* reorganize docs in build-notes*.md

This commit is contained in:
hagen 2016-10-26 00:00:00 +00:00
parent d8510ead43
commit 8e1687e7b3
8 changed files with 21 additions and 25 deletions

57
docs/building/android.md Normal file
View file

@ -0,0 +1,57 @@
Building on Android
===================
There are two versions: with QT and without QT.
Pre-requesties
--------------
You need to install Android SDK, NDK and QT with android support.
- [SDK](https://developer.android.com/studio/index.html) (choose command line tools only)
- [NDK](https://developer.android.com/ndk/downloads/index.html)
- [QT](https://www.qt.io/download-open-source/)(for QT only). Choose one for your platform for android. For example QT 5.6 under Linux would be [this file](http://download.qt.io/official_releases/qt/5.6/5.6.1-1/qt-opensource-linux-x64-android-5.6.1-1.run )
You also need Java JDK and Ant.
QT-Creator (for QT only)
------------------------
Open QT-creator that should be installed with QT.
Go to Settings/Anndroid and specify correct paths to SDK and NDK.
If everything is correct you will see two set avaiable:
Android for armeabi-v7a (gcc, qt) and Android for x86 (gcc, qt).
Dependencies
--------------
Take following pre-compiled binaries from PurpleI2P's repositories.
```bash
git clone https://github.com/PurpleI2P/Boost-for-Android-Prebuilt.git
git clone https://github.com/PurpleI2P/OpenSSL-for-Android-Prebuilt.git
git clone https://github.com/PurpleI2P/MiniUPnP-for-Android-Prebuilt.git
git clone https://github.com/PurpleI2P/android-ifaddrs.git
```
Building the app with QT
------------------------
- Open qt/i2pd_qt/i2pd_qt.pro in the QT-creator
- Change line MAIN_PATH = /path/to/libraries to an actual path where you put the dependancies to
- Select appropriate project (usually armeabi-v7a) and build
- You will find an .apk file in android-build/bin folder
Building the app without QT
---------------------------
- Change line I2PD_LIBS_PATH in android/jni/Application.mk to an actual path where you put the dependancies to
- Run 'ndk-build -j4' from andorid folder
- Create or edit file 'local.properties'. Place 'sdk.dir=<path to SDK>' and 'ndk.dir=<path to NDK>'
- Run 'ant clean debug'
Creating release .apk
----------------------
In order to create release .apk you must obtain a Java keystore file(.jks). Either you have in already, or you can generate it yourself using keytool, or from one of you existing well-know ceritificates. For example, i2pd release are signed with this [certificate](https://github.com/PurpleI2P/i2pd/blob/openssl/contrib/certificates/router/orignal_at_mail.i2p.crt).
Create file 'ant.propeties'
key.store='path to keystore file'
key.alias='alias name'
key.store.password='keystore password'
key.alias.password='alias password'
Run 'ant clean release'

75
docs/building/cross.md Normal file
View file

@ -0,0 +1,75 @@
Cross compilation notes
=======================
Static 64 bit windows binary on Ubuntu 15.10 (Wily Werewolf)
---------------------------------------------------------------------
Install cross compiler and friends
```sh
sudo apt-get install g++-mingw-w64-x86-64
```
Default is to use Win32 threading model which lacks std::mutex and such. So we change defaults
```sh
sudo update-alternatives --set x86_64-w64-mingw32-g++ /usr/bin/x86_64-w64-mingw32-g++-posix
```
From now on we assume we have everything in `~/dev/`. Get Boost sources unpacked into `~/dev/boost_1_60_0/`
and change directory to it.
Now add out cross compiler configuration. Warning: the following will wipe out whatever you had in there.
```sh
echo "using gcc : mingw : x86_64-w64-mingw32-g++ ;" > ~/user-config.jam
```
Proceed with building Boost normal way, but let's define dedicated staging directory
```sh
./bootstrap.sh
./b2 toolset=gcc-mingw target-os=windows variant=release link=static runtime-link=static address-model=64 \
--build-type=minimal --with-filesystem --with-program_options --with-date_time \
--stagedir=stage-mingw-64
cd ..
```
Now we get & build OpenSSL
```sh
git clone https://github.com/openssl/openssl
cd openssl
git checkout OpenSSL_1_0_2g
./Configure mingw64 no-rc2 no-rc4 no-rc5 no-idea no-bf no-cast no-whirlpool no-md2 no-md4 no-ripemd no-mdc2 \
no-camellia no-seed no-comp no-krb5 no-gmp no-rfc3779 no-ec2m no-ssl2 no-jpake no-srp no-sctp no-srtp \
--prefix=~/dev/stage --cross-compile-prefix=x86_64-w64-mingw32-
make depend
make
make install
cd ..
```
and Zlib
```sh
git clone https://github.com/madler/zlib
cd zlib
git checkout v1.2.8
CC=x86_64-w64-mingw32-gcc CFLAGS=-O3 ./configure --static --64 --prefix=~/dev/stage
make
make install
cd ..
```
Now we prepare cross toolchain hint file for CMake, let's name it `~/dev/toolchain-mingw.cmake`
```cmake
SET(CMAKE_SYSTEM_NAME Windows)
SET(CMAKE_C_COMPILER x86_64-w64-mingw32-gcc)
SET(CMAKE_CXX_COMPILER x86_64-w64-mingw32-g++)
SET(CMAKE_RC_COMPILER x86_64-w64-mingw32-windres)
SET(CMAKE_FIND_ROOT_PATH /usr/x86_64-w64-mingw32)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
```
Download miniupnpc, unpack, and symlink it into `~/dev/miniupnpc/`.
Finally, we can build i2pd with all that goodness
```sh
git clone https://github.com/PurpleI2P/i2pd
mkdir i2pd-mingw-64-build
cd i2pd-mingw-64-build
BOOST_ROOT=~/dev/boost_1_60_0 cmake -G 'Unix Makefiles' ~/dev/i2pd/build -DBUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=~/dev/toolchain-mingw.cmake -DWITH_AESNI=ON -DWITH_UPNP=ON -DWITH_STATIC=ON \
-DWITH_HARDENING=ON -DCMAKE_INSTALL_PREFIX:PATH=~/dev/i2pd-mingw-64-static \
-DZLIB_ROOT=~/dev/stage -DBOOST_LIBRARYDIR:PATH=~/dev/boost_1_60_0/stage-mingw-64/lib \
-DOPENSSL_ROOT_DIR:PATH=~/dev/stage
make
x86_64-w64-mingw32-strip i2pd.exe
```
By now, you should have a release build with stripped symbols.

85
docs/building/ios.md Normal file
View file

@ -0,0 +1,85 @@
Building on iOS
===================
How to build i2pd for iOS 9 and iOS Simulator 386/x64
Prerequisites
--------------
XCode7+, cmake 3.2+
Dependencies
--------------
- precompiled openssl
- precompiled boost with modules `filesystem`, `program_options`, `date_time` and `system`
- ios-cmake toolchain from https://github.com/vovasty/ios-cmake.git
Building
------------------------
Assume you have folder structure
```
lib
libboost_date_time.a
libboost_filesystem.a
libboost_program_options.a
libboost_system.a
libboost.a
libcrypto.a
libssl.a
include
boost
openssl
ios-cmake
i2pd
```
```bash
mkdir -p build/simulator/lib build/ios/lib include/i2pd
pushd build/simulator && \
cmake -DIOS_PLATFORM=SIMULATOR \
-DPATCH=/usr/bin/patch \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=../../ios-cmake/toolchain/iOS.cmake \
-DWITH_STATIC=yes \
-DWITH_BINARY=no \
-DBoost_INCLUDE_DIR=../../include \
-DOPENSSL_INCLUDE_DIR=../../include \
-DBoost_LIBRARY_DIR=../../lib \
-DOPENSSL_SSL_LIBRARY=../../lib/libssl.a \
-DOPENSSL_CRYPTO_LIBRARY=../../lib/libcrypto.a \
../../i2pd/build && \
make -j16 VERBOSE=1 && \
popd
pushd build/ios
cmake -DIOS_PLATFORM=OS \
-DPATCH=/usr/bin/patch \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=../../ios-cmake/toolchain/iOS.cmake \
-DWITH_STATIC=yes \
-DWITH_BINARY=no \
-DBoost_INCLUDE_DIR=../../include \
-DOPENSSL_INCLUDE_DIR=../../include \
-DBoost_LIBRARY_DIR=../../lib \
-DOPENSSL_SSL_LIBRARY=../../lib/libssl.a \
-DOPENSSL_CRYPTO_LIBRARY=../../lib/libcrypto.a \
../../i2pd/build && \
make -j16 VERBOSE=1 && \
popd
libtool -static -o lib/libi2pdclient.a build/*/libi2pdclient.a
libtool -static -o lib/libi2pd.a build/*/libi2pd.a
cp i2pd/*.h include/i2pd
```
Include into project
---------------------------
1. add all libraries in `lib` folder to `Project linked frameworks`.
2. add `libc++` and `libz` libraries from system libraries to `Project linked frameworks`.
3. add path to i2p headers to your `Headers search paths`
Alternatively you may use swift wrapper https://github.com/vovasty/SwiftyI2P.git

View file

@ -0,0 +1,14 @@
Build requirements
==================
In general, for building i2pd you need several things:
* compiler with c++11 support (for example: gcc >= 4.7, clang)
* boost >= 1.49
* openssl library
* zlib library (openssl already depends on it)
Optional tools:
* cmake >= 2.8 (or 3.3+ if you want to use precompiled headers on windows)
* miniupnp library (for upnp support)

148
docs/building/unix.md Normal file
View file

@ -0,0 +1,148 @@
Building on Unix systems
=============================
First of all we need to make sure that all dependencies are satisfied.
This doc is trying to cover:
* [Debian/Ubuntu](#debian-ubuntu) (contains packaging instructions)
* [Fedora/Centos](#fedora-centos)
* [Fedora/Centos](#mac-os-x)
* [FreeBSD](#freebsd)
Make sure you have all required dependencies for your system successfully installed.
If so then we are ready to go!
Let's clone the repository and start building the i2pd:
```bash
git clone https://github.com/PurpleI2P/i2pd.git
cd i2pd/build
cmake -DCMAKE_BUILD_TYPE=Release # more options could be passed, see "CMake Options"
make # you may add VERBOSE=1 to cmdline for debugging
```
After successfull build i2pd could be installed with:
```bash
make install
```
or you can just use 'make' once you have all dependencies (boost and openssl) installed
```bash
git clone https://github.com/PurpleI2P/i2pd.git
cd i2pd
make
```
Debian/Ubuntu
-------------
You will need a compiler and other tools that could be installed with `build-essential` package:
```bash
sudo apt-get install build-essential
```
Also you will need a bunch of development libraries:
```bash
sudo apt-get install \
libboost-chrono-dev \
libboost-date-time-dev \
libboost-filesystem-dev \
libboost-program-options-dev \
libboost-system-dev \
libboost-thread-dev \
libssl-dev
```
If you need UPnP support (don't forget to run CMake with `WITH_UPNP=ON`) miniupnpc development library should be installed:
```bash
sudo apt-get install libminiupnpc-dev
```
You may also build deb-package with the following:
```bash
sudo apt-get install fakeroot devscripts
cd i2pd
debuild --no-tgz-check
```
Fedora/Centos
-------------
You will need a compiler and other tools to perform a build:
```bash
sudo yum install make cmake gcc gcc-c++
```
*Latest Fedora system using [DNF](https://en.wikipedia.org/wiki/DNF_(software)) instead of YUM by default, you may prefer to use DNF, but YUM should be ok*
Also you will need a bunch of development libraries
```bash
sudo yum install boost-devel openssl-devel
```
If you need UPnP support (don't forget to run CMake with `WITH_UPNP=ON`) miniupnpc development library should be installed:
```bash
miniupnpc-devel
```
> *Centos 7 has CMake 2.8.11 in the official repositories that too old to build i2pd, CMake >=2.8.12 is required.*
>
> But you can use cmake3 from the epel repository:
> ```bash
> yum install epel-release -y
> yum install make cmake3 gcc gcc-c++ miniupnpc-devel boost-devel openssl-devel -y
> cmake3 -DWITH_LIBRARY=OFF -DWITH_UPNP=ON -DWITH_HARDENING=ON -DBUILD_SHARED_LIBS:BOOL=OFF
> make
> ```
MAC OS X
--------
Requires [homebrew](http://brew.sh/)
```bash
brew install libressl boost
```
Then build:
```bash
make HOMEBREW=1
```
FreeBSD
-------
For 10.X use clang. You would also need boost and openssl ports.
Type gmake, it invokes Makefile.bsd, make necessary changes there is required.
Branch 9.X has gcc v4.2, that knows nothing about required c++11 standart.
Required ports:
* `devel/cmake`
* `devel/boost-libs`
* `lang/gcc47`(or later version)
To use newer compiler you should set these variables(replace "47" with your actual gcc version):
```bash
export CC=/usr/local/bin/gcc47
export CXX=/usr/local/bin/g++47
```
CMake Options
-------------
Available CMake options(each option has a form of `<key>=<value>`, for more information see `man 1 cmake`):
* `CMAKE_BUILD_TYPE` build profile (Debug/Release)
* `WITH_BINARY` build i2pd itself
* `WITH_LIBRARY` build libi2pd
* `WITH_STATIC` build static versions of library and i2pd binary
* `WITH_UPNP` build with UPnP support (requires libupnp)
* `WITH_AESNI` build with AES-NI support (ON/OFF)
* `WITH_HARDENING` enable hardening features (ON/OFF) (gcc only)
* `WITH_PCH` use pre-compiled header (experimental, speeds up build)
Also there is `-L` flag for CMake that could be used to list current cached options:
```bash
cmake -L
```

195
docs/building/windows.md Normal file
View file

@ -0,0 +1,195 @@
Building on Windows
=========================
There are two approaches available to build i2pd on Windows. The best
one depends on your needs and personal preferences. One is to use
msys2 and [unix alike infrastructure](unix.md). Another
one is to use Visual Studio. While there might be no difference for
end users of i2pd daemon, developers, however, shall be wary of
differences in C++ name mangling between the two compilers when making
a choice to be able to link their software against libi2pd.
If you are a stranger to C++ with no development tools installed on
your system and your only goal is to have i2pd up and running from the
most recent source, consider using msys2. Although it relies on
command line operations, it should be straight forward.
In this guide, we will use CMake for both approaches and we will
assume that you typically have your projects in C:\dev\ as your
development location for the sake of convenience. Adjust paths
accordingly if it is not the case. Note that msys uses unix-alike
paths like /c/dev/ for C:\dev\.
msys2
-----
### x86 (32-bit architecture)
Get install file msys2-i686-*.exe from https://msys2.github.io.
open MSYS2 Shell (from Start menu).
Install all prerequisites and download i2pd source:
```bash
pacman -S mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-gcc git make
mkdir -p /c/dev/i2pd
cd /c/dev/i2pd
git clone https://github.com/PurpleI2P/i2pd.git
cd i2pd
export PATH=/mingw32/bin:/usr/bin # we need compiler on PATH which is usually heavily cluttered on Windows
make
```
### x64 (64-bit architecture)
Get install file msys2-x86_64-*.exe from https://msys2.github.io.
open MSYS2 Shell (from Start menu).
Install all prerequisites and download i2pd source:
```bash
pacman -S mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-gcc git make
mkdir -p /c/dev/i2pd
cd /c/dev/i2pd
git clone https://github.com/PurpleI2P/i2pd.git
cd i2pd
export PATH=/mingw64/bin:/usr/bin # we need compiler on PATH which is usually heavily cluttered on Windows
make
```
### Caveats
It is important to restrict PATH as described above. If you have
Strawberry Perl and/or Mercurial installed, it will pick up gcc &
openssl from the wrong places.
If you do use precompiled headers to speed up compilation
(recommended), things can go wrong if compiler options have changed
for whatever reason. Just delete `stdafx.h.gch` found in your build
folder, note the file extension.
If you are an Arch Linux user, refrain from updating system with
`pacman -Syu`. Always update runtime separately as described on the
home page, otherwise you might end up with DLLs incompatibility
problems.
### AES-NI
If your processor has
[AES instruction set](https://en.wikipedia.org/wiki/AES_instruction_set),
you use `make USE_AESNI=1`. No check is done however, it
will compile, but it might crash with `Illegal instruction` if not supported.
You should be able to run ./i2pd . If you need to start from the new
shell, consider starting *MinGW-w64 Win32 Shell* instead of *MSYS2 Shell* as
it adds`/minw32/bin` to the PATH.
### UPnP
You can install it through the MSYS2
and build with USE_UPNP key.
```bash
pacman -S mingw-w64-i686-miniupnpc
make USE_UPNP=yes
```
or
```bash
pacman -S mingw-w64-x86_64-miniupnpc
make USE_UPNP=yes
```
Using Visual Studio
-------------------
Requirements for building:
* [CMake](https://cmake.org/) (tested with 3.1.3)
* [Visual Studio Community Edition](https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx) (tested with VS2013 Update 4)
* [Boost](http://www.boost.org/) (tested with 1.59)
* Optionally [MiniUPnP](http://miniupnp.free.fr) (tested with 1.9), we need only few client headers
* OpenSSL (tested with 1.0.1p and 1.0.2e), if building from sources (recommended), you'll need as well
* [Netwide assembler](http://www.nasm.us/)
* Strawberry Perl or ActiveState Perl, do NOT try msys2 perl, it won't work
### Building Boost
Open a Command Prompt (there is no need to start Visual Studio command
prompt to build Boost) and run the following:
cd C:\dev\boost
bootstrap
b2 toolset=msvc-12.0 --build-type=complete --with-filesystem --with-program_options --with-date_time
If you are on 64-bit Windows and you want to build 64-bit version as well
b2 toolset=msvc-12.0 --build-type=complete --stagedir=stage64 address-model=64 --with-filesystem --with-program_options --with-date_time
After Boost is compiled, set the environment variable `BOOST_ROOT` to
the directory Boost was unpacked to, e.g., C:\dev\boost.
If you are planning on building only particular variant, e.g. Debug
only and static linking, and/or you are out of space/time, you might
consider `--build-type=minimal`. Take a look at
[appveyor.yml](../appveyor.yml) for details on how test builds are done.
### Building OpenSSL
Download OpenSSL, e.g. with git
git clone https://github.com/openssl/openssl.git
cd openssl
git checkout OpenSSL_1_0_1p
Now open Visual Studio command prompt and change directory to that with OpenSSL
set "PATH=%PATH%;C:\Program Files (x86)\nasm"
perl Configure VC-WIN32 --prefix=c:\OpenSSL-Win32
ms\do_nasm
nmake -f ms\ntdll.mak
nmake -f ms\ntdll.mak install
You should have it installed into C:\OpenSSL-Win32 by now.
Note that you might consider providing `-DOPENSSL_ROOT_DIR` to CMake
and/or create a symlink (with mklink /J) to C:\OpenSSL if you plan on
maintaining multiple versions, e.g. 64 bit and/or
static/shared. Consult `C:\Program Files
(x86)\CMake\share\cmake-3.3\Modules\FindOpenSSL.cmake` for details.
### Get miniupnpc
If you are behind a UPnP enabled router and don't feel like manually
configuring port forwarding, you should consider using
[MiniUPnP](http://miniupnp.free.fr) client. I2pd can be built capable
of using miniupnpc shared library (DLL) to open up necessary
port. You'd want to have include headers around to build i2pd with
support for this. Unpack client source code in a sibling folder,
e.g. C:\dev\miniupnpc . You may want to remove version number from
folder name included in downloaded archive.
### Creating Visual Studio project
Start CMake GUI, navigate to i2pd directory, choose building directory, e.g. ./out, and configure options.
Alternatively, if you feel adventurous, try that from the command line
```
cd <i2pd_dir>
mkdir out
cd out
cmake ..\build -G "Visual Studio 12 2013" -DWITH_UPNP=ON -DWITH_PCH=ON -DCMAKE_INSTALL_PREFIX:PATH=C:\dev\Debug_Win32_stage
```
WITH_UPNP will stay off, if necessary files are not found.
### Building i2pd
You can open generated solution/project with Visual Studio and build
from there, alternatively you can use `cmake --build . --config Release --target install` or
[MSBuild tool](https://msdn.microsoft.com/en-us/library/dd293626.aspx)
`msbuild i2pd.sln /p:Configuration=Release`.