/* * Copyright (c) 2013-2025, The PurpleI2P Project * * This file is part of Purple i2pd project and licensed under BSD3 * * See full license text in LICENSE file at top of project tree */ #include #include #include #include #include #include #include #include #include "TunnelBase.h" #include #if OPENSSL_HKDF #include #endif #include "CPU.h" #include "Crypto.h" #include "Ed25519.h" #include "I2PEndian.h" #include "Log.h" namespace i2p { namespace crypto { const uint8_t elgp_[256]= { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; const int elgg_ = 2; const uint8_t dsap_[128]= { 0x9c, 0x05, 0xb2, 0xaa, 0x96, 0x0d, 0x9b, 0x97, 0xb8, 0x93, 0x19, 0x63, 0xc9, 0xcc, 0x9e, 0x8c, 0x30, 0x26, 0xe9, 0xb8, 0xed, 0x92, 0xfa, 0xd0, 0xa6, 0x9c, 0xc8, 0x86, 0xd5, 0xbf, 0x80, 0x15, 0xfc, 0xad, 0xae, 0x31, 0xa0, 0xad, 0x18, 0xfa, 0xb3, 0xf0, 0x1b, 0x00, 0xa3, 0x58, 0xde, 0x23, 0x76, 0x55, 0xc4, 0x96, 0x4a, 0xfa, 0xa2, 0xb3, 0x37, 0xe9, 0x6a, 0xd3, 0x16, 0xb9, 0xfb, 0x1c, 0xc5, 0x64, 0xb5, 0xae, 0xc5, 0xb6, 0x9a, 0x9f, 0xf6, 0xc3, 0xe4, 0x54, 0x87, 0x07, 0xfe, 0xf8, 0x50, 0x3d, 0x91, 0xdd, 0x86, 0x02, 0xe8, 0x67, 0xe6, 0xd3, 0x5d, 0x22, 0x35, 0xc1, 0x86, 0x9c, 0xe2, 0x47, 0x9c, 0x3b, 0x9d, 0x54, 0x01, 0xde, 0x04, 0xe0, 0x72, 0x7f, 0xb3, 0x3d, 0x65, 0x11, 0x28, 0x5d, 0x4c, 0xf2, 0x95, 0x38, 0xd9, 0xe3, 0xb6, 0x05, 0x1f, 0x5b, 0x22, 0xcc, 0x1c, 0x93 }; const uint8_t dsaq_[20]= { 0xa5, 0xdf, 0xc2, 0x8f, 0xef, 0x4c, 0xa1, 0xe2, 0x86, 0x74, 0x4c, 0xd8, 0xee, 0xd9, 0xd2, 0x9d, 0x68, 0x40, 0x46, 0xb7 }; const uint8_t dsag_[128]= { 0x0c, 0x1f, 0x4d, 0x27, 0xd4, 0x00, 0x93, 0xb4, 0x29, 0xe9, 0x62, 0xd7, 0x22, 0x38, 0x24, 0xe0, 0xbb, 0xc4, 0x7e, 0x7c, 0x83, 0x2a, 0x39, 0x23, 0x6f, 0xc6, 0x83, 0xaf, 0x84, 0x88, 0x95, 0x81, 0x07, 0x5f, 0xf9, 0x08, 0x2e, 0xd3, 0x23, 0x53, 0xd4, 0x37, 0x4d, 0x73, 0x01, 0xcd, 0xa1, 0xd2, 0x3c, 0x43, 0x1f, 0x46, 0x98, 0x59, 0x9d, 0xda, 0x02, 0x45, 0x18, 0x24, 0xff, 0x36, 0x97, 0x52, 0x59, 0x36, 0x47, 0xcc, 0x3d, 0xdc, 0x19, 0x7d, 0xe9, 0x85, 0xe4, 0x3d, 0x13, 0x6c, 0xdc, 0xfc, 0x6b, 0xd5, 0x40, 0x9c, 0xd2, 0xf4, 0x50, 0x82, 0x11, 0x42, 0xa5, 0xe6, 0xf8, 0xeb, 0x1c, 0x3a, 0xb5, 0xd0, 0x48, 0x4b, 0x81, 0x29, 0xfc, 0xf1, 0x7b, 0xce, 0x4f, 0x7f, 0x33, 0x32, 0x1c, 0x3c, 0xb3, 0xdb, 0xb1, 0x4a, 0x90, 0x5e, 0x7b, 0x2b, 0x3e, 0x93, 0xbe, 0x47, 0x08, 0xcb, 0xcc, 0x82 }; const int rsae_ = 65537; struct CryptoConstants { // DH/ElGamal BIGNUM * elgp; BIGNUM * elgg; // DSA BIGNUM * dsap; BIGNUM * dsaq; BIGNUM * dsag; // RSA BIGNUM * rsae; CryptoConstants (const uint8_t * elgp_, int elgg_, const uint8_t * dsap_, const uint8_t * dsaq_, const uint8_t * dsag_, int rsae_) { elgp = BN_new (); BN_bin2bn (elgp_, 256, elgp); elgg = BN_new (); BN_set_word (elgg, elgg_); dsap = BN_new (); BN_bin2bn (dsap_, 128, dsap); dsaq = BN_new (); BN_bin2bn (dsaq_, 20, dsaq); dsag = BN_new (); BN_bin2bn (dsag_, 128, dsag); rsae = BN_new (); BN_set_word (rsae, rsae_); } ~CryptoConstants () { BN_free (elgp); BN_free (elgg); BN_free (dsap); BN_free (dsaq); BN_free (dsag); BN_free (rsae); } }; static const CryptoConstants& GetCryptoConstants () { static CryptoConstants cryptoConstants (elgp_, elgg_, dsap_, dsaq_, dsag_, rsae_); return cryptoConstants; } bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len) { int offset = len - BN_num_bytes (bn); if (offset < 0) return false; BN_bn2bin (bn, buf + offset); memset (buf, 0, offset); return true; } // RSA #define rsae GetCryptoConstants ().rsae const BIGNUM * GetRSAE () { return rsae; } // DSA #define dsap GetCryptoConstants ().dsap #define dsaq GetCryptoConstants ().dsaq #define dsag GetCryptoConstants ().dsag DSA * CreateDSA () { DSA * dsa = DSA_new (); DSA_set0_pqg (dsa, BN_dup (dsap), BN_dup (dsaq), BN_dup (dsag)); DSA_set0_key (dsa, NULL, NULL); return dsa; } // DH/ElGamal #if !IS_X86_64 const int ELGAMAL_SHORT_EXPONENT_NUM_BITS = 226; const int ELGAMAL_SHORT_EXPONENT_NUM_BYTES = ELGAMAL_SHORT_EXPONENT_NUM_BITS/8+1; #endif const int ELGAMAL_FULL_EXPONENT_NUM_BITS = 2048; const int ELGAMAL_FULL_EXPONENT_NUM_BYTES = ELGAMAL_FULL_EXPONENT_NUM_BITS/8; #define elgp GetCryptoConstants ().elgp #define elgg GetCryptoConstants ().elgg static BN_MONT_CTX * g_MontCtx = nullptr; static void PrecalculateElggTable (BIGNUM * table[][255], int len) // table is len's array of array of 255 bignums { if (len <= 0) return; BN_CTX * ctx = BN_CTX_new (); g_MontCtx = BN_MONT_CTX_new (); BN_MONT_CTX_set (g_MontCtx, elgp, ctx); auto montCtx = BN_MONT_CTX_new (); BN_MONT_CTX_copy (montCtx, g_MontCtx); for (int i = 0; i < len; i++) { table[i][0] = BN_new (); if (!i) BN_to_montgomery (table[0][0], elgg, montCtx, ctx); else BN_mod_mul_montgomery (table[i][0], table[i-1][254], table[i-1][0], montCtx, ctx); for (int j = 1; j < 255; j++) { table[i][j] = BN_new (); BN_mod_mul_montgomery (table[i][j], table[i][j-1], table[i][0], montCtx, ctx); } } BN_MONT_CTX_free (montCtx); BN_CTX_free (ctx); } static void DestroyElggTable (BIGNUM * table[][255], int len) { for (int i = 0; i < len; i++) for (int j = 0; j < 255; j++) { BN_free (table[i][j]); table[i][j] = nullptr; } BN_MONT_CTX_free (g_MontCtx); } static BIGNUM * ElggPow (const uint8_t * exp, int len, BIGNUM * table[][255], BN_CTX * ctx) // exp is in Big Endian { if (len <= 0) return nullptr; auto montCtx = BN_MONT_CTX_new (); BN_MONT_CTX_copy (montCtx, g_MontCtx); BIGNUM * res = nullptr; for (int i = 0; i < len; i++) { if (res) { if (exp[i]) BN_mod_mul_montgomery (res, res, table[len-1-i][exp[i]-1], montCtx, ctx); } else if (exp[i]) res = BN_dup (table[len-i-1][exp[i]-1]); } if (res) BN_from_montgomery (res, res, montCtx, ctx); BN_MONT_CTX_free (montCtx); return res; } static BIGNUM * ElggPow (const BIGNUM * exp, BIGNUM * table[][255], BN_CTX * ctx) { auto len = BN_num_bytes (exp); uint8_t * buf = new uint8_t[len]; BN_bn2bin (exp, buf); auto ret = ElggPow (buf, len, table, ctx); delete[] buf; return ret; } static BIGNUM * (* g_ElggTable)[255] = nullptr; // x25519 X25519Keys::X25519Keys () { m_Ctx = EVP_PKEY_CTX_new_id (NID_X25519, NULL); m_Pkey = nullptr; } X25519Keys::X25519Keys (const uint8_t * priv, const uint8_t * pub) { m_Pkey = EVP_PKEY_new_raw_private_key (EVP_PKEY_X25519, NULL, priv, 32); m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL); if (pub) memcpy (m_PublicKey, pub, 32); // TODO: verify against m_Pkey else { size_t len = 32; EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len); } } X25519Keys::~X25519Keys () { EVP_PKEY_CTX_free (m_Ctx); if (m_Pkey) EVP_PKEY_free (m_Pkey); } void X25519Keys::GenerateKeys () { if (m_Pkey) { EVP_PKEY_free (m_Pkey); m_Pkey = nullptr; } EVP_PKEY_keygen_init (m_Ctx); EVP_PKEY_keygen (m_Ctx, &m_Pkey); EVP_PKEY_CTX_free (m_Ctx); m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL); // TODO: do we really need to re-create m_Ctx? size_t len = 32; EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len); } bool X25519Keys::Agree (const uint8_t * pub, uint8_t * shared) { if (!pub || (pub[31] & 0x80)) return false; // not x25519 key EVP_PKEY_derive_init (m_Ctx); auto pkey = EVP_PKEY_new_raw_public_key (EVP_PKEY_X25519, NULL, pub, 32); if (!pkey) return false; EVP_PKEY_derive_set_peer (m_Ctx, pkey); size_t len = 32; EVP_PKEY_derive (m_Ctx, shared, &len); EVP_PKEY_free (pkey); return true; } void X25519Keys::GetPrivateKey (uint8_t * priv) const { size_t len = 32; EVP_PKEY_get_raw_private_key (m_Pkey, priv, &len); } void X25519Keys::SetPrivateKey (const uint8_t * priv, bool calculatePublic) { if (m_Ctx) EVP_PKEY_CTX_free (m_Ctx); if (m_Pkey) EVP_PKEY_free (m_Pkey); m_Pkey = EVP_PKEY_new_raw_private_key (EVP_PKEY_X25519, NULL, priv, 32); m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL); if (calculatePublic) { size_t len = 32; EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len); } } // ElGamal void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted) { BN_CTX * ctx = BN_CTX_new (); BN_CTX_start (ctx); // everything, but a, because a might come from table BIGNUM * k = BN_CTX_get (ctx); BIGNUM * y = BN_CTX_get (ctx); BIGNUM * b1 = BN_CTX_get (ctx); BIGNUM * b = BN_CTX_get (ctx); // select random k #if IS_X86_64 BN_rand (k, ELGAMAL_FULL_EXPONENT_NUM_BITS, -1, 1); // full exponent for x64 #else BN_rand (k, ELGAMAL_SHORT_EXPONENT_NUM_BITS, -1, 1); // short exponent of 226 bits #endif // calculate a BIGNUM * a; if (g_ElggTable) a = ElggPow (k, g_ElggTable, ctx); else { a = BN_new (); BN_mod_exp (a, elgg, k, elgp, ctx); } // restore y from key BN_bin2bn (key, 256, y); // calculate b1 BN_mod_exp (b1, y, k, elgp, ctx); // create m uint8_t m[255]; m[0] = 0xFF; memcpy (m+33, data, 222); SHA256 (m+33, 222, m+1); // calculate b = b1*m mod p BN_bin2bn (m, 255, b); BN_mod_mul (b, b1, b, elgp, ctx); // copy a and b encrypted[0] = 0; bn2buf (a, encrypted + 1, 256); encrypted[257] = 0; bn2buf (b, encrypted + 258, 256); BN_free (a); BN_CTX_end (ctx); BN_CTX_free (ctx); } bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data) { BN_CTX * ctx = BN_CTX_new (); BN_CTX_start (ctx); BIGNUM * x = BN_CTX_get (ctx), * a = BN_CTX_get (ctx), * b = BN_CTX_get (ctx); BN_bin2bn (key, 256, x); BN_sub (x, elgp, x); BN_sub_word (x, 1); // x = elgp - x- 1 BN_bin2bn (encrypted + 1, 256, a); BN_bin2bn (encrypted + 258, 256, b); // m = b*(a^x mod p) mod p BN_mod_exp (x, a, x, elgp, ctx); BN_mod_mul (b, b, x, elgp, ctx); uint8_t m[255]; bn2buf (b, m, 255); BN_CTX_end (ctx); BN_CTX_free (ctx); uint8_t hash[32]; SHA256 (m + 33, 222, hash); if (memcmp (m + 1, hash, 32)) { LogPrint (eLogError, "ElGamal decrypt hash doesn't match"); return false; } memcpy (data, m + 33, 222); return true; } void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub) { #if IS_X86 || defined(_MSC_VER) RAND_bytes (priv, 256); #else // lower 226 bits (28 bytes and 2 bits) only. short exponent auto numBytes = (ELGAMAL_SHORT_EXPONENT_NUM_BITS)/8 + 1; // 29 auto numZeroBytes = 256 - numBytes; RAND_bytes (priv + numZeroBytes, numBytes); memset (priv, 0, numZeroBytes); priv[numZeroBytes] &= 0x03; #endif BN_CTX * ctx = BN_CTX_new (); BIGNUM * p = BN_new (); BN_bin2bn (priv, 256, p); BN_mod_exp (p, elgg, p, elgp, ctx); bn2buf (p, pub, 256); BN_free (p); BN_CTX_free (ctx); } // ECIES void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted) { BN_CTX * ctx = BN_CTX_new (); BN_CTX_start (ctx); BIGNUM * q = BN_CTX_get (ctx); EC_GROUP_get_order(curve, q, ctx); int len = BN_num_bytes (q); BIGNUM * k = BN_CTX_get (ctx); BN_rand_range (k, q); // 0 < k < q // point for shared secret auto p = EC_POINT_new (curve); EC_POINT_mul (curve, p, k, nullptr, nullptr, ctx); BIGNUM * x = BN_CTX_get (ctx), * y = BN_CTX_get (ctx); EC_POINT_get_affine_coordinates_GFp (curve, p, x, y, nullptr); encrypted[0] = 0; bn2buf (x, encrypted + 1, len); bn2buf (y, encrypted + 1 + len, len); RAND_bytes (encrypted + 1 + 2*len, 256 - 2*len); // encryption key and iv EC_POINT_mul (curve, p, nullptr, key, k, ctx); EC_POINT_get_affine_coordinates_GFp (curve, p, x, y, nullptr); uint8_t keyBuf[64], iv[64], shared[32]; bn2buf (x, keyBuf, len); bn2buf (y, iv, len); SHA256 (keyBuf, len, shared); // create buffer uint8_t m[256]; m[0] = 0xFF; m[255] = 0xFF; memcpy (m+33, data, 222); SHA256 (m+33, 222, m+1); // encrypt CBCEncryption encryption; encryption.SetKey (shared); encrypted[257] = 0; encryption.Encrypt (m, 256, iv, encrypted + 258); EC_POINT_free (p); BN_CTX_end (ctx); BN_CTX_free (ctx); } bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data) { bool ret = true; BN_CTX * ctx = BN_CTX_new (); BN_CTX_start (ctx); BIGNUM * q = BN_CTX_get (ctx); EC_GROUP_get_order(curve, q, ctx); int len = BN_num_bytes (q); // point for shared secret BIGNUM * x = BN_CTX_get (ctx), * y = BN_CTX_get (ctx); BN_bin2bn (encrypted + 1, len, x); BN_bin2bn (encrypted + 1 + len, len, y); auto p = EC_POINT_new (curve); if (EC_POINT_set_affine_coordinates_GFp (curve, p, x, y, nullptr)) { auto s = EC_POINT_new (curve); EC_POINT_mul (curve, s, nullptr, p, key, ctx); EC_POINT_get_affine_coordinates_GFp (curve, s, x, y, nullptr); EC_POINT_free (s); uint8_t keyBuf[64], iv[64], shared[32]; bn2buf (x, keyBuf, len); bn2buf (y, iv, len); SHA256 (keyBuf, len, shared); // decrypt uint8_t m[256]; CBCDecryption decryption; decryption.SetKey (shared); decryption.Decrypt (encrypted + 258, 256, iv, m); // verify and copy uint8_t hash[32]; SHA256 (m + 33, 222, hash); if (!memcmp (m + 1, hash, 32)) memcpy (data, m + 33, 222); else { LogPrint (eLogError, "ECIES decrypt hash doesn't match"); ret = false; } } else { LogPrint (eLogError, "ECIES decrypt point is invalid"); ret = false; } EC_POINT_free (p); BN_CTX_end (ctx); BN_CTX_free (ctx); return ret; } void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub) { BN_CTX * ctx = BN_CTX_new (); BIGNUM * q = BN_new (); EC_GROUP_get_order(curve, q, ctx); priv = BN_new (); BN_rand_range (priv, q); pub = EC_POINT_new (curve); EC_POINT_mul (curve, pub, priv, nullptr, nullptr, ctx); BN_free (q); BN_CTX_free (ctx); } // AES ECBEncryption::ECBEncryption () { m_Ctx = EVP_CIPHER_CTX_new (); } ECBEncryption::~ECBEncryption () { if (m_Ctx) EVP_CIPHER_CTX_free (m_Ctx); } void ECBEncryption::Encrypt (const uint8_t * in, uint8_t * out) { EVP_EncryptInit_ex (m_Ctx, EVP_aes_256_ecb(), NULL, m_Key, NULL); EVP_CIPHER_CTX_set_padding (m_Ctx, 0); int len; EVP_EncryptUpdate (m_Ctx, out, &len, in, 16); EVP_EncryptFinal_ex (m_Ctx, out + len, &len); } ECBDecryption::ECBDecryption () { m_Ctx = EVP_CIPHER_CTX_new (); } ECBDecryption::~ECBDecryption () { if (m_Ctx) EVP_CIPHER_CTX_free (m_Ctx); } void ECBDecryption::Decrypt (const uint8_t * in, uint8_t * out) { EVP_DecryptInit_ex (m_Ctx, EVP_aes_256_ecb(), NULL, m_Key, NULL); EVP_CIPHER_CTX_set_padding (m_Ctx, 0); int len; EVP_DecryptUpdate (m_Ctx, out, &len, in, 16); EVP_DecryptFinal_ex (m_Ctx, out + len, &len); } CBCEncryption::CBCEncryption () { m_Ctx = EVP_CIPHER_CTX_new (); } CBCEncryption::~CBCEncryption () { if (m_Ctx) EVP_CIPHER_CTX_free (m_Ctx); } void CBCEncryption::Encrypt (const uint8_t * in, size_t len, const uint8_t * iv, uint8_t * out) { // len/16 EVP_EncryptInit_ex (m_Ctx, EVP_aes_256_cbc(), NULL, m_Key, iv); EVP_CIPHER_CTX_set_padding (m_Ctx, 0); int l; EVP_EncryptUpdate (m_Ctx, out, &l, in, len); EVP_EncryptFinal_ex (m_Ctx, out + l, &l); } CBCDecryption::CBCDecryption () { m_Ctx = EVP_CIPHER_CTX_new (); } CBCDecryption::~CBCDecryption () { if (m_Ctx) EVP_CIPHER_CTX_free (m_Ctx); } void CBCDecryption::Decrypt (const uint8_t * in, size_t len, const uint8_t * iv, uint8_t * out) { // len/16 EVP_DecryptInit_ex (m_Ctx, EVP_aes_256_cbc(), NULL, m_Key, iv); EVP_CIPHER_CTX_set_padding (m_Ctx, 0); int l; EVP_DecryptUpdate (m_Ctx, out, &l, in, len); EVP_DecryptFinal_ex (m_Ctx, out + l, &l); } void TunnelEncryption::Encrypt (const uint8_t * in, uint8_t * out) { uint8_t iv[16]; m_IVEncryption.Encrypt (in, iv); // iv m_LayerEncryption.Encrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, iv, out + 16); // data m_IVEncryption.Encrypt (iv, out); // double iv } void TunnelDecryption::Decrypt (const uint8_t * in, uint8_t * out) { uint8_t iv[16]; m_IVDecryption.Decrypt (in, iv); // iv m_LayerDecryption.Decrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, iv, out + 16); // data m_IVDecryption.Decrypt (iv, out); // double iv } // AEAD/ChaCha20/Poly1305 static bool AEADChaCha20Poly1305 (EVP_CIPHER_CTX * ctx, const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt) { if (!ctx || len < msgLen) return false; if (encrypt && len < msgLen + 16) return false; bool ret = true; int outlen = 0; if (encrypt) { EVP_EncryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0); EVP_EncryptInit_ex(ctx, NULL, NULL, key, nonce); EVP_EncryptUpdate(ctx, NULL, &outlen, ad, adLen); EVP_EncryptUpdate(ctx, buf, &outlen, msg, msgLen); EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, buf + msgLen); } else { #if defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x4000000fL std::vector m(msgLen + 16); if (msg == buf) { // we have to use different buffers otherwise verification fails memcpy (m.data (), msg, msgLen + 16); msg = m.data (); } #endif EVP_DecryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, 16, (uint8_t *)(msg + msgLen)); EVP_DecryptInit_ex(ctx, NULL, NULL, key, nonce); EVP_DecryptUpdate(ctx, NULL, &outlen, ad, adLen); EVP_DecryptUpdate(ctx, buf, &outlen, msg, msgLen); ret = EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen) > 0; } return ret; } bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt) { EVP_CIPHER_CTX * ctx = EVP_CIPHER_CTX_new (); auto ret = AEADChaCha20Poly1305 (ctx, msg, msgLen, ad, adLen, key, nonce, buf, len, encrypt); EVP_CIPHER_CTX_free (ctx); return ret; } AEADChaCha20Poly1305Encryptor::AEADChaCha20Poly1305Encryptor () { m_Ctx = EVP_CIPHER_CTX_new (); } AEADChaCha20Poly1305Encryptor::~AEADChaCha20Poly1305Encryptor () { if (m_Ctx) EVP_CIPHER_CTX_free (m_Ctx); } bool AEADChaCha20Poly1305Encryptor::Encrypt (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len) { return AEADChaCha20Poly1305 (m_Ctx, msg, msgLen, ad, adLen, key, nonce, buf, len, true); } void AEADChaCha20Poly1305Encryptor::Encrypt (const std::vector >& bufs, const uint8_t * key, const uint8_t * nonce, uint8_t * mac) { if (bufs.empty ()) return; int outlen = 0; EVP_EncryptInit_ex(m_Ctx, EVP_chacha20_poly1305(), 0, 0, 0); EVP_CIPHER_CTX_ctrl(m_Ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0); EVP_EncryptInit_ex(m_Ctx, NULL, NULL, key, nonce); for (const auto& it: bufs) EVP_EncryptUpdate(m_Ctx, it.first, &outlen, it.first, it.second); EVP_EncryptFinal_ex(m_Ctx, NULL, &outlen); EVP_CIPHER_CTX_ctrl(m_Ctx, EVP_CTRL_AEAD_GET_TAG, 16, mac); } AEADChaCha20Poly1305Decryptor::AEADChaCha20Poly1305Decryptor () { m_Ctx = EVP_CIPHER_CTX_new (); } AEADChaCha20Poly1305Decryptor::~AEADChaCha20Poly1305Decryptor () { if (m_Ctx) EVP_CIPHER_CTX_free (m_Ctx); } bool AEADChaCha20Poly1305Decryptor::Decrypt (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len) { return AEADChaCha20Poly1305 (m_Ctx, msg, msgLen, ad, adLen, key, nonce, buf, len, false); } static void ChaCha20 (EVP_CIPHER_CTX *ctx, const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out) { uint32_t iv[4]; iv[0] = htole32 (1); memcpy (iv + 1, nonce, 12); // counter | nonce EVP_EncryptInit_ex(ctx, EVP_chacha20 (), NULL, key, (const uint8_t *)iv); int outlen = 0; EVP_EncryptUpdate(ctx, out, &outlen, msg, msgLen); EVP_EncryptFinal_ex(ctx, NULL, &outlen); } void ChaCha20 (const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out) { EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new (); ChaCha20 (ctx, msg, msgLen, key, nonce, out); EVP_CIPHER_CTX_free (ctx); } ChaCha20Context::ChaCha20Context () { m_Ctx = EVP_CIPHER_CTX_new (); } ChaCha20Context::~ChaCha20Context () { if (m_Ctx) EVP_CIPHER_CTX_free (m_Ctx); } void ChaCha20Context::operator ()(const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out) { ChaCha20 (m_Ctx, msg, msgLen, key, nonce, out); } void HKDF (const uint8_t * salt, const uint8_t * key, size_t keyLen, const std::string& info, uint8_t * out, size_t outLen) { #if OPENSSL_HKDF EVP_PKEY_CTX * pctx = EVP_PKEY_CTX_new_id (EVP_PKEY_HKDF, nullptr); EVP_PKEY_derive_init (pctx); EVP_PKEY_CTX_set_hkdf_md (pctx, EVP_sha256()); if (key && keyLen) { EVP_PKEY_CTX_set1_hkdf_salt (pctx, salt, 32); EVP_PKEY_CTX_set1_hkdf_key (pctx, key, keyLen); } else { // zerolen EVP_PKEY_CTX_hkdf_mode (pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY); uint8_t tempKey[32]; unsigned int len; HMAC(EVP_sha256(), salt, 32, nullptr, 0, tempKey, &len); EVP_PKEY_CTX_set1_hkdf_key (pctx, tempKey, len); } if (info.length () > 0) EVP_PKEY_CTX_add1_hkdf_info (pctx, (const uint8_t *)info.c_str (), info.length ()); EVP_PKEY_derive (pctx, out, &outLen); EVP_PKEY_CTX_free (pctx); #else uint8_t prk[32]; unsigned int len; HMAC(EVP_sha256(), salt, 32, key, keyLen, prk, &len); auto l = info.length (); memcpy (out, info.c_str (), l); out[l] = 0x01; HMAC(EVP_sha256(), prk, 32, out, l + 1, out, &len); if (outLen > 32) // 64 { memcpy (out + 32, info.c_str (), l); out[l + 32] = 0x02; HMAC(EVP_sha256(), prk, 32, out, l + 33, out + 32, &len); } #endif } // Noise void NoiseSymmetricState::MixHash (const uint8_t * buf, size_t len) { SHA256_CTX ctx; SHA256_Init (&ctx); SHA256_Update (&ctx, m_H, 32); SHA256_Update (&ctx, buf, len); SHA256_Final (m_H, &ctx); } void NoiseSymmetricState::MixHash (const std::vector >& bufs) { SHA256_CTX ctx; SHA256_Init (&ctx); SHA256_Update (&ctx, m_H, 32); for (const auto& it: bufs) SHA256_Update (&ctx, it.first, it.second); SHA256_Final (m_H, &ctx); } void NoiseSymmetricState::MixKey (const uint8_t * sharedSecret) { HKDF (m_CK, sharedSecret, 32, "", m_CK); // new ck is m_CK[0:31], key is m_CK[32:63] } static void InitNoiseState (NoiseSymmetricState& state, const uint8_t * ck, const uint8_t * hh, const uint8_t * pub) { // pub is Bob's public static key, hh = SHA256(h) memcpy (state.m_CK, ck, 32); SHA256_CTX ctx; SHA256_Init (&ctx); SHA256_Update (&ctx, hh, 32); SHA256_Update (&ctx, pub, 32); SHA256_Final (state.m_H, &ctx); // h = MixHash(pub) = SHA256(hh || pub) } void InitNoiseNState (NoiseSymmetricState& state, const uint8_t * pub) { static const char protocolName[] = "Noise_N_25519_ChaChaPoly_SHA256"; // 31 chars static const uint8_t hh[32] = { 0x69, 0x4d, 0x52, 0x44, 0x5a, 0x27, 0xd9, 0xad, 0xfa, 0xd2, 0x9c, 0x76, 0x32, 0x39, 0x5d, 0xc1, 0xe4, 0x35, 0x4c, 0x69, 0xb4, 0xf9, 0x2e, 0xac, 0x8a, 0x1e, 0xe4, 0x6a, 0x9e, 0xd2, 0x15, 0x54 }; // hh = SHA256(protocol_name || 0) InitNoiseState (state, (const uint8_t *)protocolName, hh, pub); // ck = protocol_name || 0 } void InitNoiseXKState (NoiseSymmetricState& state, const uint8_t * pub) { static const uint8_t protocolNameHash[32] = { 0x72, 0xe8, 0x42, 0xc5, 0x45, 0xe1, 0x80, 0x80, 0xd3, 0x9c, 0x44, 0x93, 0xbb, 0x91, 0xd7, 0xed, 0xf2, 0x28, 0x98, 0x17, 0x71, 0x21, 0x8c, 0x1f, 0x62, 0x4e, 0x20, 0x6f, 0x28, 0xd3, 0x2f, 0x71 }; // SHA256 ("Noise_XKaesobfse+hs2+hs3_25519_ChaChaPoly_SHA256") static const uint8_t hh[32] = { 0x49, 0xff, 0x48, 0x3f, 0xc4, 0x04, 0xb9, 0xb2, 0x6b, 0x11, 0x94, 0x36, 0x72, 0xff, 0x05, 0xb5, 0x61, 0x27, 0x03, 0x31, 0xba, 0x89, 0xb8, 0xfc, 0x33, 0x15, 0x93, 0x87, 0x57, 0xdd, 0x3d, 0x1e }; // SHA256 (protocolNameHash) InitNoiseState (state, protocolNameHash, hh, pub); } void InitNoiseXKState1 (NoiseSymmetricState& state, const uint8_t * pub) { static const uint8_t protocolNameHash[32] = { 0xb1, 0x37, 0x22, 0x81, 0x74, 0x23, 0xa8, 0xfd, 0xf4, 0x2d, 0xf2, 0xe6, 0x0e, 0xd1, 0xed, 0xf4, 0x1b, 0x93, 0x07, 0x1d, 0xb1, 0xec, 0x24, 0xa3, 0x67, 0xf7, 0x84, 0xec, 0x27, 0x0d, 0x81, 0x32 }; // SHA256 ("Noise_XKchaobfse+hs1+hs2+hs3_25519_ChaChaPoly_SHA256") static const uint8_t hh[32] = { 0xdc, 0x85, 0xe6, 0xaf, 0x7b, 0x02, 0x65, 0x0c, 0xf1, 0xf9, 0x0d, 0x71, 0xfb, 0xc6, 0xd4, 0x53, 0xa7, 0xcf, 0x6d, 0xbf, 0xbd, 0x52, 0x5e, 0xa5, 0xb5, 0x79, 0x1c, 0x47, 0xb3, 0x5e, 0xbc, 0x33 }; // SHA256 (protocolNameHash) InitNoiseState (state, protocolNameHash, hh, pub); } void InitNoiseIKState (NoiseSymmetricState& state, const uint8_t * pub) { static const uint8_t protocolNameHash[32] = { 0x4c, 0xaf, 0x11, 0xef, 0x2c, 0x8e, 0x36, 0x56, 0x4c, 0x53, 0xe8, 0x88, 0x85, 0x06, 0x4d, 0xba, 0xac, 0xbe, 0x00, 0x54, 0xad, 0x17, 0x8f, 0x80, 0x79, 0xa6, 0x46, 0x82, 0x7e, 0x6e, 0xe4, 0x0c }; // SHA256("Noise_IKelg2+hs2_25519_ChaChaPoly_SHA256"), 40 bytes static const uint8_t hh[32] = { 0x9c, 0xcf, 0x85, 0x2c, 0xc9, 0x3b, 0xb9, 0x50, 0x44, 0x41, 0xe9, 0x50, 0xe0, 0x1d, 0x52, 0x32, 0x2e, 0x0d, 0x47, 0xad, 0xd1, 0xe9, 0xa5, 0x55, 0xf7, 0x55, 0xb5, 0x69, 0xae, 0x18, 0x3b, 0x5c }; // SHA256 (protocolNameHash) InitNoiseState (state, protocolNameHash, hh, pub); } // init and terminate /* std::vector > m_OpenSSLMutexes; static void OpensslLockingCallback(int mode, int type, const char * file, int line) { if (type > 0 && (size_t)type < m_OpenSSLMutexes.size ()) { if (mode & CRYPTO_LOCK) m_OpenSSLMutexes[type]->lock (); else m_OpenSSLMutexes[type]->unlock (); } }*/ void InitCrypto (bool precomputation) { /* auto numLocks = CRYPTO_num_locks(); for (int i = 0; i < numLocks; i++) m_OpenSSLMutexes.emplace_back (new std::mutex); CRYPTO_set_locking_callback (OpensslLockingCallback);*/ if (precomputation) { #if IS_X86_64 g_ElggTable = new BIGNUM * [ELGAMAL_FULL_EXPONENT_NUM_BYTES][255]; PrecalculateElggTable (g_ElggTable, ELGAMAL_FULL_EXPONENT_NUM_BYTES); #else g_ElggTable = new BIGNUM * [ELGAMAL_SHORT_EXPONENT_NUM_BYTES][255]; PrecalculateElggTable (g_ElggTable, ELGAMAL_SHORT_EXPONENT_NUM_BYTES); #endif } } void TerminateCrypto () { if (g_ElggTable) { DestroyElggTable (g_ElggTable, #if IS_X86_64 ELGAMAL_FULL_EXPONENT_NUM_BYTES #else ELGAMAL_SHORT_EXPONENT_NUM_BYTES #endif ); delete[] g_ElggTable; g_ElggTable = nullptr; } /* CRYPTO_set_locking_callback (nullptr); m_OpenSSLMutexes.clear ();*/ } } }