/*
* Copyright (c) 2013-2020, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/

#include <openssl/sha.h>
#include "Log.h"
#include "Crypto.h"
#include "Ed25519.h"

namespace i2p
{
namespace crypto
{
	Ed25519::Ed25519 ()
	{
		BN_CTX * ctx = BN_CTX_new ();
		BIGNUM * tmp = BN_new ();

		q = BN_new ();
		// 2^255-19
		BN_set_bit (q, 255); // 2^255
		BN_sub_word (q, 19);

		l = BN_new ();
		// 2^252 + 27742317777372353535851937790883648493
		BN_set_bit (l, 252);
		two_252_2 = BN_dup (l);
		BN_dec2bn (&tmp, "27742317777372353535851937790883648493");
		BN_add (l, l, tmp);
		BN_sub_word (two_252_2, 2); // 2^252 - 2

		 // -121665*inv(121666)
		d = BN_new ();
		BN_set_word (tmp, 121666);
		BN_mod_inverse (tmp, tmp, q, ctx);
		BN_set_word (d, 121665);
		BN_set_negative (d, 1);
		BN_mod_mul (d, d, tmp, q, ctx);

		// 2^((q-1)/4)
		I = BN_new ();
		BN_free (tmp);
		tmp = BN_dup (q);
		BN_sub_word (tmp, 1);
		BN_div_word (tmp, 4);
		BN_set_word (I, 2);
		BN_mod_exp (I, I, tmp, q, ctx);
		BN_free (tmp);

		// 4*inv(5)
		BIGNUM * By = BN_new ();
		BN_set_word (By, 5);
		BN_mod_inverse (By, By, q, ctx);
		BN_mul_word (By, 4);
		BIGNUM * Bx = RecoverX (By, ctx);
		BN_mod (Bx, Bx, q, ctx); // % q
		BN_mod (By, By, q, ctx); // % q

		// precalculate Bi256 table
		Bi256Carry = { Bx, By };  // B
		for (int i = 0; i < 32; i++)
		{
			Bi256[i][0] = Bi256Carry; // first point
			for (int j = 1; j < 128; j++)
				Bi256[i][j] = Sum (Bi256[i][j-1], Bi256[i][0], ctx); // (256+j+1)^i*B
			Bi256Carry = Bi256[i][127];
			for (int j = 0; j < 128; j++) // add first point 128 more times
				Bi256Carry = Sum (Bi256Carry, Bi256[i][0], ctx);
		}

		BN_CTX_free (ctx);
	}

	Ed25519::Ed25519 (const Ed25519& other): q (BN_dup (other.q)), l (BN_dup (other.l)),
		d (BN_dup (other.d)), I (BN_dup (other.I)), two_252_2 (BN_dup (other.two_252_2)),
		Bi256Carry (other.Bi256Carry)
	{
		for (int i = 0; i < 32; i++)
			for (int j = 0; j < 128; j++)
				Bi256[i][j] = other.Bi256[i][j];
	}

	Ed25519::~Ed25519 ()
	{
		BN_free (q);
		BN_free (l);
		BN_free (d);
		BN_free (I);
		BN_free (two_252_2);
	}


	EDDSAPoint Ed25519::GeneratePublicKey (const uint8_t * expandedPrivateKey, BN_CTX * ctx) const
	{
		return MulB (expandedPrivateKey, ctx); // left half of expanded key, considered as Little Endian
	}

	EDDSAPoint Ed25519::DecodePublicKey (const uint8_t * buf, BN_CTX * ctx) const
	{
		return DecodePoint (buf, ctx);
	}

	void Ed25519::EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf, BN_CTX * ctx) const
	{
		EncodePoint (Normalize (publicKey, ctx), buf);
	}

	bool Ed25519::Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature) const
	{
		BN_CTX * ctx = BN_CTX_new ();
		BIGNUM * h = DecodeBN<64> (digest);
		// signature 0..31 - R, 32..63 - S
		// B*S = R + PK*h => R = B*S - PK*h
		// we don't decode R, but encode (B*S - PK*h)
		auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S;
		BN_mod (h, h, l, ctx); // public key is multiple of B, but B%l = 0
		auto PKh = Mul (publicKey, h, ctx); // PK*h
		uint8_t diff[32];
		EncodePoint (Normalize (Sum (Bs, -PKh, ctx), ctx), diff); // Bs - PKh encoded
		bool passed = !memcmp (signature, diff, 32); // R
		BN_free (h);
		BN_CTX_free (ctx);
		if (!passed)
			LogPrint (eLogError, "25519 signature verification failed");
		return passed;
	}

	void Ed25519::Sign (const uint8_t * expandedPrivateKey, const uint8_t * publicKeyEncoded,
		const uint8_t * buf, size_t len, uint8_t * signature) const
	{
		BN_CTX * bnCtx = BN_CTX_new ();
		// calculate r
		SHA512_CTX ctx;
		SHA512_Init (&ctx);
		SHA512_Update (&ctx, expandedPrivateKey + EDDSA25519_PRIVATE_KEY_LENGTH, EDDSA25519_PRIVATE_KEY_LENGTH); // right half of expanded key
		SHA512_Update (&ctx, buf, len); // data
		uint8_t digest[64];
		SHA512_Final (digest, &ctx);
		BIGNUM * r = DecodeBN<32> (digest); // DecodeBN<64> (digest); // for test vectors
		// calculate R
		uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
		EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors
		// calculate S
		SHA512_Init (&ctx);
		SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
		SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
		SHA512_Update (&ctx, buf, len); // data
		SHA512_Final (digest, &ctx);
		BIGNUM * h = DecodeBN<64> (digest);
		// S = (r + h*a) % l
		BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (expandedPrivateKey); // left half of expanded key
		BN_mod_mul (h, h, a, l, bnCtx); // %l
		BN_mod_add (h, h, r, l, bnCtx); // %l
		memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
		EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
		BN_free (r); BN_free (h); BN_free (a);
		BN_CTX_free (bnCtx);
	}

	void Ed25519::SignRedDSA (const uint8_t * privateKey, const uint8_t * publicKeyEncoded,
		const uint8_t * buf, size_t len, uint8_t * signature) const
	{
		BN_CTX * bnCtx = BN_CTX_new ();
		// T = 80 random bytes
		uint8_t T[80];
		RAND_bytes (T, 80);
		// calculate r = H*(T || publickey || data)
		SHA512_CTX ctx;
		SHA512_Init (&ctx);
		SHA512_Update (&ctx, T, 80);
		SHA512_Update (&ctx, publicKeyEncoded, 32);
		SHA512_Update (&ctx, buf, len); // data
		uint8_t digest[64];
		SHA512_Final (digest, &ctx);
		BIGNUM * r = DecodeBN<64> (digest);
		BN_mod (r, r, l, bnCtx); // % l
		EncodeBN (r, digest, 32);
		// calculate R
		uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
		EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R);
		// calculate S
		SHA512_Init (&ctx);
		SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
		SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
		SHA512_Update (&ctx, buf, len); // data
		SHA512_Final (digest, &ctx);
		BIGNUM * h = DecodeBN<64> (digest);
		// S = (r + h*a) % l
		BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (privateKey);
		BN_mod_mul (h, h, a, l, bnCtx); // %l
		BN_mod_add (h, h, r, l, bnCtx); // %l
		memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
		EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
		BN_free (r); BN_free (h); BN_free (a);
		BN_CTX_free (bnCtx);
	}

	EDDSAPoint Ed25519::Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const
	{
		// x3 = (x1*y2+y1*x2)*(z1*z2-d*t1*t2)
		// y3 = (y1*y2+x1*x2)*(z1*z2+d*t1*t2)
		// z3 = (z1*z2-d*t1*t2)*(z1*z2+d*t1*t2)
		// t3 = (y1*y2+x1*x2)*(x1*y2+y1*x2)
		BIGNUM * x3 = BN_new (), * y3 = BN_new (), * z3 = BN_new (), * t3 = BN_new ();

		BN_mul (x3, p1.x, p2.x, ctx); // A = x1*x2
		BN_mul (y3, p1.y, p2.y, ctx); // B = y1*y2

		BN_CTX_start (ctx);
		BIGNUM * t1 = p1.t, * t2 = p2.t;
		if (!t1) { t1 = BN_CTX_get (ctx); BN_mul (t1, p1.x, p1.y, ctx); }
		if (!t2) { t2 = BN_CTX_get (ctx); BN_mul (t2, p2.x, p2.y, ctx); }
		BN_mul (t3, t1, t2, ctx);
		BN_mul (t3, t3, d, ctx);  // C = d*t1*t2

		if (p1.z)
		{
			if (p2.z)
				BN_mul (z3, p1.z, p2.z, ctx); // D = z1*z2
			else
				BN_copy (z3, p1.z); // D = z1
		}
		else
		{
			if (p2.z)
				BN_copy (z3, p2.z); // D = z2
			else
				BN_one (z3); // D = 1
		}

		BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx);
		BN_add (E, p1.x, p1.y);
		BN_add (F, p2.x, p2.y);
		BN_mul (E, E, F, ctx); // (x1 + y1)*(x2 + y2)
		BN_sub (E, E, x3);
		BN_sub (E, E, y3); // E = (x1 + y1)*(x2 + y2) - A - B
		BN_sub (F, z3, t3); // F = D - C
		BN_add (G, z3, t3); // G = D + C
		BN_add (H, y3, x3); // H = B + A

		BN_mod_mul (x3, E, F, q, ctx); // x3 = E*F
		BN_mod_mul (y3, G, H, q, ctx); // y3 = G*H
		BN_mod_mul (z3, F, G, q, ctx); // z3 = F*G
		BN_mod_mul (t3, E, H, q, ctx); // t3 = E*H

		BN_CTX_end (ctx);

		return EDDSAPoint {x3, y3, z3, t3};
	}

	void Ed25519::Double (EDDSAPoint& p, BN_CTX * ctx) const
	{
		BN_CTX_start (ctx);
		BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * z2 = BN_CTX_get (ctx), * t2 = BN_CTX_get (ctx);

		BN_sqr (x2, p.x, ctx); // x2 = A = x^2
		BN_sqr (y2, p.y, ctx); // y2 = B = y^2
		if (p.t)
			BN_sqr (t2, p.t, ctx); // t2 = t^2
		else
		{
			BN_mul (t2, p.x, p.y, ctx); // t = x*y
			BN_sqr (t2, t2, ctx);  // t2 = t^2
		}
		BN_mul (t2, t2, d, ctx);  // t2 = C = d*t^2
		if (p.z)
			BN_sqr (z2, p.z, ctx); // z2 = D = z^2
		else
			BN_one (z2); // z2 = 1

		BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx);
		// E = (x+y)*(x+y)-A-B = x^2+y^2+2xy-A-B = 2xy
		BN_mul (E, p.x, p.y, ctx);
		BN_lshift1 (E, E);	// E =2*x*y
		BN_sub (F, z2, t2); // F = D - C
		BN_add (G, z2, t2); // G = D + C
		BN_add (H, y2, x2); // H = B + A

		BN_mod_mul (p.x, E, F, q, ctx); // x2 = E*F
		BN_mod_mul (p.y, G, H, q, ctx); // y2 = G*H
		if (!p.z) p.z = BN_new ();
		BN_mod_mul (p.z, F, G, q, ctx); // z2 = F*G
		if (!p.t) p.t = BN_new ();
		BN_mod_mul (p.t, E, H, q, ctx); // t2 = E*H

		BN_CTX_end (ctx);
	}

	EDDSAPoint Ed25519::Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const
	{
		BIGNUM * zero = BN_new (), * one = BN_new ();
		BN_zero (zero); BN_one (one);
		EDDSAPoint res {zero, one};
		if (!BN_is_zero (e))
		{
			int bitCount = BN_num_bits (e);
			for (int i = bitCount - 1; i >= 0; i--)
			{
				Double (res, ctx);
				if (BN_is_bit_set (e, i)) res = Sum (res, p, ctx);
			}
		}
		return res;
	}

	EDDSAPoint Ed25519::MulB (const uint8_t * e, BN_CTX * ctx) const // B*e, e is 32 bytes Little Endian
	{
		BIGNUM * zero = BN_new (), * one = BN_new ();
		BN_zero (zero); BN_one (one);
		EDDSAPoint res {zero, one};
		bool carry = false;
		for (int i = 0; i < 32; i++)
		{
			uint8_t x = e[i];
			if (carry)
			{
				if (x < 255)
				{
					x++;
					carry = false;
				}
				else
					x = 0;
			}
			if (x > 0)
			{
				if (x <= 128)
					res = Sum (res, Bi256[i][x-1], ctx);
				else
				{
					res = Sum (res, -Bi256[i][255-x], ctx); // -Bi[256-x]
					carry = true;
				}
			}
		}
		if (carry) res = Sum (res, Bi256Carry, ctx);
		return res;
	}

	EDDSAPoint Ed25519::Normalize (const EDDSAPoint& p, BN_CTX * ctx) const
	{
		if (p.z)
		{
			BIGNUM * x = BN_new (), * y = BN_new ();
			BN_mod_inverse (y, p.z, q, ctx);
			BN_mod_mul (x, p.x, y, q, ctx); // x = x/z
			BN_mod_mul (y, p.y, y, q, ctx); // y = y/z
			return  EDDSAPoint{x, y};
		}
		else
			return EDDSAPoint{BN_dup (p.x), BN_dup (p.y)};
	}

	bool Ed25519::IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const
	{
		BN_CTX_start (ctx);
		BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * tmp = BN_CTX_get (ctx);
		BN_sqr (x2, p.x, ctx); // x^2
		BN_sqr (y2, p.y, ctx); // y^2
		// y^2 - x^2 - 1 - d*x^2*y^2
		BN_mul (tmp, d, x2, ctx);
		BN_mul (tmp, tmp, y2, ctx);
		BN_sub (tmp, y2, tmp);
		BN_sub (tmp, tmp, x2);
		BN_sub_word (tmp, 1);
		BN_mod (tmp, tmp, q, ctx); // % q
		bool ret = BN_is_zero (tmp);
		BN_CTX_end (ctx);
		return ret;
	}

	BIGNUM * Ed25519::RecoverX (const BIGNUM * y, BN_CTX * ctx) const
	{
		BN_CTX_start (ctx);
		BIGNUM * y2 = BN_CTX_get (ctx), * xx = BN_CTX_get (ctx);
		BN_sqr (y2, y, ctx); // y^2
		// xx = (y^2 -1)*inv(d*y^2 +1)
		BN_mul (xx, d, y2, ctx);
		BN_add_word (xx, 1);
		BN_mod_inverse (xx, xx, q, ctx);
		BN_sub_word (y2, 1);
		BN_mul (xx, y2, xx, ctx);
		// x = srqt(xx) = xx^(2^252-2)
		BIGNUM * x = BN_new ();
		BN_mod_exp (x, xx, two_252_2, q, ctx);
		// check (x^2 -xx) % q
		BN_sqr (y2, x, ctx);
		BN_mod_sub (y2, y2, xx, q, ctx);
		if (!BN_is_zero (y2))
			BN_mod_mul (x, x, I, q, ctx);
		if (BN_is_odd (x))
			BN_sub (x, q, x);
		BN_CTX_end (ctx);
		return x;
	}

	EDDSAPoint Ed25519::DecodePoint (const uint8_t * buf, BN_CTX * ctx) const
	{
		// buf is 32 bytes Little Endian, convert it to Big Endian
		uint8_t buf1[EDDSA25519_PUBLIC_KEY_LENGTH];
		for (size_t i = 0; i < EDDSA25519_PUBLIC_KEY_LENGTH/2; i++) // invert bytes
		{
			buf1[i] = buf[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i];
			buf1[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i] = buf[i];
		}
		bool isHighestBitSet = buf1[0] & 0x80;
		if (isHighestBitSet)
			buf1[0] &= 0x7f; // clear highest bit
		BIGNUM * y = BN_new ();
		BN_bin2bn (buf1, EDDSA25519_PUBLIC_KEY_LENGTH, y);
		BIGNUM * x = RecoverX (y, ctx);
		if (BN_is_bit_set (x, 0) != isHighestBitSet)
			BN_sub (x, q, x); // x = q - x
		BIGNUM * z = BN_new (), * t = BN_new ();
		BN_one (z); BN_mod_mul (t, x, y, q, ctx); // pre-calculate t
		EDDSAPoint p {x, y, z, t};
		if (!IsOnCurve (p, ctx))
			LogPrint (eLogError, "Decoded point is not on 25519");
		return p;
	}

	void Ed25519::EncodePoint (const EDDSAPoint& p, uint8_t * buf) const
	{
		EncodeBN (p.y, buf,EDDSA25519_PUBLIC_KEY_LENGTH);
		if (BN_is_bit_set (p.x, 0)) // highest bit
			buf[EDDSA25519_PUBLIC_KEY_LENGTH - 1] |= 0x80; // set highest bit
	}

	template<int len>
	BIGNUM * Ed25519::DecodeBN (const uint8_t * buf) const
	{
		// buf is Little Endian convert it to Big Endian
		uint8_t buf1[len];
		for (size_t i = 0; i < len/2; i++) // invert bytes
		{
			buf1[i] = buf[len -1 - i];
			buf1[len -1 - i] = buf[i];
		}
		BIGNUM * res = BN_new ();
		BN_bin2bn (buf1, len, res);
		return res;
	}

	void Ed25519::EncodeBN (const BIGNUM * bn, uint8_t * buf, size_t len) const
	{
		bn2buf (bn, buf, len);
		// To Little Endian
		for (size_t i = 0; i < len/2; i++) // invert bytes
		{
			uint8_t tmp = buf[i];
			buf[i] = buf[len -1 - i];
			buf[len -1 - i] = tmp;
		}
	}

#if !OPENSSL_X25519
	BIGNUM * Ed25519::ScalarMul (const BIGNUM * u, const BIGNUM * k, BN_CTX * ctx) const
	{
		BN_CTX_start (ctx);
		auto x1 = BN_CTX_get (ctx); BN_copy (x1, u);
		auto x2 = BN_CTX_get (ctx); BN_one (x2);
		auto z2 = BN_CTX_get (ctx); BN_zero (z2);
		auto x3 = BN_CTX_get (ctx); BN_copy (x3, u);
		auto z3 = BN_CTX_get (ctx); BN_one (z3);
		auto c121666 = BN_CTX_get (ctx); BN_set_word (c121666, 121666);
		auto tmp0 = BN_CTX_get (ctx); auto tmp1 = BN_CTX_get (ctx);
		unsigned int swap = 0;
		auto bits = BN_num_bits (k);
		while(bits)
		{
			--bits;
			auto k_t = BN_is_bit_set(k, bits) ? 1 : 0;
			swap ^= k_t;
			if (swap)
			{
				std::swap (x2, x3);
				std::swap (z2, z3);
			}
			swap = k_t;
			BN_mod_sub(tmp0, x3, z3, q, ctx);
			BN_mod_sub(tmp1, x2, z2, q, ctx);
			BN_mod_add(x2, x2, z2, q, ctx);
			BN_mod_add(z2, x3, z3, q, ctx);
			BN_mod_mul(z3, tmp0, x2, q, ctx);
			BN_mod_mul(z2, z2, tmp1, q, ctx);
			BN_mod_sqr(tmp0, tmp1, q, ctx);
			BN_mod_sqr(tmp1, x2, q, ctx);
			BN_mod_add(x3, z3, z2, q, ctx);
			BN_mod_sub(z2, z3, z2, q, ctx);
			BN_mod_mul(x2, tmp1, tmp0, q, ctx);
			BN_mod_sub(tmp1, tmp1, tmp0, q, ctx);
			BN_mod_sqr(z2, z2, q, ctx);
			BN_mod_mul(z3, tmp1, c121666, q, ctx);
			BN_mod_sqr(x3, x3, q, ctx);
			BN_mod_add(tmp0, tmp0, z3, q, ctx);
			BN_mod_mul(z3, x1, z2, q, ctx);
			BN_mod_mul(z2, tmp1, tmp0, q, ctx);
		}
		if (swap)
		{
			std::swap (x2, x3);
			std::swap (z2, z3);
		}
		BN_mod_inverse (z2, z2, q, ctx);
		BIGNUM * res =  BN_new (); // not from ctx
		BN_mod_mul(res, x2, z2, q, ctx);
		BN_CTX_end (ctx);
		return res;
	}

	void Ed25519::ScalarMul (const uint8_t * p, const  uint8_t * e, uint8_t * buf, BN_CTX * ctx) const
	{
		BIGNUM * p1 = DecodeBN<32> (p);
		uint8_t k[32];
		memcpy (k, e, 32);
		k[0] &= 248; k[31] &= 127; k[31] |= 64;
		BIGNUM * n = DecodeBN<32> (k);
		BIGNUM * q1 = ScalarMul (p1, n, ctx);
		EncodeBN (q1, buf, 32);
		BN_free (p1); BN_free (n); BN_free (q1);
	}

	void Ed25519::ScalarMulB (const  uint8_t * e, uint8_t * buf, BN_CTX * ctx) const
	{
		BIGNUM *p1 = BN_new (); BN_set_word (p1, 9);
		uint8_t k[32];
		memcpy (k, e, 32);
		k[0] &= 248; k[31] &= 127; k[31] |= 64;
		BIGNUM * n = DecodeBN<32> (k);
		BIGNUM * q1 = ScalarMul (p1, n, ctx);
		EncodeBN (q1, buf, 32);
		BN_free (p1); BN_free (n); BN_free (q1);
	}
#endif

	void Ed25519::BlindPublicKey (const uint8_t * pub, const uint8_t * seed, uint8_t * blinded)
	{
		BN_CTX * ctx = BN_CTX_new ();
		// calculate alpha = seed mod l
		BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian
		BN_mod (alpha, alpha, l, ctx); // % l
		uint8_t priv[32];
		EncodeBN (alpha, priv, 32); // back to Little Endian
		BN_free (alpha);
		// A' = BLIND_PUBKEY(A, alpha) = A + DERIVE_PUBLIC(alpha)
		auto A1 = Sum (DecodePublicKey (pub, ctx), MulB (priv, ctx), ctx); // pub + B*alpha
		EncodePublicKey (A1, blinded, ctx);
		BN_CTX_free (ctx);
	}

	void Ed25519::BlindPrivateKey (const uint8_t * priv, const uint8_t * seed, uint8_t * blindedPriv, uint8_t * blindedPub)
	{
		BN_CTX * ctx = BN_CTX_new ();
		// calculate alpha = seed mod l
		BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian
		BN_mod (alpha, alpha, l, ctx); // % l
		BIGNUM * p = DecodeBN<32> (priv); // priv is in Little Endian
		BN_add (alpha, alpha, p); // alpha = alpha + priv
		// a' = BLIND_PRIVKEY(a, alpha) = (a + alpha) mod L
		BN_mod (alpha, alpha, l, ctx); // % l
		EncodeBN (alpha, blindedPriv, 32);
		// A' = DERIVE_PUBLIC(a')
		auto A1 = MulB (blindedPriv, ctx);
		EncodePublicKey (A1, blindedPub, ctx);
		BN_free (alpha); BN_free (p);
		BN_CTX_free (ctx);
	}

	void Ed25519::ExpandPrivateKey (const uint8_t * key, uint8_t * expandedKey)
	{
		SHA512 (key, EDDSA25519_PRIVATE_KEY_LENGTH, expandedKey);
		expandedKey[0] &= 0xF8; // drop last 3 bits
		expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] &= 0x3F; // drop first 2 bits
		expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit
	}

	void Ed25519::CreateRedDSAPrivateKey (uint8_t * priv)
	{
		uint8_t seed[32];
		RAND_bytes (seed, 32);
		BIGNUM * p = DecodeBN<32> (seed);
		BN_CTX * ctx = BN_CTX_new ();
		BN_mod (p, p, l, ctx); // % l
		EncodeBN (p, priv, 32);
		BN_CTX_free (ctx);
		BN_free (p);
	}

	static std::unique_ptr<Ed25519> g_Ed25519;
	std::unique_ptr<Ed25519>& GetEd25519 ()
	{
		if (!g_Ed25519)
		{
			auto c = new Ed25519();
			if (!g_Ed25519) // make sure it was not created already
				g_Ed25519.reset (c);
			else
				delete c;
		}
		return g_Ed25519;
	}
}
}