t bytes_transfered); void HandleUpstreamSockRecv(const boost::system::error_code & ecode, std::size_t bytes_transfered); void HandleUpstreamConnected(const boost::system::error_code & ecode, boost::asio::ip::tcp::resolver::iterator itr); void HandleUpstreamResolved(const boost::system::error_code & ecode, boost::asio::ip::tcp::resolver::iterator itr); boost::asio::ip::tcp::resolver m_proxy_resolver; uint8_t m_sock_buff[socks_buffer_size]; std::shared_ptr m_sock, m_upstreamSock; std::shared_ptr m_stream; uint8_t *m_remaining_data; //Data left to be sent uint8_t *m_remaining_upstream_data; //upstream data left to be forwarded uint8_t m_response[7+max_socks_hostname_size]; uint8_t m_upstream_response[SOCKS_UPSTREAM_SOCKS4A_REPLY_SIZE]; uint8_t m_upstream_request[14+max_socks_hostname_size]; std::size_t m_upstream_response_len; address m_address; //Address std::size_t m_remaining_data_len; //Size of the data left to be sent uint32_t m_4aip; //Used in 4a requests uint16_t m_port; uint8_t m_command; uint8_t m_parseleft; //Octets left to parse authMethods m_authchosen; //Authentication chosen addrTypes m_addrtype; //Address type chosen socksVersions m_socksv; //Socks version cmdTypes m_cmd; // Command requested state m_state; const bool m_UseUpstreamProxy; // do we want to use the upstream proxy for non i2p addresses? const std::string m_UpstreamProxyAddress; const uint16_t m_UpstreamProxyPort; public: SOCKSHandler(SOCKSServer * parent, std::shared_ptr sock, const std::string & upstreamAddr, const uint16_t upstreamPort, const bool useUpstream) : I2PServiceHandler(parent), m_proxy_resolver(parent->GetService()), m_sock(sock), m_stream(nullptr), m_authchosen(AUTH_UNACCEPTABLE), m_addrtype(ADDR_IPV4), m_UseUpstreamProxy(useUpstream), m_UpstreamProxyAddress(upstreamAddr), m_UpstreamProxyPort(upstreamPort) { m_address.ip = 0; EnterState(GET_SOCKSV); } ~SOCKSHandler() { Terminate(); } void Handle() { AsyncSockRead(); } }; void SOCKSHandler::AsyncSockRead() { LogPrint(eLogDebug, "SOCKS: Async sock read"); if (m_sock) { m_sock->async_receive(boost::asio::buffer(m_sock_buff, socks_buffer_size), std::bind(&SOCKSHandler::HandleSockRecv, shared_from_this(), std::placeholders::_1, std::placeholders::_2)); } else { LogPrint(eLogError,"SOCKS: No socket for read"); } } void SOCKSHandler::Terminate() { if (Kill()) return; if (m_sock) { LogPrint(eLogDebug, "SOCKS: Closing socket"); m_sock->close(); m_sock = nullptr; } if (m_upstreamSock) { LogPrint(eLogDebug, "SOCKS: Closing upstream socket"); m_upstreamSock->close(); m_upstreamSock = nullptr; } if (m_stream) { LogPrint(eLogDebug, "SOCKS: Closing stream"); m_stream.reset (); } Done(shared_from_this()); } boost::asio::const_buffers_1 SOCKSHandler::GenerateSOCKS4Response(SOCKSHandler::errTypes error, uint32_t ip, uint16_t port) { assert(error >= SOCKS4_OK); m_response[0] = '\x00'; // version m_response[1] = error; // response code htobe16buf(m_response + 2, port); // port htobe32buf(m_response + 4, ip); // IP return boost::asio::const_buffers_1(m_response,8); } boost::asio::const_buffers_1 SOCKSHandler::GenerateSOCKS5Response(SOCKSHandler::errTypes error, SOCKSHandler::addrTypes type, const SOCKSHandler::address &addr, uint16_t port) { size_t size = 6; // header + port assert(error <= SOCKS5_ADDR_UNSUP); m_response[0] = '\x05'; // version m_response[1] = error; // response code m_response[2] = '\x00'; // reserved m_response[3] = type; // address type switch (type) { case ADDR_IPV4: size += 4; htobe32buf(m_response + 4, addr.ip); htobe16buf(m_response + size - 2, port); break; case ADDR_IPV6: size += 16; memcpy(m_response + 4, addr.ipv6, 16); htobe16buf(m_response + size - 2, port); break; case ADDR_DNS: std::string address(addr.dns.value, addr.dns.size); if(address.substr(addr.dns.size - 4, 4) == ".i2p") // overwrite if requested address inside I2P { m_response[3] = ADDR_IPV4; size += 4; memset(m_response + 4, 0, 6); // six HEX zeros } else { size += (1 + addr.dns.size); /* name length + resolved address */ m_response[4] = addr.dns.size; memcpy(m_response + 5, addr.dns.value, addr.dns.size); htobe16buf(m_response + size - 2, port); } break; } return boost::asio::const_buffers_1(m_response, size); } boost::asio::const_buffers_1 SOCKSHandler::GenerateUpstreamRequest() { size_t upstreamRequestSize = 0; // TODO: negotiate with upstream // SOCKS 4a m_upstream_request[0] = '\x04'; //version m_upstream_request[1] = m_cmd; htobe16buf(m_upstream_request + 2, m_port); m_upstream_request[4] = 0; m_upstream_request[5] = 0; m_upstream_request[6] = 0; m_upstream_request[7] = 1; // user id m_upstream_request[8] = 'i'; m_upstream_request[9] = '2'; m_upstream_request[10] = 'p'; m_upstream_request[11] = 'd'; m_upstream_request[12] = 0; upstreamRequestSize += 13; if (m_address.dns.size <= max_socks_hostname_size - ( upstreamRequestSize + 1) ) { // bounds check okay memcpy(m_upstream_request + upstreamRequestSize, m_address.dns.value, m_address.dns.size); upstreamRequestSize += m_address.dns.size; // null terminate m_upstream_request[++upstreamRequestSize] = 0; } else { LogPrint(eLogError, "SOCKS: BUG!!! m_addr.dns.sizs > max_socks_hostname - ( upstreamRequestSize + 1 ) )"); } return boost::asio::const_buffers_1(m_upstream_request, upstreamRequestSize); } bool SOCKSHandler::Socks5ChooseAuth() { m_response[0] = '\x05'; // Version m_response[1] = m_authchosen; // Response code boost::asio::const_buffers_1 response(m_response, 2); if (m_authchosen == AUTH_UNACCEPTABLE) { LogPrint(eLogWarning, "SOCKS: v5 authentication negotiation failed"); boost::asio::async_write(*m_sock, response, std::bind(&SOCKSHandler::SentSocksFailed, shared_from_this(), std::placeholders::_1)); return false; } else { LogPrint(eLogDebug, "SOCKS: v5 choosing authentication method: ", m_authchosen); boost::asio::async_write(*m_sock, response, std::bind(&SOCKSHandler::SentSocksResponse, shared_from_this(), std::placeholders::_1)); return true; } } void SOCKSHandler::Socks5UserPasswdResponse () { m_response[0] = 5; // Version m_response[1] = 0; // Response code LogPrint(eLogDebug, "SOCKS: v5 user/password response"); boost::asio::async_write(*m_sock, boost::asio::const_buffers_1(m_response, 2), std::bind(&SOCKSHandler::SentSocksResponse, shared_from_this(), std::placeholders::_1)); } /* All hope is lost beyond this point */ void SOCKSHandler::SocksRequestFailed(SOCKSHandler::errTypes error) { boost::asio::const_buffers_1 response(nullptr,0); assert(error != SOCKS4_OK && error != SOCKS5_OK); switch (m_socksv) { case SOCKS4: LogPrint(eLogWarning, "SOCKS: v4 request failed: ", error); if (error < SOCKS4_OK) error = SOCKS4_FAIL; // Transparently map SOCKS5 errors response = GenerateSOCKS4Response(error, m_4aip, m_port); break; case SOCKS5: LogPrint(eLogWarning, "SOCKS: v5 request failed: ", error); response = GenerateSOCKS5Response(error, m_addrtype, m_address, m_port); break; } boost::asio::async_write(*m_sock, response, std::bind(&SOCKSHandler::SentSocksFailed, shared_from_this(), std::placeholders::_1)); } void SOCKSHandler::SocksRequestSuccess() { boost::asio::const_buffers_1 response(nullptr,0); // TODO: this should depend on things like the command type and callbacks may change switch (m_socksv) { case SOCKS4: LogPrint(eLogInfo, "SOCKS: v4 connection success"); response = GenerateSOCKS4Response(SOCKS4_OK, m_4aip, m_port); break; case SOCKS5: LogPrint(eLogInfo, "SOCKS: v5 connection success"); auto s = i2p::client::context.GetAddressBook().ToAddress(GetOwner()->GetLocalDestination()->GetIdentHash()); address ad; ad.dns.FromString(s); // HACK only 16 bits passed in port as SOCKS5 doesn't allow for more response = GenerateSOCKS5Response(SOCKS5_OK, ADDR_DNS, ad, m_stream->GetRecvStreamID()); break; } boost::asio::async_write(*m_sock, response, std::bind(&SOCKSHandler::SentSocksDone, shared_from_this(), std::placeholders::_1)); } void SOCKSHandler::EnterState(SOCKSHandler::state nstate, uint8_t parseleft) { switch (nstate) { case GET_PORT: parseleft = 2; break; case GET_IPV4: m_addrtype = ADDR_IPV4; m_address.ip = 0; parseleft = 4; break; case GET4_IDENT: m_4aip = m_address.ip; break; case GET4A_HOST: case GET5_HOST: m_addrtype = ADDR_DNS; m_address.dns.size = 0; break; case GET5_IPV6: m_addrtype = ADDR_IPV6; parseleft = 16; break; default:; } m_parseleft = parseleft; m_state = nstate; } bool SOCKSHandler::ValidateSOCKSRequest() { if ( m_cmd != CMD_CONNECT ) { // TODO: we need to support binds and other shit! LogPrint(eLogError, "SOCKS: Unsupported command: ", m_cmd); SocksRequestFailed(SOCKS5_CMD_UNSUP); return false; } // TODO: we may want to support other address types! if ( m_addrtype != ADDR_DNS ) { switch (m_socksv) { case SOCKS5: LogPrint(eLogError, "SOCKS: v5 unsupported address type: ", m_addrtype); break; case SOCKS4: LogPrint(eLogError, "SOCKS: Request with v4a rejected because it's actually SOCKS4"); break; } SocksRequestFailed(SOCKS5_ADDR_UNSUP); return false; } return true; } bool SOCKSHandler::HandleData(uint8_t *sock_buff, std::size_t len) { assert(len); // This should always be called with a least a byte left to parse while (len > 0) { switch (m_state) { case GET_SOCKSV: m_socksv = (SOCKSHandler::socksVersions) *sock_buff; switch (*sock_buff) { case SOCKS4: EnterState(GET_COMMAND); //Initialize the parser at the right position break; case SOCKS5: EnterState(GET5_AUTHNUM); //Initialize the parser at the right position break; default: LogPrint(eLogError, "SOCKS: Rejected invalid version: ", ((int)*sock_buff)); Terminate(); return false; } break; case GET5_AUTHNUM: EnterState(GET5_AUTH, *sock_buff); break; case GET5_AUTH: m_parseleft --; if (*sock_buff == AUTH_NONE) m_authchosen = AUTH_NONE; else if (*sock_buff == AUTH_USERPASSWD) m_authchosen = AUTH_USERPASSWD; if ( m_parseleft == 0 ) { if (!Socks5ChooseAuth()) return false; if (m_authchosen == AUTH_USERPASSWD) EnterState(GET5_USERPASSWD); else EnterState(GET5_REQUESTV); } break; case GET_COMMAND: switch (*sock_buff) { case CMD_CONNECT: case CMD_BIND: break; case CMD_UDP: if (m_socksv == SOCKS5) break; #if (__cplusplus >= 201703L) // C++ 17 or higher [[fallthrough]]; #endif default: LogPrint(eLogError, "SOCKS: Invalid command: ", ((int)*sock_buff)); SocksRequestFailed(SOCKS5_GEN_FAIL); return false; } m_cmd = (SOCKSHandler::cmdTypes)*sock_buff; switch (m_socksv) { case SOCKS5: EnterState(GET5_GETRSV); break; case SOCKS4: EnterState(GET_PORT); break; } break; case GET_PORT: m_port = (m_port << 8)|((uint16_t)*sock_buff); m_parseleft--; if (m_parseleft == 0) { switch (m_socksv) { case SOCKS5: EnterState(READY); break; case SOCKS4: EnterState(GET_IPV4); break; } } break; case GET_IPV4: m_address.ip = (m_address.ip << 8)|((uint32_t)*sock_buff); m_parseleft--; if (m_parseleft == 0) { switch (m_socksv) { case SOCKS5: EnterState(GET_PORT); break; case SOCKS4: EnterState(GET4_IDENT); m_4aip = m_address.ip; break; } } break; case GET4_IDENT: if (!*sock_buff) { if( m_4aip == 0 || m_4aip > 255 ) EnterState(READY); else EnterState(GET4A_HOST); } break; case GET4A_HOST: if (!*sock_buff) { EnterState(READY); break; } if (m_address.dns.size >= max_socks_hostname_size) { LogPrint(eLogError, "SOCKS: v4a req failed: destination is too large"); SocksRequestFailed(SOCKS4_FAIL); return false; } m_address.dns.push_back(*sock_buff); break; case GET5_REQUESTV: if (*sock_buff != SOCKS5) { LogPrint(eLogError,"SOCKS: v5 rejected unknown request version: ", ((int)*sock_buff)); SocksRequestFailed(SOCKS5_GEN_FAIL); return false; } EnterState(GET_COMMAND); break; case GET5_GETRSV: if ( *sock_buff != 0 ) { LogPrint(eLogError, "SOCKS: v5 unknown reserved field: ", ((int)*sock_buff)); SocksRequestFailed(SOCKS5_GEN_FAIL); return false; } EnterState(GET5_GETADDRTYPE); break; case GET5_GETADDRTYPE: switch (*sock_buff) { case ADDR_IPV4: EnterState(GET_IPV4); break; case ADDR_IPV6: EnterState(GET5_IPV6); break; case ADDR_DNS : EnterState(GET5_HOST_SIZE); break; default: LogPrint(eLogError, "SOCKS: v5 unknown address type: ", ((int)*sock_buff)); SocksRequestFailed(SOCKS5_GEN_FAIL); return false; } break; case GET5_IPV6: m_address.ipv6[16-m_parseleft] = *sock_buff; m_parseleft--; if (m_parseleft == 0) EnterState(GET_PORT); break; case GET5_HOST_SIZE: EnterState(GET5_HOST, *sock_buff); break; case GET5_HOST: m_address.dns.push_back(*sock_buff); m_parseleft--; if (m_parseleft == 0) EnterState(GET_PORT); break; case GET5_USERPASSWD: if (*sock_buff != 1) { LogPrint(eLogError,"SOCKS: v5 rejected invalid username/password subnegotiation: ", ((int)*sock_buff)); SocksRequestFailed(SOCKS5_GEN_FAIL); return false; } EnterState(GET5_USER_SIZE); break; case GET5_USER_SIZE: if (*sock_buff) EnterState(GET5_USER, *sock_buff); else // empty user EnterState(GET5_PASSWD_SIZE); break; case GET5_USER: // skip user for now m_parseleft--; if (m_parseleft == 0) EnterState(GET5_PASSWD_SIZE); break; case GET5_PASSWD_SIZE: if (*sock_buff) EnterState(GET5_PASSWD, *sock_buff); else // empty password { Socks5UserPasswdResponse (); EnterState(GET5_REQUESTV); } break; case GET5_PASSWD: // skip passwd for now m_parseleft--; if (m_parseleft == 0) { Socks5UserPasswdResponse (); EnterState(GET5_REQUESTV); } break; default: LogPrint(eLogError, "SOCKS: Parse state?? ", m_state); Terminate(); return false; } sock_buff++; len--; if (m_state == READY) { m_remaining_data_len = len; m_remaining_data = sock_buff; return ValidateSOCKSRequest(); } } return true; } void SOCKSHandler::HandleSockRecv(const boost::system::error_code & ecode, std::size_t len) { LogPrint(eLogDebug, "SOCKS: Received ", len, " bytes"); if(ecode) { LogPrint(eLogWarning, "SOCKS: Recv got error: ", ecode); Terminate(); return; } if (HandleData(m_sock_buff, len)) { if (m_state == READY) { const std::string addr = m_address.dns.ToString(); LogPrint(eLogInfo, "SOCKS: Requested ", addr, ":" , m_port); const size_t addrlen = addr.size(); // does it end with .i2p? if ( addr.rfind(".i2p") == addrlen - 4) { // yes it does, make an i2p session GetOwner()->CreateStream ( std::bind (&SOCKSHandler::HandleStreamRequestComplete, shared_from_this(), std::placeholders::_1), m_address.dns.ToString(), m_port); } else if (m_UseUpstreamProxy) { // forward it to upstream proxy ForwardSOCKS(); } else { // no upstream proxy SocksRequestFailed(SOCKS5_ADDR_UNSUP); } } else AsyncSockRead(); } } void SOCKSHandler::SentSocksFailed(const boost::system::error_code & ecode) { if (ecode) LogPrint (eLogError, "SOCKS: Closing socket after sending failure because: ", ecode.message ()); Terminate(); } void SOCKSHandler::SentSocksDone(const boost::system::error_code & ecode) { if (!ecode) { if (Kill()) return; LogPrint (eLogInfo, "SOCKS: New I2PTunnel connection"); auto connection = std::make_shared(GetOwner(), m_sock, m_stream); GetOwner()->AddHandler (connection); connection->I2PConnect (m_remaining_data,m_remaining_data_len); Done(shared_from_this()); } else { LogPrint (eLogError, "SOCKS: Closing socket after completion reply because: ", ecode.message ()); Terminate(); } } void SOCKSHandler::SentSocksResponse(const boost::system::error_code & ecode) { if (ecode) { LogPrint (eLogError, "SOCKS: Closing socket after sending reply because: ", ecode.message ()); Terminate(); } } void SOCKSHandler::HandleStreamRequestComplete (std::shared_ptr stream) { if (stream) { m_stream = stream; SocksRequestSuccess(); } else { LogPrint (eLogError, "SOCKS: Error when creating the stream, check the previous warnings for more info"); SocksRequestFailed(SOCKS5_HOST_UNREACH); } } void SOCKSHandler::ForwardSOCKS() { LogPrint(eLogInfo, "SOCKS: Forwarding to upstream"); EnterState(UPSTREAM_RESOLVE); boost::asio::ip::tcp::resolver::query q(m_UpstreamProxyAddress, std::to_string(m_UpstreamProxyPort)); m_proxy_resolver.async_resolve(q, std::bind(&SOCKSHandler::HandleUpstreamResolved, shared_from_this(), std::placeholders::_1, std::placeholders::_2)); } void SOCKSHandler::AsyncUpstreamSockRead() { LogPrint(eLogDebug, "SOCKS: Async upstream sock read"); if (m_upstreamSock) { m_upstreamSock->async_read_some(boost::asio::buffer(m_upstream_response, SOCKS_UPSTREAM_SOCKS4A_REPLY_SIZE), std::bind(&SOCKSHandler::HandleUpstreamSockRecv, shared_from_this(), std::placeholders::_1, std::placeholders::_2)); } else { LogPrint(eLogError, "SOCKS: No upstream socket for read"); SocksRequestFailed(SOCKS5_GEN_FAIL); } } void SOCKSHandler::HandleUpstreamSockRecv(const boost::system::error_code & ecode, std::size_t bytes_transfered) { if (ecode) { if (m_state == UPSTREAM_HANDSHAKE ) { // we are trying to handshake but it failed SocksRequestFailed(SOCKS5_NET_UNREACH); } else { LogPrint(eLogError, "SOCKS: Bad state when reading from upstream: ", (int) m_state); } return; } HandleUpstreamData(m_upstream_response, bytes_transfered); } void SOCKSHandler::SocksUpstreamSuccess() { LogPrint(eLogInfo, "SOCKS: Upstream success"); boost::asio::const_buffers_1 response(nullptr, 0); switch (m_socksv) { case SOCKS4: LogPrint(eLogInfo, "SOCKS: v4 connection success"); response = GenerateSOCKS4Response(SOCKS4_OK, m_4aip, m_port); break; case SOCKS5: LogPrint(eLogInfo, "SOCKS: v5 connection success"); //HACK only 16 bits passed in port as SOCKS5 doesn't allow for more response = GenerateSOCKS5Response(SOCKS5_OK, ADDR_DNS, m_address, m_port); break; } m_sock->send(response); auto forwarder = std::make_shared(GetOwner(), m_sock, m_upstreamSock); m_upstreamSock = nullptr; m_sock = nullptr; GetOwner()->AddHandler(forwarder); forwarder->Start(); Terminate(); } void SOCKSHandler::HandleUpstreamData(uint8_t * dataptr, std::size_t len) { if (m_state == UPSTREAM_HANDSHAKE) { m_upstream_response_len += len; // handle handshake data if (m_upstream_response_len < SOCKS_UPSTREAM_SOCKS4A_REPLY_SIZE) { // too small, continue reading AsyncUpstreamSockRead(); } else if (len == SOCKS_UPSTREAM_SOCKS4A_REPLY_SIZE) { // just right uint8_t resp = m_upstream_response[1]; if (resp == SOCKS4_OK) { // we have connected ! SocksUpstreamSuccess(); } else { // upstream failure LogPrint(eLogError, "SOCKS: Upstream proxy failure: ", (int) resp); // TODO: runtime error? SocksRequestFailed(SOCKS5_GEN_FAIL); } } else { // too big SocksRequestFailed(SOCKS5_GEN_FAIL); } } else { // invalid state LogPrint(eLogError, "SOCKS: Invalid state reading from upstream: ", (int) m_state); } } void SOCKSHandler::SendUpstreamRequest() { LogPrint(eLogInfo, "SOCKS: Negotiating with upstream proxy"); EnterState(UPSTREAM_HANDSHAKE); if (m_upstreamSock) { boost::asio::write(*m_upstreamSock, GenerateUpstreamRequest()); AsyncUpstreamSockRead(); } else { LogPrint(eLogError, "SOCKS: No upstream socket to send handshake to"); } } void SOCKSHandler::HandleUpstreamConnected(const boost::system::error_code & ecode, boost::asio::ip::tcp::resolver::iterator itr) { if (ecode) { LogPrint(eLogWarning, "SOCKS: Could not connect to upstream proxy: ", ecode.message()); SocksRequestFailed(SOCKS5_NET_UNREACH); return; } LogPrint(eLogInfo, "SOCKS: Connected to upstream proxy"); SendUpstreamRequest(); } void SOCKSHandler::HandleUpstreamResolved(const boost::system::error_code & ecode, boost::asio::ip::tcp::resolver::iterator itr) { if (ecode) { // error resolving LogPrint(eLogWarning, "SOCKS: Upstream proxy", m_UpstreamProxyAddress, " not resolved: ", ecode.message()); SocksRequestFailed(SOCKS5_NET_UNREACH); return; } LogPrint(eLogInfo, "SOCKS: Upstream proxy resolved"); EnterState(UPSTREAM_CONNECT); auto & service = GetOwner()->GetService(); m_upstreamSock = std::make_shared(service); boost::asio::async_connect(*m_upstreamSock, itr, std::bind(&SOCKSHandler::HandleUpstreamConnected, shared_from_this(), std::placeholders::_1, std::placeholders::_2)); } SOCKSServer::SOCKSServer(const std::string& name, const std::string& address, uint16_t port, bool outEnable, const std::string& outAddress, uint16_t outPort, std::shared_ptr localDestination) : TCPIPAcceptor (address, port, localDestination ? localDestination : i2p::client::context.GetSharedLocalDestination ()), m_Name (name) { m_UseUpstreamProxy = false; if (outAddress.length() > 0 && outEnable) SetUpstreamProxy(outAddress, outPort); } std::shared_ptr SOCKSServer::CreateHandler(std::shared_ptr socket) { return std::make_shared (this, socket, m_UpstreamProxyAddress, m_UpstreamProxyPort, m_UseUpstreamProxy); } void SOCKSServer::SetUpstreamProxy(const std::string & addr, const uint16_t port) { m_UpstreamProxyAddress = addr; m_UpstreamProxyPort = port; m_UseUpstreamProxy = true; } } }