/* * Copyright (c) 2013-2025, The PurpleI2P Project * * This file is part of Purple i2pd project and licensed under BSD3 * * See full license text in LICENSE file at top of project tree */ #include "Crypto.h" #include "I2PEndian.h" #include "Log.h" #include "Timestamp.h" #include "Identity.h" namespace i2p { namespace data { Identity& Identity::operator=(const Keys& keys) { // copy public and signing keys together memcpy (publicKey, keys.publicKey, sizeof (publicKey)); memcpy (signingKey, keys.signingKey, sizeof (signingKey)); memset (certificate, 0, sizeof (certificate)); return *this; } size_t Identity::FromBuffer (const uint8_t * buf, size_t len) { if (len < DEFAULT_IDENTITY_SIZE) return 0; // buffer too small, don't overflow memcpy (this, buf, DEFAULT_IDENTITY_SIZE); return DEFAULT_IDENTITY_SIZE; } IdentHash Identity::Hash () const { IdentHash hash; SHA256((const uint8_t *)this, DEFAULT_IDENTITY_SIZE, hash); return hash; } IdentityEx::IdentityEx (): m_ExtendedLen (0) { } IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type, CryptoKeyType cryptoType) { uint8_t randomPaddingBlock[32]; RAND_bytes (randomPaddingBlock, 32); if (cryptoType == CRYPTO_KEY_TYPE_ECIES_X25519_AEAD) { memcpy (m_StandardIdentity.publicKey, publicKey ? publicKey : randomPaddingBlock, 32); for (int i = 0; i < 7; i++) // 224 bytes memcpy (m_StandardIdentity.publicKey + 32*(i + 1), randomPaddingBlock, 32); } else { if (publicKey) memcpy (m_StandardIdentity.publicKey, publicKey, 256); else for (int i = 0; i < 8; i++) // 256 bytes memcpy (m_StandardIdentity.publicKey + 32*i, randomPaddingBlock, 32); } if (type != SIGNING_KEY_TYPE_DSA_SHA1) { size_t excessLen = 0; uint8_t * excessBuf = nullptr; switch (type) { case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: { size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP256_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: { size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP384_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: { memcpy (m_StandardIdentity.signingKey, signingKey, 128); excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132 - 128 excessBuf = new uint8_t[excessLen]; memcpy (excessBuf, signingKey + 128, excessLen); break; } case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogError, "Identity: RSA signing key type ", (int)type, " is not supported"); break; case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519: { size_t padding = 128 - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH; // 96 = 128 - 32 for (int i = 0; i < 3; i++) // 96 bytes memcpy (m_StandardIdentity.signingKey + 32*i, randomPaddingBlock, 32); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: { // 256 size_t padding = 128 - i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH; // 64 = 128 - 64 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: { // 512 // no padding, key length is 128 memcpy (m_StandardIdentity.signingKey, signingKey, i2p::crypto::GOSTR3410_512_PUBLIC_KEY_LENGTH); break; } default: LogPrint (eLogError, "Identity: Signing key type ", (int)type, " is not supported"); } m_ExtendedLen = 4 + excessLen; // 4 bytes extra + excess length // fill certificate m_StandardIdentity.certificate[0] = CERTIFICATE_TYPE_KEY; htobe16buf (m_StandardIdentity.certificate + 1, m_ExtendedLen); // fill extended buffer htobe16buf (m_ExtendedBuffer, type); htobe16buf (m_ExtendedBuffer + 2, cryptoType); if (excessLen && excessBuf) { if (excessLen > MAX_EXTENDED_BUFFER_SIZE - 4) { LogPrint (eLogError, "Identity: Unexpected excessive signing key len ", excessLen); excessLen = MAX_EXTENDED_BUFFER_SIZE - 4; } memcpy (m_ExtendedBuffer + 4, excessBuf, excessLen); delete[] excessBuf; } // calculate ident hash RecalculateIdentHash(); } else // DSA-SHA1 { memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey)); memset (m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate)); m_IdentHash = m_StandardIdentity.Hash (); m_ExtendedLen = 0; } CreateVerifier (); } void IdentityEx::RecalculateIdentHash(uint8_t * buf) { bool dofree = buf == nullptr; size_t sz = GetFullLen(); if(!buf) buf = new uint8_t[sz]; ToBuffer (buf, sz); SHA256(buf, sz, m_IdentHash); if(dofree) delete[] buf; } IdentityEx::IdentityEx (const uint8_t * buf, size_t len): m_ExtendedLen (0) { FromBuffer (buf, len); } IdentityEx::IdentityEx (const IdentityEx& other): m_ExtendedLen (0) { *this = other; } IdentityEx::IdentityEx (const Identity& standard): m_ExtendedLen (0) { *this = standard; } IdentityEx::~IdentityEx () { } IdentityEx& IdentityEx::operator=(const IdentityEx& other) { memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE); m_IdentHash = other.m_IdentHash; m_ExtendedLen = other.m_ExtendedLen; if (m_ExtendedLen > 0) { if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE) m_ExtendedLen = MAX_EXTENDED_BUFFER_SIZE; memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen); } m_Verifier = nullptr; CreateVerifier (); return *this; } IdentityEx& IdentityEx::operator=(const Identity& standard) { m_StandardIdentity = standard; m_IdentHash = m_StandardIdentity.Hash (); m_ExtendedLen = 0; m_Verifier = nullptr; CreateVerifier (); return *this; } size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len) { if (len < DEFAULT_IDENTITY_SIZE) { LogPrint (eLogError, "Identity: Buffer length ", len, " is too small"); return 0; } memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE); m_ExtendedLen = bufbe16toh (m_StandardIdentity.certificate + 1); if (m_ExtendedLen) { if (m_ExtendedLen + DEFAULT_IDENTITY_SIZE <= len) { if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE) m_ExtendedLen = MAX_EXTENDED_BUFFER_SIZE; memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen); } else { LogPrint (eLogError, "Identity: Certificate length ", m_ExtendedLen, " exceeds buffer length ", len - DEFAULT_IDENTITY_SIZE); m_ExtendedLen = 0; return 0; } } else m_ExtendedLen = 0; SHA256(buf, GetFullLen (), m_IdentHash); m_Verifier = nullptr; CreateVerifier (); return GetFullLen (); } size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const { const size_t fullLen = GetFullLen(); if (fullLen > len) return 0; // buffer is too small and may overflow somewhere else memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE); if (m_ExtendedLen > 0) memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen); return fullLen; } size_t IdentityEx::FromBase64(std::string_view s) { const size_t slen = s.length(); std::vector buf(slen); // binary data can't exceed base64 const size_t len = Base64ToByteStream (s.data(), slen, buf.data(), slen); return FromBuffer (buf.data(), len); } std::string IdentityEx::ToBase64 () const { const size_t bufLen = GetFullLen(); const size_t strLen = Base64EncodingBufferSize(bufLen); std::vector buf(bufLen); std::vector str(strLen); size_t l = ToBuffer (buf.data(), bufLen); size_t l1 = i2p::data::ByteStreamToBase64 (buf.data(), l, str.data(), strLen); return std::string (str.data(), l1); } size_t IdentityEx::GetSigningPublicKeyLen () const { if (m_Verifier) return m_Verifier->GetPublicKeyLen (); return 128; } const uint8_t * IdentityEx::GetSigningPublicKeyBuffer () const { auto keyLen = GetSigningPublicKeyLen (); if (keyLen > 128) return nullptr; // P521 return m_StandardIdentity.signingKey + 128 - keyLen; } size_t IdentityEx::GetSigningPrivateKeyLen () const { if (m_Verifier) return m_Verifier->GetPrivateKeyLen (); return GetSignatureLen ()/2; } size_t IdentityEx::GetSignatureLen () const { if (m_Verifier) return m_Verifier->GetSignatureLen (); return i2p::crypto::DSA_SIGNATURE_LENGTH; } bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const { if (m_Verifier) return m_Verifier->Verify (buf, len, signature); return false; } SigningKeyType IdentityEx::GetSigningKeyType () const { if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 2) return bufbe16toh (m_ExtendedBuffer); // signing key return SIGNING_KEY_TYPE_DSA_SHA1; } bool IdentityEx::IsRSA () const { auto sigType = GetSigningKeyType (); return sigType <= SIGNING_KEY_TYPE_RSA_SHA512_4096 && sigType >= SIGNING_KEY_TYPE_RSA_SHA256_2048; } CryptoKeyType IdentityEx::GetCryptoKeyType () const { if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 4) return bufbe16toh (m_ExtendedBuffer + 2); // crypto key return CRYPTO_KEY_TYPE_ELGAMAL; } i2p::crypto::Verifier * IdentityEx::CreateVerifier (SigningKeyType keyType) { switch (keyType) { case SIGNING_KEY_TYPE_DSA_SHA1: return new i2p::crypto::DSAVerifier (); case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: return new i2p::crypto::ECDSAP256Verifier (); case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: return new i2p::crypto::ECDSAP384Verifier (); case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: return new i2p::crypto::ECDSAP521Verifier (); case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: return new i2p::crypto::EDDSA25519Verifier (); case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: return new i2p::crypto::GOSTR3410_256_Verifier (i2p::crypto::eGOSTR3410CryptoProA); case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: return new i2p::crypto::GOSTR3410_512_Verifier (i2p::crypto::eGOSTR3410TC26A512); case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519: return new i2p::crypto::RedDSA25519Verifier (); case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogError, "Identity: RSA signing key type ", (int)keyType, " is not supported"); break; default: LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported"); } return nullptr; } void IdentityEx::CreateVerifier () { if (!m_Verifier) { auto verifier = CreateVerifier (GetSigningKeyType ()); if (verifier) { auto keyLen = verifier->GetPublicKeyLen (); if (keyLen <= 128) verifier->SetPublicKey (m_StandardIdentity.signingKey + 128 - keyLen); else { // for P521 uint8_t * signingKey = new uint8_t[keyLen]; memcpy (signingKey, m_StandardIdentity.signingKey, 128); size_t excessLen = keyLen - 128; memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types verifier->SetPublicKey (signingKey); delete[] signingKey; } } m_Verifier.reset (verifier); } } std::shared_ptr IdentityEx::CreateEncryptor (CryptoKeyType keyType, const uint8_t * key) { switch (keyType) { case CRYPTO_KEY_TYPE_ELGAMAL: return std::make_shared(key); break; case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD: return std::make_shared(key); break; case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC: case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST: return std::make_shared(key); break; case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC: return std::make_shared(key); break; default: LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)keyType); }; return nullptr; } std::shared_ptr IdentityEx::CreateEncryptor (const uint8_t * key) const { if (!key) key = GetEncryptionPublicKey (); // use publicKey return CreateEncryptor (GetCryptoKeyType (), key); } size_t GetIdentityBufferLen (const uint8_t * buf, size_t len) { if (len < DEFAULT_IDENTITY_SIZE) return 0; size_t l = DEFAULT_IDENTITY_SIZE + bufbe16toh (buf + DEFAULT_IDENTITY_SIZE - 2); if (l > len) return 0; return l; } PrivateKeys& PrivateKeys::operator=(const Keys& keys) { m_Public = std::make_shared(Identity (keys)); memcpy (m_PrivateKey, keys.privateKey, 256); // 256 memcpy (m_SigningPrivateKey, keys.signingPrivateKey, m_Public->GetSigningPrivateKeyLen ()); m_OfflineSignature.resize (0); m_TransientSignatureLen = 0; m_TransientSigningPrivateKeyLen = 0; m_Signer = nullptr; CreateSigner (); return *this; } PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other) { m_Public = std::make_shared(*other.m_Public); memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256 m_OfflineSignature = other.m_OfflineSignature; m_TransientSignatureLen = other.m_TransientSignatureLen; m_TransientSigningPrivateKeyLen = other.m_TransientSigningPrivateKeyLen; memcpy (m_SigningPrivateKey, other.m_SigningPrivateKey, m_TransientSigningPrivateKeyLen > 0 ? m_TransientSigningPrivateKeyLen : m_Public->GetSigningPrivateKeyLen ()); m_Signer = nullptr; CreateSigner (); return *this; } size_t PrivateKeys::GetFullLen () const { size_t ret = m_Public->GetFullLen () + GetPrivateKeyLen () + m_Public->GetSigningPrivateKeyLen (); if (IsOfflineSignature ()) ret += m_OfflineSignature.size () + m_TransientSigningPrivateKeyLen; return ret; } size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len) { m_Public = std::make_shared(); size_t ret = m_Public->FromBuffer (buf, len); auto cryptoKeyLen = GetPrivateKeyLen (); if (!ret || ret + cryptoKeyLen > len) return 0; // overflow memcpy (m_PrivateKey, buf + ret, cryptoKeyLen); ret += cryptoKeyLen; size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen (); if(signingPrivateKeySize + ret > len || signingPrivateKeySize > 128) return 0; // overflow memcpy (m_SigningPrivateKey, buf + ret, signingPrivateKeySize); ret += signingPrivateKeySize; m_Signer = nullptr; // check if signing private key is all zeros bool allzeros = true; for (size_t i = 0; i < signingPrivateKeySize; i++) if (m_SigningPrivateKey[i]) { allzeros = false; break; } if (allzeros) { // offline information const uint8_t * offlineInfo = buf + ret; uint32_t expires = bufbe32toh (buf + ret); ret += 4; // expires timestamp if (expires < i2p::util::GetSecondsSinceEpoch ()) { LogPrint (eLogError, "Identity: Offline signature expired"); return 0; } SigningKeyType keyType = bufbe16toh (buf + ret); ret += 2; // key type std::unique_ptr transientVerifier (IdentityEx::CreateVerifier (keyType)); if (!transientVerifier) return 0; auto keyLen = transientVerifier->GetPublicKeyLen (); if (keyLen + ret > len) return 0; transientVerifier->SetPublicKey (buf + ret); ret += keyLen; if (m_Public->GetSignatureLen () + ret > len) return 0; if (!m_Public->Verify (offlineInfo, keyLen + 6, buf + ret)) { LogPrint (eLogError, "Identity: Offline signature verification failed"); return 0; } ret += m_Public->GetSignatureLen (); m_TransientSignatureLen = transientVerifier->GetSignatureLen (); // copy offline signature size_t offlineInfoLen = buf + ret - offlineInfo; m_OfflineSignature.resize (offlineInfoLen); memcpy (m_OfflineSignature.data (), offlineInfo, offlineInfoLen); // override signing private key m_TransientSigningPrivateKeyLen = transientVerifier->GetPrivateKeyLen (); if (m_TransientSigningPrivateKeyLen + ret > len || m_TransientSigningPrivateKeyLen > 128) return 0; memcpy (m_SigningPrivateKey, buf + ret, m_TransientSigningPrivateKeyLen); ret += m_TransientSigningPrivateKeyLen; CreateSigner (keyType); } else CreateSigner (m_Public->GetSigningKeyType ()); return ret; } size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const { size_t ret = m_Public->ToBuffer (buf, len); auto cryptoKeyLen = GetPrivateKeyLen (); memcpy (buf + ret, m_PrivateKey, cryptoKeyLen); ret += cryptoKeyLen; size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen (); if(ret + signingPrivateKeySize > len) return 0; // overflow if (IsOfflineSignature ()) memset (buf + ret, 0, signingPrivateKeySize); else memcpy (buf + ret, m_SigningPrivateKey, signingPrivateKeySize); ret += signingPrivateKeySize; if (IsOfflineSignature ()) { // offline signature auto offlineSignatureLen = m_OfflineSignature.size (); if (ret + offlineSignatureLen > len) return 0; memcpy (buf + ret, m_OfflineSignature.data (), offlineSignatureLen); ret += offlineSignatureLen; // transient private key if (ret + m_TransientSigningPrivateKeyLen > len) return 0; memcpy (buf + ret, m_SigningPrivateKey, m_TransientSigningPrivateKeyLen); ret += m_TransientSigningPrivateKeyLen; } return ret; } size_t PrivateKeys::FromBase64(const std::string& s) { uint8_t * buf = new uint8_t[s.length ()]; size_t l = i2p::data::Base64ToByteStream (s.c_str (), s.length (), buf, s.length ()); size_t ret = FromBuffer (buf, l); delete[] buf; return ret; } std::string PrivateKeys::ToBase64 () const { uint8_t * buf = new uint8_t[GetFullLen ()]; char * str = new char[GetFullLen ()*2]; size_t l = ToBuffer (buf, GetFullLen ()); size_t l1 = i2p::data::ByteStreamToBase64 (buf, l, str, GetFullLen ()*2); str[l1] = 0; delete[] buf; std::string ret(str); delete[] str; return ret; } void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const { if (!m_Signer) CreateSigner(); m_Signer->Sign (buf, len, signature); } void PrivateKeys::CreateSigner () const { if (IsOfflineSignature ()) CreateSigner (bufbe16toh (m_OfflineSignature.data () + 4)); // key type else CreateSigner (m_Public->GetSigningKeyType ()); } void PrivateKeys::CreateSigner (SigningKeyType keyType) const { if (m_Signer) return; if (keyType == SIGNING_KEY_TYPE_DSA_SHA1) m_Signer.reset (new i2p::crypto::DSASigner (m_SigningPrivateKey, m_Public->GetStandardIdentity ().signingKey)); else if (keyType == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519 && !IsOfflineSignature ()) m_Signer.reset (new i2p::crypto::EDDSA25519Signer (m_SigningPrivateKey, m_Public->GetStandardIdentity ().signingKey + (sizeof(Identity::signingKey) - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH))); // TODO: remove public key check else { // public key is not required auto signer = CreateSigner (keyType, m_SigningPrivateKey); if (signer) m_Signer.reset (signer); } } i2p::crypto::Signer * PrivateKeys::CreateSigner (SigningKeyType keyType, const uint8_t * priv) { switch (keyType) { case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: return new i2p::crypto::ECDSAP256Signer (priv); break; case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: return new i2p::crypto::ECDSAP384Signer (priv); break; case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: return new i2p::crypto::ECDSAP521Signer (priv); break; case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogError, "Identity: RSA signing key type ", (int)keyType, " is not supported"); break; case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: return new i2p::crypto::EDDSA25519Signer (priv, nullptr); break; case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: return new i2p::crypto::GOSTR3410_256_Signer (i2p::crypto::eGOSTR3410CryptoProA, priv); break; case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: return new i2p::crypto::GOSTR3410_512_Signer (i2p::crypto::eGOSTR3410TC26A512, priv); break; case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519: return new i2p::crypto::RedDSA25519Signer (priv); break; default: LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported"); } return nullptr; } size_t PrivateKeys::GetSignatureLen () const { return IsOfflineSignature () ? m_TransientSignatureLen : m_Public->GetSignatureLen (); } size_t PrivateKeys::GetPrivateKeyLen () const { // private key length always 256, but type 4 return (m_Public->GetCryptoKeyType () == CRYPTO_KEY_TYPE_ECIES_X25519_AEAD) ? 32 : 256; } uint8_t * PrivateKeys::GetPadding() { if(m_Public->GetSigningKeyType () == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519) return m_Public->GetEncryptionPublicKeyBuffer() + 256; else return nullptr; // TODO: implement me } std::shared_ptr PrivateKeys::CreateDecryptor (const uint8_t * key) const { if (!key) key = m_PrivateKey; // use privateKey return CreateDecryptor (m_Public->GetCryptoKeyType (), key); } std::shared_ptr PrivateKeys::CreateDecryptor (CryptoKeyType cryptoType, const uint8_t * key) { if (!key) return nullptr; switch (cryptoType) { case CRYPTO_KEY_TYPE_ELGAMAL: return std::make_shared(key); break; case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD: return std::make_shared(key); break; case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC: case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST: return std::make_shared(key); break; case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC: return std::make_shared(key); break; default: LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)cryptoType); }; return nullptr; } PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type, CryptoKeyType cryptoType, bool isDestination) { if (type != SIGNING_KEY_TYPE_DSA_SHA1) { PrivateKeys keys; // signature uint8_t signingPublicKey[512]; // signing public key is 512 bytes max GenerateSigningKeyPair (type, keys.m_SigningPrivateKey, signingPublicKey); // encryption uint8_t publicKey[256]; if (isDestination) RAND_bytes (keys.m_PrivateKey, 256); else GenerateCryptoKeyPair (cryptoType, keys.m_PrivateKey, publicKey); // identity keys.m_Public = std::make_shared (isDestination ? nullptr : publicKey, signingPublicKey, type, cryptoType); keys.CreateSigner (); return keys; } return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1 } void PrivateKeys::GenerateSigningKeyPair (SigningKeyType type, uint8_t * priv, uint8_t * pub) { switch (type) { case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: i2p::crypto::CreateECDSAP256RandomKeys (priv, pub); break; case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: i2p::crypto::CreateECDSAP384RandomKeys (priv, pub); break; case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: i2p::crypto::CreateECDSAP521RandomKeys (priv, pub); break; case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogWarning, "Identity: RSA signature type is not supported. Creating EdDSA"); [[fallthrough]]; // no break here case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: i2p::crypto::CreateEDDSA25519RandomKeys (priv, pub); break; case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410CryptoProA, priv, pub); break; case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410TC26A512, priv, pub); break; case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519: i2p::crypto::CreateRedDSA25519RandomKeys (priv, pub); break; default: LogPrint (eLogWarning, "Identity: Signing key type ", (int)type, " is not supported. Create DSA-SHA1"); i2p::crypto::CreateDSARandomKeys (priv, pub); // DSA-SHA1 } } void PrivateKeys::GenerateCryptoKeyPair (CryptoKeyType type, uint8_t * priv, uint8_t * pub) { switch (type) { case CRYPTO_KEY_TYPE_ELGAMAL: i2p::crypto::GenerateElGamalKeyPair(priv, pub); break; case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC: case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST: i2p::crypto::CreateECIESP256RandomKeys (priv, pub); break; case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC: i2p::crypto::CreateECIESGOSTR3410RandomKeys (priv, pub); break; case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD: i2p::crypto::CreateECIESX25519AEADRatchetRandomKeys (priv, pub); break; default: LogPrint (eLogError, "Identity: Crypto key type ", (int)type, " is not supported"); } } PrivateKeys PrivateKeys::CreateOfflineKeys (SigningKeyType type, uint32_t expires) const { PrivateKeys keys (*this); std::unique_ptr verifier (IdentityEx::CreateVerifier (type)); if (verifier) { size_t pubKeyLen = verifier->GetPublicKeyLen (); keys.m_TransientSigningPrivateKeyLen = verifier->GetPrivateKeyLen (); keys.m_TransientSignatureLen = verifier->GetSignatureLen (); keys.m_OfflineSignature.resize (pubKeyLen + m_Public->GetSignatureLen () + 6); htobe32buf (keys.m_OfflineSignature.data (), expires); // expires htobe16buf (keys.m_OfflineSignature.data () + 4, type); // type GenerateSigningKeyPair (type, keys.m_SigningPrivateKey, keys.m_OfflineSignature.data () + 6); // public key Sign (keys.m_OfflineSignature.data (), pubKeyLen + 6, keys.m_OfflineSignature.data () + 6 + pubKeyLen); // signature // recreate signer keys.m_Signer = nullptr; keys.CreateSigner (type); } return keys; } Keys CreateRandomKeys () { Keys keys; // encryption i2p::crypto::GenerateElGamalKeyPair(keys.privateKey, keys.publicKey); // signing i2p::crypto::CreateDSARandomKeys (keys.signingPrivateKey, keys.signingKey); return keys; } IdentHash CreateRoutingKey (const IdentHash& ident, bool nextDay) { uint8_t buf[41]; // ident + yyyymmdd memcpy (buf, (const uint8_t *)ident, 32); if (nextDay) i2p::util::GetNextDayDate ((char *)(buf + 32)); else i2p::util::GetCurrentDate ((char *)(buf + 32)); IdentHash key; SHA256(buf, 40, key); return key; } XORMetric operator^(const IdentHash& key1, const IdentHash& key2) { XORMetric m; const uint64_t * hash1 = key1.GetLL (), * hash2 = key2.GetLL (); m.metric_ll[0] = hash1[0] ^ hash2[0]; m.metric_ll[1] = hash1[1] ^ hash2[1]; m.metric_ll[2] = hash1[2] ^ hash2[2]; m.metric_ll[3] = hash1[3] ^ hash2[3]; return m; } } }