Merge pull request #228 from EinMByte/master

Various changes
This commit is contained in:
Riccardo Spagni 2015-07-22 14:34:29 +02:00
commit 85b1505e51
105 changed files with 22391 additions and 22194 deletions

2
.gitignore vendored
View file

@ -5,6 +5,8 @@ router.keys
i2p
libi2pd.so
netDb
tunnels.cfg
tests/tests
# Autotools
autom4te.cache

File diff suppressed because it is too large Load diff

View file

@ -17,86 +17,86 @@ namespace i2p
{
namespace client
{
const char DEFAULT_SUBSCRIPTION_ADDRESS[] = "http://udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.i2p/hosts.txt";
const int INITIAL_SUBSCRIPTION_UPDATE_TIMEOUT = 3; // in minutes
const int INITIAL_SUBSCRIPTION_RETRY_TIMEOUT = 1; // in minutes
const int CONTINIOUS_SUBSCRIPTION_UPDATE_TIMEOUT = 720; // in minutes (12 hours)
const int CONTINIOUS_SUBSCRIPTION_RETRY_TIMEOUT = 5; // in minutes
const int SUBSCRIPTION_REQUEST_TIMEOUT = 60; //in second
inline std::string GetB32Address(const i2p::data::IdentHash& ident) { return ident.ToBase32().append(".b32.i2p"); }
const char DEFAULT_SUBSCRIPTION_ADDRESS[] = "http://udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.i2p/hosts.txt";
const int INITIAL_SUBSCRIPTION_UPDATE_TIMEOUT = 3; // in minutes
const int INITIAL_SUBSCRIPTION_RETRY_TIMEOUT = 1; // in minutes
const int CONTINIOUS_SUBSCRIPTION_UPDATE_TIMEOUT = 720; // in minutes (12 hours)
const int CONTINIOUS_SUBSCRIPTION_RETRY_TIMEOUT = 5; // in minutes
const int SUBSCRIPTION_REQUEST_TIMEOUT = 60; //in second
inline std::string GetB32Address(const i2p::data::IdentHash& ident) { return ident.ToBase32().append(".b32.i2p"); }
class AddressBookStorage // interface for storage
{
public:
class AddressBookStorage // interface for storage
{
public:
virtual ~AddressBookStorage () {};
virtual bool GetAddress (const i2p::data::IdentHash& ident, i2p::data::IdentityEx& address) const = 0;
virtual void AddAddress (const i2p::data::IdentityEx& address) = 0;
virtual void RemoveAddress (const i2p::data::IdentHash& ident) = 0;
virtual int Load (std::map<std::string, i2p::data::IdentHash>& addresses) = 0;
virtual int Save (const std::map<std::string, i2p::data::IdentHash>& addresses) = 0;
};
virtual ~AddressBookStorage () {};
virtual bool GetAddress (const i2p::data::IdentHash& ident, i2p::data::IdentityEx& address) const = 0;
virtual void AddAddress (const i2p::data::IdentityEx& address) = 0;
virtual void RemoveAddress (const i2p::data::IdentHash& ident) = 0;
virtual int Load (std::map<std::string, i2p::data::IdentHash>& addresses) = 0;
virtual int Save (const std::map<std::string, i2p::data::IdentHash>& addresses) = 0;
};
class AddressBookSubscription;
class AddressBook
{
public:
class AddressBookSubscription;
class AddressBook
{
public:
AddressBook ();
~AddressBook ();
void Start ();
void Stop ();
bool GetIdentHash (const std::string& address, i2p::data::IdentHash& ident);
bool GetAddress (const std::string& address, i2p::data::IdentityEx& identity);
const i2p::data::IdentHash * FindAddress (const std::string& address);
void InsertAddress (const std::string& address, const std::string& base64); // for jump service
void InsertAddress (const i2p::data::IdentityEx& address);
AddressBook ();
~AddressBook ();
void Start ();
void Stop ();
bool GetIdentHash (const std::string& address, i2p::data::IdentHash& ident);
bool GetAddress (const std::string& address, i2p::data::IdentityEx& identity);
const i2p::data::IdentHash * FindAddress (const std::string& address);
void InsertAddress (const std::string& address, const std::string& base64); // for jump service
void InsertAddress (const i2p::data::IdentityEx& address);
void LoadHostsFromStream (std::istream& f);
void DownloadComplete (bool success);
//This method returns the ".b32.i2p" address
std::string ToAddress(const i2p::data::IdentHash& ident) { return GetB32Address(ident); }
std::string ToAddress(const i2p::data::IdentityEx& ident) { return ToAddress(ident.GetIdentHash ()); }
private:
void LoadHostsFromStream (std::istream& f);
void DownloadComplete (bool success);
//This method returns the ".b32.i2p" address
std::string ToAddress(const i2p::data::IdentHash& ident) { return GetB32Address(ident); }
std::string ToAddress(const i2p::data::IdentityEx& ident) { return ToAddress(ident.GetIdentHash ()); }
private:
void StartSubscriptions ();
void StopSubscriptions ();
AddressBookStorage * CreateStorage ();
void LoadHosts ();
void LoadSubscriptions ();
void StartSubscriptions ();
void StopSubscriptions ();
AddressBookStorage * CreateStorage ();
void LoadHosts ();
void LoadSubscriptions ();
void HandleSubscriptionsUpdateTimer (const boost::system::error_code& ecode);
void HandleSubscriptionsUpdateTimer (const boost::system::error_code& ecode);
private:
private:
std::mutex m_AddressBookMutex;
std::map<std::string, i2p::data::IdentHash> m_Addresses;
AddressBookStorage * m_Storage;
volatile bool m_IsLoaded, m_IsDownloading;
std::vector<AddressBookSubscription *> m_Subscriptions;
AddressBookSubscription * m_DefaultSubscription; // in case if we don't know any addresses yet
boost::asio::deadline_timer * m_SubscriptionsUpdateTimer;
};
std::mutex m_AddressBookMutex;
std::map<std::string, i2p::data::IdentHash> m_Addresses;
AddressBookStorage * m_Storage;
volatile bool m_IsLoaded, m_IsDownloading;
std::vector<AddressBookSubscription *> m_Subscriptions;
AddressBookSubscription * m_DefaultSubscription; // in case if we don't know any addresses yet
boost::asio::deadline_timer * m_SubscriptionsUpdateTimer;
};
class AddressBookSubscription
{
public:
class AddressBookSubscription
{
public:
AddressBookSubscription (AddressBook& book, const std::string& link);
void CheckSubscription ();
AddressBookSubscription (AddressBook& book, const std::string& link);
void CheckSubscription ();
private:
private:
void Request ();
private:
void Request ();
private:
AddressBook& m_Book;
std::string m_Link, m_Etag, m_LastModified;
};
AddressBook& m_Book;
std::string m_Link, m_Etag, m_LastModified;
};
}
}

1194
BOB.cpp

File diff suppressed because it is too large Load diff

344
BOB.h
View file

@ -16,220 +16,220 @@ namespace i2p
{
namespace client
{
const size_t BOB_COMMAND_BUFFER_SIZE = 1024;
const char BOB_COMMAND_ZAP[] = "zap";
const char BOB_COMMAND_QUIT[] = "quit";
const char BOB_COMMAND_START[] = "start";
const char BOB_COMMAND_STOP[] = "stop";
const char BOB_COMMAND_SETNICK[] = "setnick";
const char BOB_COMMAND_GETNICK[] = "getnick";
const char BOB_COMMAND_NEWKEYS[] = "newkeys";
const char BOB_COMMAND_GETKEYS[] = "getkeys";
const char BOB_COMMAND_SETKEYS[] = "setkeys";
const char BOB_COMMAND_GETDEST[] = "getdest";
const char BOB_COMMAND_OUTHOST[] = "outhost";
const char BOB_COMMAND_OUTPORT[] = "outport";
const char BOB_COMMAND_INHOST[] = "inhost";
const char BOB_COMMAND_INPORT[] = "inport";
const char BOB_COMMAND_QUIET[] = "quiet";
const char BOB_COMMAND_LOOKUP[] = "lookup";
const char BOB_COMMAND_CLEAR[] = "clear";
const char BOB_COMMAND_LIST[] = "list";
const char BOB_COMMAND_OPTION[] = "option";
const char BOB_VERSION[] = "BOB 00.00.10\nOK\n";
const char BOB_REPLY_OK[] = "OK %s\n";
const char BOB_REPLY_ERROR[] = "ERROR %s\n";
const char BOB_DATA[] = "NICKNAME %s\n";
const size_t BOB_COMMAND_BUFFER_SIZE = 1024;
const char BOB_COMMAND_ZAP[] = "zap";
const char BOB_COMMAND_QUIT[] = "quit";
const char BOB_COMMAND_START[] = "start";
const char BOB_COMMAND_STOP[] = "stop";
const char BOB_COMMAND_SETNICK[] = "setnick";
const char BOB_COMMAND_GETNICK[] = "getnick";
const char BOB_COMMAND_NEWKEYS[] = "newkeys";
const char BOB_COMMAND_GETKEYS[] = "getkeys";
const char BOB_COMMAND_SETKEYS[] = "setkeys";
const char BOB_COMMAND_GETDEST[] = "getdest";
const char BOB_COMMAND_OUTHOST[] = "outhost";
const char BOB_COMMAND_OUTPORT[] = "outport";
const char BOB_COMMAND_INHOST[] = "inhost";
const char BOB_COMMAND_INPORT[] = "inport";
const char BOB_COMMAND_QUIET[] = "quiet";
const char BOB_COMMAND_LOOKUP[] = "lookup";
const char BOB_COMMAND_CLEAR[] = "clear";
const char BOB_COMMAND_LIST[] = "list";
const char BOB_COMMAND_OPTION[] = "option";
const char BOB_VERSION[] = "BOB 00.00.10\nOK\n";
const char BOB_REPLY_OK[] = "OK %s\n";
const char BOB_REPLY_ERROR[] = "ERROR %s\n";
const char BOB_DATA[] = "NICKNAME %s\n";
class BOBI2PTunnel: public I2PService
{
public:
class BOBI2PTunnel: public I2PService
{
public:
BOBI2PTunnel (std::shared_ptr<ClientDestination> localDestination):
I2PService (localDestination) {};
BOBI2PTunnel (std::shared_ptr<ClientDestination> localDestination):
I2PService (localDestination) {};
virtual void Start () {};
virtual void Stop () {};
};
class BOBI2PInboundTunnel: public BOBI2PTunnel
{
struct AddressReceiver
{
std::shared_ptr<boost::asio::ip::tcp::socket> socket;
char buffer[BOB_COMMAND_BUFFER_SIZE + 1]; // for destination base64 address
uint8_t * data; // pointer to buffer
size_t dataLen, bufferOffset;
virtual void Start () {};
virtual void Stop () {};
};
class BOBI2PInboundTunnel: public BOBI2PTunnel
{
struct AddressReceiver
{
std::shared_ptr<boost::asio::ip::tcp::socket> socket;
char buffer[BOB_COMMAND_BUFFER_SIZE + 1]; // for destination base64 address
uint8_t * data; // pointer to buffer
size_t dataLen, bufferOffset;
AddressReceiver (): data (nullptr), dataLen (0), bufferOffset (0) {};
};
public:
AddressReceiver (): data (nullptr), dataLen (0), bufferOffset (0) {};
};
public:
BOBI2PInboundTunnel (int port, std::shared_ptr<ClientDestination> localDestination);
~BOBI2PInboundTunnel ();
BOBI2PInboundTunnel (int port, std::shared_ptr<ClientDestination> localDestination);
~BOBI2PInboundTunnel ();
void Start ();
void Stop ();
void Start ();
void Stop ();
private:
private:
void Accept ();
void HandleAccept (const boost::system::error_code& ecode, std::shared_ptr<AddressReceiver> receiver);
void Accept ();
void HandleAccept (const boost::system::error_code& ecode, std::shared_ptr<AddressReceiver> receiver);
void ReceiveAddress (std::shared_ptr<AddressReceiver> receiver);
void HandleReceivedAddress (const boost::system::error_code& ecode, std::size_t bytes_transferred,
std::shared_ptr<AddressReceiver> receiver);
void ReceiveAddress (std::shared_ptr<AddressReceiver> receiver);
void HandleReceivedAddress (const boost::system::error_code& ecode, std::size_t bytes_transferred,
std::shared_ptr<AddressReceiver> receiver);
void HandleDestinationRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet, std::shared_ptr<AddressReceiver> receiver);
void HandleDestinationRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet, std::shared_ptr<AddressReceiver> receiver);
void CreateConnection (std::shared_ptr<AddressReceiver> receiver, std::shared_ptr<const i2p::data::LeaseSet> leaseSet);
void CreateConnection (std::shared_ptr<AddressReceiver> receiver, std::shared_ptr<const i2p::data::LeaseSet> leaseSet);
private:
private:
boost::asio::ip::tcp::acceptor m_Acceptor;
};
boost::asio::ip::tcp::acceptor m_Acceptor;
};
class BOBI2POutboundTunnel: public BOBI2PTunnel
{
public:
class BOBI2POutboundTunnel: public BOBI2PTunnel
{
public:
BOBI2POutboundTunnel (const std::string& address, int port, std::shared_ptr<ClientDestination> localDestination, bool quiet);
BOBI2POutboundTunnel (const std::string& address, int port, std::shared_ptr<ClientDestination> localDestination, bool quiet);
void Start ();
void Stop ();
void Start ();
void Stop ();
void SetQuiet () { m_IsQuiet = true; };
void SetQuiet () { m_IsQuiet = true; };
private:
private:
void Accept ();
void HandleAccept (std::shared_ptr<i2p::stream::Stream> stream);
void Accept ();
void HandleAccept (std::shared_ptr<i2p::stream::Stream> stream);
private:
private:
boost::asio::ip::tcp::endpoint m_Endpoint;
bool m_IsQuiet;
};
boost::asio::ip::tcp::endpoint m_Endpoint;
bool m_IsQuiet;
};
class BOBDestination
{
public:
class BOBDestination
{
public:
BOBDestination (std::shared_ptr<ClientDestination> localDestination);
~BOBDestination ();
BOBDestination (std::shared_ptr<ClientDestination> localDestination);
~BOBDestination ();
void Start ();
void Stop ();
void StopTunnels ();
void CreateInboundTunnel (int port);
void CreateOutboundTunnel (const std::string& address, int port, bool quiet);
const i2p::data::PrivateKeys& GetKeys () const { return m_LocalDestination->GetPrivateKeys (); };
std::shared_ptr<ClientDestination> GetLocalDestination () const { return m_LocalDestination; };
private:
void Start ();
void Stop ();
void StopTunnels ();
void CreateInboundTunnel (int port);
void CreateOutboundTunnel (const std::string& address, int port, bool quiet);
const i2p::data::PrivateKeys& GetKeys () const { return m_LocalDestination->GetPrivateKeys (); };
std::shared_ptr<ClientDestination> GetLocalDestination () const { return m_LocalDestination; };
private:
std::shared_ptr<ClientDestination> m_LocalDestination;
BOBI2POutboundTunnel * m_OutboundTunnel;
BOBI2PInboundTunnel * m_InboundTunnel;
};
class BOBCommandChannel;
class BOBCommandSession: public std::enable_shared_from_this<BOBCommandSession>
{
public:
std::shared_ptr<ClientDestination> m_LocalDestination;
BOBI2POutboundTunnel * m_OutboundTunnel;
BOBI2PInboundTunnel * m_InboundTunnel;
};
class BOBCommandChannel;
class BOBCommandSession: public std::enable_shared_from_this<BOBCommandSession>
{
public:
BOBCommandSession (BOBCommandChannel& owner);
~BOBCommandSession ();
void Terminate ();
BOBCommandSession (BOBCommandChannel& owner);
~BOBCommandSession ();
void Terminate ();
boost::asio::ip::tcp::socket& GetSocket () { return m_Socket; };
void SendVersion ();
boost::asio::ip::tcp::socket& GetSocket () { return m_Socket; };
void SendVersion ();
// command handlers
void ZapCommandHandler (const char * operand, size_t len);
void QuitCommandHandler (const char * operand, size_t len);
void StartCommandHandler (const char * operand, size_t len);
void StopCommandHandler (const char * operand, size_t len);
void SetNickCommandHandler (const char * operand, size_t len);
void GetNickCommandHandler (const char * operand, size_t len);
void NewkeysCommandHandler (const char * operand, size_t len);
void SetkeysCommandHandler (const char * operand, size_t len);
void GetkeysCommandHandler (const char * operand, size_t len);
void GetdestCommandHandler (const char * operand, size_t len);
void OuthostCommandHandler (const char * operand, size_t len);
void OutportCommandHandler (const char * operand, size_t len);
void InhostCommandHandler (const char * operand, size_t len);
void InportCommandHandler (const char * operand, size_t len);
void QuietCommandHandler (const char * operand, size_t len);
void LookupCommandHandler (const char * operand, size_t len);
void ClearCommandHandler (const char * operand, size_t len);
void ListCommandHandler (const char * operand, size_t len);
void OptionCommandHandler (const char * operand, size_t len);
private:
// command handlers
void ZapCommandHandler (const char * operand, size_t len);
void QuitCommandHandler (const char * operand, size_t len);
void StartCommandHandler (const char * operand, size_t len);
void StopCommandHandler (const char * operand, size_t len);
void SetNickCommandHandler (const char * operand, size_t len);
void GetNickCommandHandler (const char * operand, size_t len);
void NewkeysCommandHandler (const char * operand, size_t len);
void SetkeysCommandHandler (const char * operand, size_t len);
void GetkeysCommandHandler (const char * operand, size_t len);
void GetdestCommandHandler (const char * operand, size_t len);
void OuthostCommandHandler (const char * operand, size_t len);
void OutportCommandHandler (const char * operand, size_t len);
void InhostCommandHandler (const char * operand, size_t len);
void InportCommandHandler (const char * operand, size_t len);
void QuietCommandHandler (const char * operand, size_t len);
void LookupCommandHandler (const char * operand, size_t len);
void ClearCommandHandler (const char * operand, size_t len);
void ListCommandHandler (const char * operand, size_t len);
void OptionCommandHandler (const char * operand, size_t len);
private:
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void Send (size_t len);
void HandleSent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void SendReplyOK (const char * msg);
void SendReplyError (const char * msg);
void SendData (const char * nickname);
void Send (size_t len);
void HandleSent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void SendReplyOK (const char * msg);
void SendReplyError (const char * msg);
void SendData (const char * nickname);
private:
private:
BOBCommandChannel& m_Owner;
boost::asio::ip::tcp::socket m_Socket;
char m_ReceiveBuffer[BOB_COMMAND_BUFFER_SIZE + 1], m_SendBuffer[BOB_COMMAND_BUFFER_SIZE + 1];
size_t m_ReceiveBufferOffset;
bool m_IsOpen, m_IsQuiet;
std::string m_Nickname, m_Address;
int m_InPort, m_OutPort;
i2p::data::PrivateKeys m_Keys;
std::map<std::string, std::string> m_Options;
BOBDestination * m_CurrentDestination;
};
typedef void (BOBCommandSession::*BOBCommandHandler)(const char * operand, size_t len);
BOBCommandChannel& m_Owner;
boost::asio::ip::tcp::socket m_Socket;
char m_ReceiveBuffer[BOB_COMMAND_BUFFER_SIZE + 1], m_SendBuffer[BOB_COMMAND_BUFFER_SIZE + 1];
size_t m_ReceiveBufferOffset;
bool m_IsOpen, m_IsQuiet;
std::string m_Nickname, m_Address;
int m_InPort, m_OutPort;
i2p::data::PrivateKeys m_Keys;
std::map<std::string, std::string> m_Options;
BOBDestination * m_CurrentDestination;
};
typedef void (BOBCommandSession::*BOBCommandHandler)(const char * operand, size_t len);
class BOBCommandChannel
{
public:
class BOBCommandChannel
{
public:
BOBCommandChannel (int port);
~BOBCommandChannel ();
BOBCommandChannel (int port);
~BOBCommandChannel ();
void Start ();
void Stop ();
void Start ();
void Stop ();
boost::asio::io_service& GetService () { return m_Service; };
void AddDestination (const std::string& name, BOBDestination * dest);
void DeleteDestination (const std::string& name);
BOBDestination * FindDestination (const std::string& name);
private:
boost::asio::io_service& GetService () { return m_Service; };
void AddDestination (const std::string& name, BOBDestination * dest);
void DeleteDestination (const std::string& name);
BOBDestination * FindDestination (const std::string& name);
private:
void Run ();
void Accept ();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<BOBCommandSession> session);
void Run ();
void Accept ();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<BOBCommandSession> session);
private:
private:
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::ip::tcp::acceptor m_Acceptor;
std::map<std::string, BOBDestination *> m_Destinations;
std::map<std::string, BOBCommandHandler> m_CommandHandlers;
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::ip::tcp::acceptor m_Acceptor;
std::map<std::string, BOBDestination *> m_Destinations;
std::map<std::string, BOBCommandHandler> m_CommandHandlers;
public:
public:
const decltype(m_CommandHandlers)& GetCommandHandlers () const { return m_CommandHandlers; };
const decltype(m_Destinations)& GetDestinations () const { return m_Destinations; };
};
const decltype(m_CommandHandlers)& GetCommandHandlers () const { return m_CommandHandlers; };
const decltype(m_Destinations)& GetDestinations () const { return m_Destinations; };
};
}
}

View file

@ -11,334 +11,334 @@ namespace i2p
{
namespace client
{
ClientContext context;
ClientContext context;
ClientContext::ClientContext (): m_SharedLocalDestination (nullptr),
m_HttpProxy (nullptr), m_SocksProxy (nullptr), m_SamBridge (nullptr),
m_BOBCommandChannel (nullptr), m_I2PControlService (nullptr)
{
}
ClientContext::~ClientContext ()
{
delete m_HttpProxy;
delete m_SocksProxy;
delete m_SamBridge;
delete m_BOBCommandChannel;
delete m_I2PControlService;
}
void ClientContext::Start ()
{
if (!m_SharedLocalDestination)
{
m_SharedLocalDestination = CreateNewLocalDestination (); // non-public, DSA
m_Destinations[m_SharedLocalDestination->GetIdentity ().GetIdentHash ()] = m_SharedLocalDestination;
m_SharedLocalDestination->Start ();
}
ClientContext::ClientContext (): m_SharedLocalDestination (nullptr),
m_HttpProxy (nullptr), m_SocksProxy (nullptr), m_SamBridge (nullptr),
m_BOBCommandChannel (nullptr), m_I2PControlService (nullptr)
{
}
ClientContext::~ClientContext ()
{
delete m_HttpProxy;
delete m_SocksProxy;
delete m_SamBridge;
delete m_BOBCommandChannel;
delete m_I2PControlService;
}
void ClientContext::Start ()
{
if (!m_SharedLocalDestination)
{
m_SharedLocalDestination = CreateNewLocalDestination (); // non-public, DSA
m_Destinations[m_SharedLocalDestination->GetIdentity ().GetIdentHash ()] = m_SharedLocalDestination;
m_SharedLocalDestination->Start ();
}
std::shared_ptr<ClientDestination> localDestination;
// proxies
std::string proxyKeys = i2p::util::config::GetArg("-proxykeys", "");
if (proxyKeys.length () > 0)
localDestination = LoadLocalDestination (proxyKeys, false);
m_HttpProxy = new i2p::proxy::HTTPProxy(i2p::util::config::GetArg("-httpproxyport", 4446), localDestination);
m_HttpProxy->Start();
LogPrint("HTTP Proxy started");
m_SocksProxy = new i2p::proxy::SOCKSProxy(i2p::util::config::GetArg("-socksproxyport", 4447), localDestination);
m_SocksProxy->Start();
LogPrint("SOCKS Proxy Started");
// I2P tunnels
std::string ircDestination = i2p::util::config::GetArg("-ircdest", "");
if (ircDestination.length () > 0) // ircdest is presented
{
localDestination = nullptr;
std::string ircKeys = i2p::util::config::GetArg("-irckeys", "");
if (ircKeys.length () > 0)
localDestination = LoadLocalDestination (ircKeys, false);
auto ircPort = i2p::util::config::GetArg("-ircport", 6668);
auto ircTunnel = new I2PClientTunnel (ircDestination, ircPort, localDestination);
ircTunnel->Start ();
m_ClientTunnels.insert (std::make_pair(ircPort, std::unique_ptr<I2PClientTunnel>(ircTunnel)));
LogPrint("IRC tunnel started");
}
std::string eepKeys = i2p::util::config::GetArg("-eepkeys", "");
if (eepKeys.length () > 0) // eepkeys file is presented
{
localDestination = LoadLocalDestination (eepKeys, true);
auto serverTunnel = new I2PServerTunnel (i2p::util::config::GetArg("-eephost", "127.0.0.1"),
i2p::util::config::GetArg("-eepport", 80), localDestination);
serverTunnel->Start ();
m_ServerTunnels.insert (std::make_pair(localDestination->GetIdentHash (), std::unique_ptr<I2PServerTunnel>(serverTunnel)));
LogPrint("Server tunnel started");
}
ReadTunnels ();
std::shared_ptr<ClientDestination> localDestination;
// proxies
std::string proxyKeys = i2p::util::config::GetArg("-proxykeys", "");
if (proxyKeys.length () > 0)
localDestination = LoadLocalDestination (proxyKeys, false);
m_HttpProxy = new i2p::proxy::HTTPProxy(i2p::util::config::GetArg("-httpproxyport", 4446), localDestination);
m_HttpProxy->Start();
LogPrint("HTTP Proxy started");
m_SocksProxy = new i2p::proxy::SOCKSProxy(i2p::util::config::GetArg("-socksproxyport", 4447), localDestination);
m_SocksProxy->Start();
LogPrint("SOCKS Proxy Started");
// I2P tunnels
std::string ircDestination = i2p::util::config::GetArg("-ircdest", "");
if (ircDestination.length () > 0) // ircdest is presented
{
localDestination = nullptr;
std::string ircKeys = i2p::util::config::GetArg("-irckeys", "");
if (ircKeys.length () > 0)
localDestination = LoadLocalDestination (ircKeys, false);
auto ircPort = i2p::util::config::GetArg("-ircport", 6668);
auto ircTunnel = new I2PClientTunnel (ircDestination, ircPort, localDestination);
ircTunnel->Start ();
m_ClientTunnels.insert (std::make_pair(ircPort, std::unique_ptr<I2PClientTunnel>(ircTunnel)));
LogPrint("IRC tunnel started");
}
std::string eepKeys = i2p::util::config::GetArg("-eepkeys", "");
if (eepKeys.length () > 0) // eepkeys file is presented
{
localDestination = LoadLocalDestination (eepKeys, true);
auto serverTunnel = new I2PServerTunnel (i2p::util::config::GetArg("-eephost", "127.0.0.1"),
i2p::util::config::GetArg("-eepport", 80), localDestination);
serverTunnel->Start ();
m_ServerTunnels.insert (std::make_pair(localDestination->GetIdentHash (), std::unique_ptr<I2PServerTunnel>(serverTunnel)));
LogPrint("Server tunnel started");
}
ReadTunnels ();
// SAM
int samPort = i2p::util::config::GetArg("-samport", 0);
if (samPort)
{
m_SamBridge = new SAMBridge (samPort);
m_SamBridge->Start ();
LogPrint("SAM bridge started");
}
// SAM
int samPort = i2p::util::config::GetArg("-samport", 0);
if (samPort)
{
m_SamBridge = new SAMBridge (samPort);
m_SamBridge->Start ();
LogPrint("SAM bridge started");
}
// BOB
int bobPort = i2p::util::config::GetArg("-bobport", 0);
if (bobPort)
{
m_BOBCommandChannel = new BOBCommandChannel (bobPort);
m_BOBCommandChannel->Start ();
LogPrint("BOB command channel started");
}
// BOB
int bobPort = i2p::util::config::GetArg("-bobport", 0);
if (bobPort)
{
m_BOBCommandChannel = new BOBCommandChannel (bobPort);
m_BOBCommandChannel->Start ();
LogPrint("BOB command channel started");
}
// I2P Control
int i2pcontrolPort = i2p::util::config::GetArg("-i2pcontrolport", 0);
if (i2pcontrolPort)
{
m_I2PControlService = new I2PControlService (i2pcontrolPort);
m_I2PControlService->Start ();
LogPrint("I2PControl started");
}
m_AddressBook.Start ();
}
void ClientContext::Stop ()
{
m_HttpProxy->Stop();
delete m_HttpProxy;
m_HttpProxy = nullptr;
LogPrint("HTTP Proxy stopped");
m_SocksProxy->Stop();
delete m_SocksProxy;
m_SocksProxy = nullptr;
LogPrint("SOCKS Proxy stopped");
for (auto& it: m_ClientTunnels)
{
it.second->Stop ();
LogPrint("I2P client tunnel on port ", it.first, " stopped");
}
m_ClientTunnels.clear ();
for (auto& it: m_ServerTunnels)
{
it.second->Stop ();
LogPrint("I2P server tunnel stopped");
}
m_ServerTunnels.clear ();
if (m_SamBridge)
{
m_SamBridge->Stop ();
delete m_SamBridge;
m_SamBridge = nullptr;
LogPrint("SAM brdige stopped");
}
if (m_BOBCommandChannel)
{
m_BOBCommandChannel->Stop ();
delete m_BOBCommandChannel;
m_BOBCommandChannel = nullptr;
LogPrint("BOB command channel stopped");
}
if (m_I2PControlService)
{
m_I2PControlService->Stop ();
delete m_I2PControlService;
m_I2PControlService = nullptr;
LogPrint("I2PControl stopped");
}
m_AddressBook.Stop ();
for (auto it: m_Destinations)
it.second->Stop ();
m_Destinations.clear ();
m_SharedLocalDestination = nullptr;
}
std::shared_ptr<ClientDestination> ClientContext::LoadLocalDestination (const std::string& filename, bool isPublic)
{
i2p::data::PrivateKeys keys;
std::string fullPath = i2p::util::filesystem::GetFullPath (filename);
std::ifstream s(fullPath.c_str (), std::ifstream::binary);
if (s.is_open ())
{
s.seekg (0, std::ios::end);
size_t len = s.tellg();
s.seekg (0, std::ios::beg);
uint8_t * buf = new uint8_t[len];
s.read ((char *)buf, len);
keys.FromBuffer (buf, len);
delete[] buf;
LogPrint ("Local address ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " loaded");
}
else
{
LogPrint ("Can't open file ", fullPath, " Creating new one");
keys = i2p::data::PrivateKeys::CreateRandomKeys (i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256);
std::ofstream f (fullPath, std::ofstream::binary | std::ofstream::out);
size_t len = keys.GetFullLen ();
uint8_t * buf = new uint8_t[len];
len = keys.ToBuffer (buf, len);
f.write ((char *)buf, len);
delete[] buf;
LogPrint ("New private keys file ", fullPath, " for ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " created");
}
// I2P Control
int i2pcontrolPort = i2p::util::config::GetArg("-i2pcontrolport", 0);
if (i2pcontrolPort)
{
m_I2PControlService = new I2PControlService (i2pcontrolPort);
m_I2PControlService->Start ();
LogPrint("I2PControl started");
}
m_AddressBook.Start ();
}
void ClientContext::Stop ()
{
m_HttpProxy->Stop();
delete m_HttpProxy;
m_HttpProxy = nullptr;
LogPrint("HTTP Proxy stopped");
m_SocksProxy->Stop();
delete m_SocksProxy;
m_SocksProxy = nullptr;
LogPrint("SOCKS Proxy stopped");
for (auto& it: m_ClientTunnels)
{
it.second->Stop ();
LogPrint("I2P client tunnel on port ", it.first, " stopped");
}
m_ClientTunnels.clear ();
for (auto& it: m_ServerTunnels)
{
it.second->Stop ();
LogPrint("I2P server tunnel stopped");
}
m_ServerTunnels.clear ();
if (m_SamBridge)
{
m_SamBridge->Stop ();
delete m_SamBridge;
m_SamBridge = nullptr;
LogPrint("SAM brdige stopped");
}
if (m_BOBCommandChannel)
{
m_BOBCommandChannel->Stop ();
delete m_BOBCommandChannel;
m_BOBCommandChannel = nullptr;
LogPrint("BOB command channel stopped");
}
if (m_I2PControlService)
{
m_I2PControlService->Stop ();
delete m_I2PControlService;
m_I2PControlService = nullptr;
LogPrint("I2PControl stopped");
}
m_AddressBook.Stop ();
for (auto it: m_Destinations)
it.second->Stop ();
m_Destinations.clear ();
m_SharedLocalDestination = nullptr;
}
std::shared_ptr<ClientDestination> ClientContext::LoadLocalDestination (const std::string& filename, bool isPublic)
{
i2p::data::PrivateKeys keys;
std::string fullPath = i2p::util::filesystem::GetFullPath (filename);
std::ifstream s(fullPath.c_str (), std::ifstream::binary);
if (s.is_open ())
{
s.seekg (0, std::ios::end);
size_t len = s.tellg();
s.seekg (0, std::ios::beg);
uint8_t * buf = new uint8_t[len];
s.read ((char *)buf, len);
keys.FromBuffer (buf, len);
delete[] buf;
LogPrint ("Local address ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " loaded");
}
else
{
LogPrint ("Can't open file ", fullPath, " Creating new one");
keys = i2p::data::PrivateKeys::CreateRandomKeys (i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256);
std::ofstream f (fullPath, std::ofstream::binary | std::ofstream::out);
size_t len = keys.GetFullLen ();
uint8_t * buf = new uint8_t[len];
len = keys.ToBuffer (buf, len);
f.write ((char *)buf, len);
delete[] buf;
LogPrint ("New private keys file ", fullPath, " for ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " created");
}
std::shared_ptr<ClientDestination> localDestination = nullptr;
std::unique_lock<std::mutex> l(m_DestinationsMutex);
auto it = m_Destinations.find (keys.GetPublic ().GetIdentHash ());
if (it != m_Destinations.end ())
{
LogPrint (eLogWarning, "Local destination ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " alreday exists");
localDestination = it->second;
}
else
{
localDestination = std::make_shared<ClientDestination> (keys, isPublic);
m_Destinations[localDestination->GetIdentHash ()] = localDestination;
localDestination->Start ();
}
return localDestination;
}
std::shared_ptr<ClientDestination> localDestination = nullptr;
std::unique_lock<std::mutex> l(m_DestinationsMutex);
auto it = m_Destinations.find (keys.GetPublic ().GetIdentHash ());
if (it != m_Destinations.end ())
{
LogPrint (eLogWarning, "Local destination ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " alreday exists");
localDestination = it->second;
}
else
{
localDestination = std::make_shared<ClientDestination> (keys, isPublic);
m_Destinations[localDestination->GetIdentHash ()] = localDestination;
localDestination->Start ();
}
return localDestination;
}
std::shared_ptr<ClientDestination> ClientContext::CreateNewLocalDestination (bool isPublic, i2p::data::SigningKeyType sigType,
const std::map<std::string, std::string> * params)
{
i2p::data::PrivateKeys keys = i2p::data::PrivateKeys::CreateRandomKeys (sigType);
auto localDestination = std::make_shared<ClientDestination> (keys, isPublic, params);
std::unique_lock<std::mutex> l(m_DestinationsMutex);
m_Destinations[localDestination->GetIdentHash ()] = localDestination;
localDestination->Start ();
return localDestination;
}
std::shared_ptr<ClientDestination> ClientContext::CreateNewLocalDestination (bool isPublic, i2p::data::SigningKeyType sigType,
const std::map<std::string, std::string> * params)
{
i2p::data::PrivateKeys keys = i2p::data::PrivateKeys::CreateRandomKeys (sigType);
auto localDestination = std::make_shared<ClientDestination> (keys, isPublic, params);
std::unique_lock<std::mutex> l(m_DestinationsMutex);
m_Destinations[localDestination->GetIdentHash ()] = localDestination;
localDestination->Start ();
return localDestination;
}
void ClientContext::DeleteLocalDestination (std::shared_ptr<ClientDestination> destination)
{
if (!destination) return;
auto it = m_Destinations.find (destination->GetIdentHash ());
if (it != m_Destinations.end ())
{
auto d = it->second;
{
std::unique_lock<std::mutex> l(m_DestinationsMutex);
m_Destinations.erase (it);
}
d->Stop ();
}
}
void ClientContext::DeleteLocalDestination (std::shared_ptr<ClientDestination> destination)
{
if (!destination) return;
auto it = m_Destinations.find (destination->GetIdentHash ());
if (it != m_Destinations.end ())
{
auto d = it->second;
{
std::unique_lock<std::mutex> l(m_DestinationsMutex);
m_Destinations.erase (it);
}
d->Stop ();
}
}
std::shared_ptr<ClientDestination> ClientContext::CreateNewLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic,
const std::map<std::string, std::string> * params)
{
auto it = m_Destinations.find (keys.GetPublic ().GetIdentHash ());
if (it != m_Destinations.end ())
{
LogPrint ("Local destination ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " exists");
if (!it->second->IsRunning ())
{
it->second->Start ();
return it->second;
}
return nullptr;
}
auto localDestination = std::make_shared<ClientDestination> (keys, isPublic, params);
std::unique_lock<std::mutex> l(m_DestinationsMutex);
m_Destinations[keys.GetPublic ().GetIdentHash ()] = localDestination;
localDestination->Start ();
return localDestination;
}
std::shared_ptr<ClientDestination> ClientContext::FindLocalDestination (const i2p::data::IdentHash& destination) const
{
auto it = m_Destinations.find (destination);
if (it != m_Destinations.end ())
return it->second;
return nullptr;
}
std::shared_ptr<ClientDestination> ClientContext::CreateNewLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic,
const std::map<std::string, std::string> * params)
{
auto it = m_Destinations.find (keys.GetPublic ().GetIdentHash ());
if (it != m_Destinations.end ())
{
LogPrint ("Local destination ", m_AddressBook.ToAddress(keys.GetPublic ().GetIdentHash ()), " exists");
if (!it->second->IsRunning ())
{
it->second->Start ();
return it->second;
}
return nullptr;
}
auto localDestination = std::make_shared<ClientDestination> (keys, isPublic, params);
std::unique_lock<std::mutex> l(m_DestinationsMutex);
m_Destinations[keys.GetPublic ().GetIdentHash ()] = localDestination;
localDestination->Start ();
return localDestination;
}
std::shared_ptr<ClientDestination> ClientContext::FindLocalDestination (const i2p::data::IdentHash& destination) const
{
auto it = m_Destinations.find (destination);
if (it != m_Destinations.end ())
return it->second;
return nullptr;
}
void ClientContext::ReadTunnels ()
{
boost::property_tree::ptree pt;
try
{
boost::property_tree::read_ini (i2p::util::filesystem::GetFullPath (TUNNELS_CONFIG_FILENAME), pt);
}
catch (std::exception& ex)
{
LogPrint (eLogWarning, "Can't read ", TUNNELS_CONFIG_FILENAME, ": ", ex.what ());
return;
}
int numClientTunnels = 0, numServerTunnels = 0;
for (auto& section: pt)
{
std::string name = section.first;
try
{
std::string type = section.second.get<std::string> (I2P_TUNNELS_SECTION_TYPE);
if (type == I2P_TUNNELS_SECTION_TYPE_CLIENT)
{
// mandatory params
std::string dest = section.second.get<std::string> (I2P_CLIENT_TUNNEL_DESTINATION);
int port = section.second.get<int> (I2P_CLIENT_TUNNEL_PORT);
// optional params
std::string keys = section.second.get (I2P_CLIENT_TUNNEL_KEYS, "");
int destinationPort = section.second.get (I2P_CLIENT_TUNNEL_DESTINATION_PORT, 0);
void ClientContext::ReadTunnels ()
{
boost::property_tree::ptree pt;
try
{
boost::property_tree::read_ini (i2p::util::filesystem::GetFullPath (TUNNELS_CONFIG_FILENAME), pt);
}
catch (std::exception& ex)
{
LogPrint (eLogWarning, "Can't read ", TUNNELS_CONFIG_FILENAME, ": ", ex.what ());
return;
}
int numClientTunnels = 0, numServerTunnels = 0;
for (auto& section: pt)
{
std::string name = section.first;
try
{
std::string type = section.second.get<std::string> (I2P_TUNNELS_SECTION_TYPE);
if (type == I2P_TUNNELS_SECTION_TYPE_CLIENT)
{
// mandatory params
std::string dest = section.second.get<std::string> (I2P_CLIENT_TUNNEL_DESTINATION);
int port = section.second.get<int> (I2P_CLIENT_TUNNEL_PORT);
// optional params
std::string keys = section.second.get (I2P_CLIENT_TUNNEL_KEYS, "");
int destinationPort = section.second.get (I2P_CLIENT_TUNNEL_DESTINATION_PORT, 0);
std::shared_ptr<ClientDestination> localDestination = nullptr;
if (keys.length () > 0)
localDestination = LoadLocalDestination (keys, false);
auto clientTunnel = new I2PClientTunnel (dest, port, localDestination, destinationPort);
if (m_ClientTunnels.insert (std::make_pair (port, std::unique_ptr<I2PClientTunnel>(clientTunnel))).second)
clientTunnel->Start ();
else
LogPrint (eLogError, "I2P client tunnel with port ", port, " already exists");
numClientTunnels++;
}
else if (type == I2P_TUNNELS_SECTION_TYPE_SERVER || type == I2P_TUNNELS_SECTION_TYPE_HTTP)
{
// mandatory params
std::string host = section.second.get<std::string> (I2P_SERVER_TUNNEL_HOST);
int port = section.second.get<int> (I2P_SERVER_TUNNEL_PORT);
std::string keys = section.second.get<std::string> (I2P_SERVER_TUNNEL_KEYS);
// optional params
int inPort = section.second.get (I2P_SERVER_TUNNEL_INPORT, 0);
std::string accessList = section.second.get (I2P_SERVER_TUNNEL_ACCESS_LIST, "");
std::shared_ptr<ClientDestination> localDestination = nullptr;
if (keys.length () > 0)
localDestination = LoadLocalDestination (keys, false);
auto clientTunnel = new I2PClientTunnel (dest, port, localDestination, destinationPort);
if (m_ClientTunnels.insert (std::make_pair (port, std::unique_ptr<I2PClientTunnel>(clientTunnel))).second)
clientTunnel->Start ();
else
LogPrint (eLogError, "I2P client tunnel with port ", port, " already exists");
numClientTunnels++;
}
else if (type == I2P_TUNNELS_SECTION_TYPE_SERVER || type == I2P_TUNNELS_SECTION_TYPE_HTTP)
{
// mandatory params
std::string host = section.second.get<std::string> (I2P_SERVER_TUNNEL_HOST);
int port = section.second.get<int> (I2P_SERVER_TUNNEL_PORT);
std::string keys = section.second.get<std::string> (I2P_SERVER_TUNNEL_KEYS);
// optional params
int inPort = section.second.get (I2P_SERVER_TUNNEL_INPORT, 0);
std::string accessList = section.second.get (I2P_SERVER_TUNNEL_ACCESS_LIST, "");
auto localDestination = LoadLocalDestination (keys, true);
I2PServerTunnel * serverTunnel = (type == I2P_TUNNELS_SECTION_TYPE_HTTP) ? new I2PServerTunnelHTTP (host, port, localDestination, inPort) : new I2PServerTunnel (host, port, localDestination, inPort);
if (accessList.length () > 0)
{
std::set<i2p::data::IdentHash> idents;
size_t pos = 0, comma;
do
{
comma = accessList.find (',', pos);
i2p::data::IdentHash ident;
ident.FromBase32 (accessList.substr (pos, comma != std::string::npos ? comma - pos : std::string::npos));
idents.insert (ident);
pos = comma + 1;
}
while (comma != std::string::npos);
serverTunnel->SetAccessList (idents);
}
if (m_ServerTunnels.insert (std::make_pair (localDestination->GetIdentHash (), std::unique_ptr<I2PServerTunnel>(serverTunnel))).second)
serverTunnel->Start ();
else
LogPrint (eLogError, "I2P server tunnel for destination ", m_AddressBook.ToAddress(localDestination->GetIdentHash ()), " already exists");
numServerTunnels++;
}
else
LogPrint (eLogWarning, "Unknown section type=", type, " of ", name, " in ", TUNNELS_CONFIG_FILENAME);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't read tunnel ", name, " params: ", ex.what ());
}
}
LogPrint (eLogInfo, numClientTunnels, " I2P client tunnels created");
LogPrint (eLogInfo, numServerTunnels, " I2P server tunnels created");
}
}
}
auto localDestination = LoadLocalDestination (keys, true);
I2PServerTunnel * serverTunnel = (type == I2P_TUNNELS_SECTION_TYPE_HTTP) ? new I2PServerTunnelHTTP (host, port, localDestination, inPort) : new I2PServerTunnel (host, port, localDestination, inPort);
if (accessList.length () > 0)
{
std::set<i2p::data::IdentHash> idents;
size_t pos = 0, comma;
do
{
comma = accessList.find (',', pos);
i2p::data::IdentHash ident;
ident.FromBase32 (accessList.substr (pos, comma != std::string::npos ? comma - pos : std::string::npos));
idents.insert (ident);
pos = comma + 1;
}
while (comma != std::string::npos);
serverTunnel->SetAccessList (idents);
}
if (m_ServerTunnels.insert (std::make_pair (localDestination->GetIdentHash (), std::unique_ptr<I2PServerTunnel>(serverTunnel))).second)
serverTunnel->Start ();
else
LogPrint (eLogError, "I2P server tunnel for destination ", m_AddressBook.ToAddress(localDestination->GetIdentHash ()), " already exists");
numServerTunnels++;
}
else
LogPrint (eLogWarning, "Unknown section type=", type, " of ", name, " in ", TUNNELS_CONFIG_FILENAME);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't read tunnel ", name, " params: ", ex.what ());
}
}
LogPrint (eLogInfo, numClientTunnels, " I2P client tunnels created");
LogPrint (eLogInfo, numServerTunnels, " I2P server tunnels created");
}
}
}

View file

@ -17,70 +17,70 @@ namespace i2p
{
namespace client
{
const char I2P_TUNNELS_SECTION_TYPE[] = "type";
const char I2P_TUNNELS_SECTION_TYPE_CLIENT[] = "client";
const char I2P_TUNNELS_SECTION_TYPE_SERVER[] = "server";
const char I2P_TUNNELS_SECTION_TYPE_HTTP[] = "http";
const char I2P_CLIENT_TUNNEL_PORT[] = "port";
const char I2P_CLIENT_TUNNEL_DESTINATION[] = "destination";
const char I2P_CLIENT_TUNNEL_KEYS[] = "keys";
const char I2P_CLIENT_TUNNEL_DESTINATION_PORT[] = "destinationport";
const char I2P_SERVER_TUNNEL_HOST[] = "host";
const char I2P_SERVER_TUNNEL_PORT[] = "port";
const char I2P_SERVER_TUNNEL_KEYS[] = "keys";
const char I2P_SERVER_TUNNEL_INPORT[] = "inport";
const char I2P_SERVER_TUNNEL_ACCESS_LIST[] = "accesslist";
const char TUNNELS_CONFIG_FILENAME[] = "tunnels.cfg";
const char I2P_TUNNELS_SECTION_TYPE[] = "type";
const char I2P_TUNNELS_SECTION_TYPE_CLIENT[] = "client";
const char I2P_TUNNELS_SECTION_TYPE_SERVER[] = "server";
const char I2P_TUNNELS_SECTION_TYPE_HTTP[] = "http";
const char I2P_CLIENT_TUNNEL_PORT[] = "port";
const char I2P_CLIENT_TUNNEL_DESTINATION[] = "destination";
const char I2P_CLIENT_TUNNEL_KEYS[] = "keys";
const char I2P_CLIENT_TUNNEL_DESTINATION_PORT[] = "destinationport";
const char I2P_SERVER_TUNNEL_HOST[] = "host";
const char I2P_SERVER_TUNNEL_PORT[] = "port";
const char I2P_SERVER_TUNNEL_KEYS[] = "keys";
const char I2P_SERVER_TUNNEL_INPORT[] = "inport";
const char I2P_SERVER_TUNNEL_ACCESS_LIST[] = "accesslist";
const char TUNNELS_CONFIG_FILENAME[] = "tunnels.cfg";
class ClientContext
{
public:
class ClientContext
{
public:
ClientContext ();
~ClientContext ();
ClientContext ();
~ClientContext ();
void Start ();
void Stop ();
void Start ();
void Stop ();
std::shared_ptr<ClientDestination> GetSharedLocalDestination () const { return m_SharedLocalDestination; };
std::shared_ptr<ClientDestination> CreateNewLocalDestination (bool isPublic = false, i2p::data::SigningKeyType sigType = i2p::data::SIGNING_KEY_TYPE_DSA_SHA1,
const std::map<std::string, std::string> * params = nullptr); // transient
std::shared_ptr<ClientDestination> CreateNewLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic = true,
const std::map<std::string, std::string> * params = nullptr);
void DeleteLocalDestination (std::shared_ptr<ClientDestination> destination);
std::shared_ptr<ClientDestination> FindLocalDestination (const i2p::data::IdentHash& destination) const;
std::shared_ptr<ClientDestination> LoadLocalDestination (const std::string& filename, bool isPublic);
std::shared_ptr<ClientDestination> GetSharedLocalDestination () const { return m_SharedLocalDestination; };
std::shared_ptr<ClientDestination> CreateNewLocalDestination (bool isPublic = false, i2p::data::SigningKeyType sigType = i2p::data::SIGNING_KEY_TYPE_DSA_SHA1,
const std::map<std::string, std::string> * params = nullptr); // transient
std::shared_ptr<ClientDestination> CreateNewLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic = true,
const std::map<std::string, std::string> * params = nullptr);
void DeleteLocalDestination (std::shared_ptr<ClientDestination> destination);
std::shared_ptr<ClientDestination> FindLocalDestination (const i2p::data::IdentHash& destination) const;
std::shared_ptr<ClientDestination> LoadLocalDestination (const std::string& filename, bool isPublic);
AddressBook& GetAddressBook () { return m_AddressBook; };
const SAMBridge * GetSAMBridge () const { return m_SamBridge; };
private:
AddressBook& GetAddressBook () { return m_AddressBook; };
const SAMBridge * GetSAMBridge () const { return m_SamBridge; };
private:
void ReadTunnels ();
private:
void ReadTunnels ();
private:
std::mutex m_DestinationsMutex;
std::map<i2p::data::IdentHash, std::shared_ptr<ClientDestination> > m_Destinations;
std::shared_ptr<ClientDestination> m_SharedLocalDestination;
std::mutex m_DestinationsMutex;
std::map<i2p::data::IdentHash, std::shared_ptr<ClientDestination> > m_Destinations;
std::shared_ptr<ClientDestination> m_SharedLocalDestination;
AddressBook m_AddressBook;
AddressBook m_AddressBook;
i2p::proxy::HTTPProxy * m_HttpProxy;
i2p::proxy::SOCKSProxy * m_SocksProxy;
std::map<int, std::unique_ptr<I2PClientTunnel> > m_ClientTunnels; // port->tunnel
std::map<i2p::data::IdentHash, std::unique_ptr<I2PServerTunnel> > m_ServerTunnels; // destination->tunnel
SAMBridge * m_SamBridge;
BOBCommandChannel * m_BOBCommandChannel;
I2PControlService * m_I2PControlService;
i2p::proxy::HTTPProxy * m_HttpProxy;
i2p::proxy::SOCKSProxy * m_SocksProxy;
std::map<int, std::unique_ptr<I2PClientTunnel> > m_ClientTunnels; // port->tunnel
std::map<i2p::data::IdentHash, std::unique_ptr<I2PServerTunnel> > m_ServerTunnels; // destination->tunnel
SAMBridge * m_SamBridge;
BOBCommandChannel * m_BOBCommandChannel;
I2PControlService * m_I2PControlService;
public:
// for HTTP
const decltype(m_Destinations)& GetDestinations () const { return m_Destinations; };
};
extern ClientContext context;
}
}
public:
// for HTTP
const decltype(m_Destinations)& GetDestinations () const { return m_Destinations; };
};
extern ClientContext context;
}
}
#endif

View file

@ -5,69 +5,69 @@ namespace i2p
{
namespace crypto
{
const uint8_t elgp_[256]=
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37,
0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6,
0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6,
0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05,
0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB,
0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04,
0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B,
0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F,
0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18,
0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10,
0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const uint8_t dsap_[128]=
{
0x9c, 0x05, 0xb2, 0xaa, 0x96, 0x0d, 0x9b, 0x97, 0xb8, 0x93, 0x19, 0x63, 0xc9, 0xcc, 0x9e, 0x8c,
0x30, 0x26, 0xe9, 0xb8, 0xed, 0x92, 0xfa, 0xd0, 0xa6, 0x9c, 0xc8, 0x86, 0xd5, 0xbf, 0x80, 0x15,
0xfc, 0xad, 0xae, 0x31, 0xa0, 0xad, 0x18, 0xfa, 0xb3, 0xf0, 0x1b, 0x00, 0xa3, 0x58, 0xde, 0x23,
0x76, 0x55, 0xc4, 0x96, 0x4a, 0xfa, 0xa2, 0xb3, 0x37, 0xe9, 0x6a, 0xd3, 0x16, 0xb9, 0xfb, 0x1c,
0xc5, 0x64, 0xb5, 0xae, 0xc5, 0xb6, 0x9a, 0x9f, 0xf6, 0xc3, 0xe4, 0x54, 0x87, 0x07, 0xfe, 0xf8,
0x50, 0x3d, 0x91, 0xdd, 0x86, 0x02, 0xe8, 0x67, 0xe6, 0xd3, 0x5d, 0x22, 0x35, 0xc1, 0x86, 0x9c,
0xe2, 0x47, 0x9c, 0x3b, 0x9d, 0x54, 0x01, 0xde, 0x04, 0xe0, 0x72, 0x7f, 0xb3, 0x3d, 0x65, 0x11,
0x28, 0x5d, 0x4c, 0xf2, 0x95, 0x38, 0xd9, 0xe3, 0xb6, 0x05, 0x1f, 0x5b, 0x22, 0xcc, 0x1c, 0x93
};
const uint8_t elgp_[256]=
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37,
0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6,
0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6,
0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05,
0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB,
0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04,
0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B,
0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F,
0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18,
0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10,
0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const uint8_t dsap_[128]=
{
0x9c, 0x05, 0xb2, 0xaa, 0x96, 0x0d, 0x9b, 0x97, 0xb8, 0x93, 0x19, 0x63, 0xc9, 0xcc, 0x9e, 0x8c,
0x30, 0x26, 0xe9, 0xb8, 0xed, 0x92, 0xfa, 0xd0, 0xa6, 0x9c, 0xc8, 0x86, 0xd5, 0xbf, 0x80, 0x15,
0xfc, 0xad, 0xae, 0x31, 0xa0, 0xad, 0x18, 0xfa, 0xb3, 0xf0, 0x1b, 0x00, 0xa3, 0x58, 0xde, 0x23,
0x76, 0x55, 0xc4, 0x96, 0x4a, 0xfa, 0xa2, 0xb3, 0x37, 0xe9, 0x6a, 0xd3, 0x16, 0xb9, 0xfb, 0x1c,
0xc5, 0x64, 0xb5, 0xae, 0xc5, 0xb6, 0x9a, 0x9f, 0xf6, 0xc3, 0xe4, 0x54, 0x87, 0x07, 0xfe, 0xf8,
0x50, 0x3d, 0x91, 0xdd, 0x86, 0x02, 0xe8, 0x67, 0xe6, 0xd3, 0x5d, 0x22, 0x35, 0xc1, 0x86, 0x9c,
0xe2, 0x47, 0x9c, 0x3b, 0x9d, 0x54, 0x01, 0xde, 0x04, 0xe0, 0x72, 0x7f, 0xb3, 0x3d, 0x65, 0x11,
0x28, 0x5d, 0x4c, 0xf2, 0x95, 0x38, 0xd9, 0xe3, 0xb6, 0x05, 0x1f, 0x5b, 0x22, 0xcc, 0x1c, 0x93
};
const uint8_t dsaq_[20]=
{
0xa5, 0xdf, 0xc2, 0x8f, 0xef, 0x4c, 0xa1, 0xe2, 0x86, 0x74, 0x4c, 0xd8, 0xee, 0xd9, 0xd2, 0x9d,
0x68, 0x40, 0x46, 0xb7
};
const uint8_t dsaq_[20]=
{
0xa5, 0xdf, 0xc2, 0x8f, 0xef, 0x4c, 0xa1, 0xe2, 0x86, 0x74, 0x4c, 0xd8, 0xee, 0xd9, 0xd2, 0x9d,
0x68, 0x40, 0x46, 0xb7
};
const uint8_t dsag_[128]=
{
0x0c, 0x1f, 0x4d, 0x27, 0xd4, 0x00, 0x93, 0xb4, 0x29, 0xe9, 0x62, 0xd7, 0x22, 0x38, 0x24, 0xe0,
0xbb, 0xc4, 0x7e, 0x7c, 0x83, 0x2a, 0x39, 0x23, 0x6f, 0xc6, 0x83, 0xaf, 0x84, 0x88, 0x95, 0x81,
0x07, 0x5f, 0xf9, 0x08, 0x2e, 0xd3, 0x23, 0x53, 0xd4, 0x37, 0x4d, 0x73, 0x01, 0xcd, 0xa1, 0xd2,
0x3c, 0x43, 0x1f, 0x46, 0x98, 0x59, 0x9d, 0xda, 0x02, 0x45, 0x18, 0x24, 0xff, 0x36, 0x97, 0x52,
0x59, 0x36, 0x47, 0xcc, 0x3d, 0xdc, 0x19, 0x7d, 0xe9, 0x85, 0xe4, 0x3d, 0x13, 0x6c, 0xdc, 0xfc,
0x6b, 0xd5, 0x40, 0x9c, 0xd2, 0xf4, 0x50, 0x82, 0x11, 0x42, 0xa5, 0xe6, 0xf8, 0xeb, 0x1c, 0x3a,
0xb5, 0xd0, 0x48, 0x4b, 0x81, 0x29, 0xfc, 0xf1, 0x7b, 0xce, 0x4f, 0x7f, 0x33, 0x32, 0x1c, 0x3c,
0xb3, 0xdb, 0xb1, 0x4a, 0x90, 0x5e, 0x7b, 0x2b, 0x3e, 0x93, 0xbe, 0x47, 0x08, 0xcb, 0xcc, 0x82
};
const uint8_t dsag_[128]=
{
0x0c, 0x1f, 0x4d, 0x27, 0xd4, 0x00, 0x93, 0xb4, 0x29, 0xe9, 0x62, 0xd7, 0x22, 0x38, 0x24, 0xe0,
0xbb, 0xc4, 0x7e, 0x7c, 0x83, 0x2a, 0x39, 0x23, 0x6f, 0xc6, 0x83, 0xaf, 0x84, 0x88, 0x95, 0x81,
0x07, 0x5f, 0xf9, 0x08, 0x2e, 0xd3, 0x23, 0x53, 0xd4, 0x37, 0x4d, 0x73, 0x01, 0xcd, 0xa1, 0xd2,
0x3c, 0x43, 0x1f, 0x46, 0x98, 0x59, 0x9d, 0xda, 0x02, 0x45, 0x18, 0x24, 0xff, 0x36, 0x97, 0x52,
0x59, 0x36, 0x47, 0xcc, 0x3d, 0xdc, 0x19, 0x7d, 0xe9, 0x85, 0xe4, 0x3d, 0x13, 0x6c, 0xdc, 0xfc,
0x6b, 0xd5, 0x40, 0x9c, 0xd2, 0xf4, 0x50, 0x82, 0x11, 0x42, 0xa5, 0xe6, 0xf8, 0xeb, 0x1c, 0x3a,
0xb5, 0xd0, 0x48, 0x4b, 0x81, 0x29, 0xfc, 0xf1, 0x7b, 0xce, 0x4f, 0x7f, 0x33, 0x32, 0x1c, 0x3c,
0xb3, 0xdb, 0xb1, 0x4a, 0x90, 0x5e, 0x7b, 0x2b, 0x3e, 0x93, 0xbe, 0x47, 0x08, 0xcb, 0xcc, 0x82
};
const CryptoConstants& GetCryptoConstants ()
{
static CryptoConstants cryptoConstants =
{
{elgp_, 256}, // elgp
{2}, // elgg
{dsap_, 128}, // dsap
{dsaq_, 20}, // dsaq
{dsag_, 128} // dsag
};
return cryptoConstants;
}
const CryptoConstants& GetCryptoConstants ()
{
static CryptoConstants cryptoConstants =
{
{elgp_, 256}, // elgp
{2}, // elgg
{dsap_, 128}, // dsap
{dsaq_, 20}, // dsaq
{dsag_, 128} // dsag
};
return cryptoConstants;
}
}
}

View file

@ -7,32 +7,32 @@ namespace i2p
{
namespace crypto
{
struct CryptoConstants
{
// DH/ElGamal
const CryptoPP::Integer elgp;
const CryptoPP::Integer elgg;
struct CryptoConstants
{
// DH/ElGamal
const CryptoPP::Integer elgp;
const CryptoPP::Integer elgg;
// DSA
const CryptoPP::Integer dsap;
const CryptoPP::Integer dsaq;
const CryptoPP::Integer dsag;
};
const CryptoConstants& GetCryptoConstants ();
// DH/ElGamal
#define elgp GetCryptoConstants ().elgp
#define elgg GetCryptoConstants ().elgg
// DSA
const CryptoPP::Integer dsap;
const CryptoPP::Integer dsaq;
const CryptoPP::Integer dsag;
};
const CryptoConstants& GetCryptoConstants ();
// DH/ElGamal
#define elgp GetCryptoConstants ().elgp
#define elgg GetCryptoConstants ().elgg
// DSA
#define dsap GetCryptoConstants ().dsap
#define dsaq GetCryptoConstants ().dsaq
#define dsag GetCryptoConstants ().dsag
// DSA
#define dsap GetCryptoConstants ().dsap
#define dsaq GetCryptoConstants ().dsaq
#define dsag GetCryptoConstants ().dsag
// RSA
const int rsae = 65537;
}
}
// RSA
const int rsae = 65537;
}
}
#endif

View file

@ -20,125 +20,125 @@
namespace i2p
{
namespace util
{
class Daemon_Singleton::Daemon_Singleton_Private
{
public:
Daemon_Singleton_Private() : httpServer(nullptr)
{};
~Daemon_Singleton_Private()
{
delete httpServer;
};
namespace util
{
class Daemon_Singleton::Daemon_Singleton_Private
{
public:
Daemon_Singleton_Private() : httpServer(nullptr)
{};
~Daemon_Singleton_Private()
{
delete httpServer;
};
i2p::util::HTTPServer *httpServer;
};
i2p::util::HTTPServer *httpServer;
};
Daemon_Singleton::Daemon_Singleton() : running(1), d(*new Daemon_Singleton_Private()) {};
Daemon_Singleton::~Daemon_Singleton() {
delete &d;
};
Daemon_Singleton::Daemon_Singleton() : running(1), d(*new Daemon_Singleton_Private()) {};
Daemon_Singleton::~Daemon_Singleton() {
delete &d;
};
bool Daemon_Singleton::IsService () const
{
bool Daemon_Singleton::IsService () const
{
#ifndef _WIN32
return i2p::util::config::GetArg("-service", 0);
return i2p::util::config::GetArg("-service", 0);
#else
return false;
return false;
#endif
}
}
bool Daemon_Singleton::init(int argc, char* argv[])
{
i2p::util::config::OptionParser(argc, argv);
i2p::context.Init ();
bool Daemon_Singleton::init(int argc, char* argv[])
{
i2p::util::config::OptionParser(argc, argv);
i2p::context.Init ();
LogPrint("\n\n\n\ni2pd starting\n");
LogPrint("Version ", VERSION);
LogPrint("data directory: ", i2p::util::filesystem::GetDataDir().string());
i2p::util::filesystem::ReadConfigFile(i2p::util::config::mapArgs, i2p::util::config::mapMultiArgs);
LogPrint("\n\n\n\ni2pd starting\n");
LogPrint("Version ", VERSION);
LogPrint("data directory: ", i2p::util::filesystem::GetDataDir().string());
i2p::util::filesystem::ReadConfigFile(i2p::util::config::mapArgs, i2p::util::config::mapMultiArgs);
isDaemon = i2p::util::config::GetArg("-daemon", 0);
isLogging = i2p::util::config::GetArg("-log", 1);
isDaemon = i2p::util::config::GetArg("-daemon", 0);
isLogging = i2p::util::config::GetArg("-log", 1);
int port = i2p::util::config::GetArg("-port", 0);
if (port)
i2p::context.UpdatePort (port);
const char * host = i2p::util::config::GetCharArg("-host", "");
if (host && host[0])
i2p::context.UpdateAddress (boost::asio::ip::address::from_string (host));
int port = i2p::util::config::GetArg("-port", 0);
if (port)
i2p::context.UpdatePort (port);
const char * host = i2p::util::config::GetCharArg("-host", "");
if (host && host[0])
i2p::context.UpdateAddress (boost::asio::ip::address::from_string (host));
i2p::context.SetSupportsV6 (i2p::util::config::GetArg("-v6", 0));
i2p::context.SetFloodfill (i2p::util::config::GetArg("-floodfill", 0));
auto bandwidth = i2p::util::config::GetArg("-bandwidth", "");
if (bandwidth.length () > 0)
{
if (bandwidth[0] > 'L')
i2p::context.SetHighBandwidth ();
else
i2p::context.SetLowBandwidth ();
}
i2p::context.SetSupportsV6 (i2p::util::config::GetArg("-v6", 0));
i2p::context.SetFloodfill (i2p::util::config::GetArg("-floodfill", 0));
auto bandwidth = i2p::util::config::GetArg("-bandwidth", "");
if (bandwidth.length () > 0)
{
if (bandwidth[0] > 'L')
i2p::context.SetHighBandwidth ();
else
i2p::context.SetLowBandwidth ();
}
LogPrint("CMD parameters:");
for (int i = 0; i < argc; ++i)
LogPrint(i, " ", argv[i]);
LogPrint("CMD parameters:");
for (int i = 0; i < argc; ++i)
LogPrint(i, " ", argv[i]);
return true;
}
bool Daemon_Singleton::start()
{
// initialize log
if (isLogging)
{
if (isDaemon)
{
std::string logfile_path = IsService () ? "/var/log" : i2p::util::filesystem::GetDataDir().string();
return true;
}
bool Daemon_Singleton::start()
{
// initialize log
if (isLogging)
{
if (isDaemon)
{
std::string logfile_path = IsService () ? "/var/log" : i2p::util::filesystem::GetDataDir().string();
#ifndef _WIN32
logfile_path.append("/i2pd.log");
logfile_path.append("/i2pd.log");
#else
logfile_path.append("\\i2pd.log");
logfile_path.append("\\i2pd.log");
#endif
StartLog (logfile_path);
}
else
StartLog (""); // write to stdout
}
StartLog (logfile_path);
}
else
StartLog (""); // write to stdout
}
d.httpServer = new i2p::util::HTTPServer(i2p::util::config::GetArg("-httpport", 7070));
d.httpServer->Start();
LogPrint("HTTP Server started");
i2p::data::netdb.Start();
LogPrint("NetDB started");
i2p::transport::transports.Start();
LogPrint("Transports started");
i2p::tunnel::tunnels.Start();
LogPrint("Tunnels started");
i2p::client::context.Start ();
LogPrint("Client started");
return true;
}
d.httpServer = new i2p::util::HTTPServer(i2p::util::config::GetArg("-httpport", 7070));
d.httpServer->Start();
LogPrint("HTTP Server started");
i2p::data::netdb.Start();
LogPrint("NetDB started");
i2p::transport::transports.Start();
LogPrint("Transports started");
i2p::tunnel::tunnels.Start();
LogPrint("Tunnels started");
i2p::client::context.Start ();
LogPrint("Client started");
return true;
}
bool Daemon_Singleton::stop()
{
LogPrint("Shutdown started.");
i2p::client::context.Stop();
LogPrint("Client stopped");
i2p::tunnel::tunnels.Stop();
LogPrint("Tunnels stopped");
i2p::transport::transports.Stop();
LogPrint("Transports stopped");
i2p::data::netdb.Stop();
LogPrint("NetDB stopped");
d.httpServer->Stop();
LogPrint("HTTP Server stopped");
bool Daemon_Singleton::stop()
{
LogPrint("Shutdown started.");
i2p::client::context.Stop();
LogPrint("Client stopped");
i2p::tunnel::tunnels.Stop();
LogPrint("Tunnels stopped");
i2p::transport::transports.Stop();
LogPrint("Transports stopped");
i2p::data::netdb.Stop();
LogPrint("NetDB stopped");
d.httpServer->Stop();
LogPrint("HTTP Server stopped");
StopLog ();
StopLog ();
delete d.httpServer; d.httpServer = nullptr;
delete d.httpServer; d.httpServer = nullptr;
return true;
}
}
return true;
}
}
}

View file

@ -9,63 +9,65 @@
namespace i2p
{
namespace util
{
class Daemon_Singleton_Private;
class Daemon_Singleton
{
public:
virtual bool init(int argc, char* argv[]);
virtual bool start();
virtual bool stop();
namespace util
{
class Daemon_Singleton_Private;
class Daemon_Singleton
{
public:
virtual bool init(int argc, char* argv[]);
virtual bool start();
virtual bool stop();
int isLogging;
int isDaemon;
int running;
int isLogging;
int isDaemon;
int running;
protected:
Daemon_Singleton();
virtual ~Daemon_Singleton();
protected:
Daemon_Singleton();
virtual ~Daemon_Singleton();
bool IsService () const;
bool IsService () const;
// d-pointer for httpServer, httpProxy, etc.
class Daemon_Singleton_Private;
Daemon_Singleton_Private &d;
};
// d-pointer for httpServer, httpProxy, etc.
class Daemon_Singleton_Private;
Daemon_Singleton_Private &d;
};
#ifdef _WIN32
class DaemonWin32 : public Daemon_Singleton
{
public:
static DaemonWin32& Instance()
{
static DaemonWin32 instance;
return instance;
}
class DaemonWin32 : public Daemon_Singleton
{
public:
static DaemonWin32& Instance()
{
static DaemonWin32 instance;
return instance;
}
virtual bool init(int argc, char* argv[]);
virtual bool start();
virtual bool stop();
};
virtual bool init(int argc, char* argv[]);
virtual bool start();
virtual bool stop();
};
#else
class DaemonLinux : public Daemon_Singleton
{
public:
static DaemonLinux& Instance()
{
static DaemonLinux instance;
return instance;
}
class DaemonLinux : public Daemon_Singleton
{
public:
DaemonLinux() = default;
virtual bool start();
virtual bool stop();
private:
std::string pidfile;
int pidFilehandle;
static DaemonLinux& Instance()
{
static DaemonLinux instance;
return instance;
}
};
virtual bool start();
virtual bool stop();
private:
std::string pidfile;
int pidFilehandle;
};
#endif
}
}
}

View file

@ -14,106 +14,106 @@
void handle_signal(int sig)
{
switch (sig)
{
case SIGHUP:
if (i2p::util::config::GetArg("daemon", 0) == 1)
{
static bool first=true;
if (first)
{
first=false;
return;
}
}
LogPrint("Reloading config.");
i2p::util::filesystem::ReadConfigFile(i2p::util::config::mapArgs, i2p::util::config::mapMultiArgs);
break;
case SIGABRT:
case SIGTERM:
case SIGINT:
Daemon.running = 0; // Exit loop
break;
}
switch (sig)
{
case SIGHUP:
if (i2p::util::config::GetArg("daemon", 0) == 1)
{
static bool first=true;
if (first)
{
first=false;
return;
}
}
LogPrint("Reloading config.");
i2p::util::filesystem::ReadConfigFile(i2p::util::config::mapArgs, i2p::util::config::mapMultiArgs);
break;
case SIGABRT:
case SIGTERM:
case SIGINT:
Daemon.running = 0; // Exit loop
break;
}
}
namespace i2p
{
namespace util
{
bool DaemonLinux::start()
{
if (isDaemon == 1)
{
pid_t pid;
pid = fork();
if (pid > 0) // parent
::exit (EXIT_SUCCESS);
namespace util
{
bool DaemonLinux::start()
{
if (isDaemon == 1)
{
pid_t pid;
pid = fork();
if (pid > 0) // parent
::exit (EXIT_SUCCESS);
if (pid < 0) // error
return false;
if (pid < 0) // error
return false;
// child
umask(0);
int sid = setsid();
if (sid < 0)
{
LogPrint("Error, could not create process group.");
return false;
}
std::string d(i2p::util::filesystem::GetDataDir().string ()); // make a copy
chdir(d.c_str());
// child
umask(0);
int sid = setsid();
if (sid < 0)
{
LogPrint("Error, could not create process group.");
return false;
}
std::string d(i2p::util::filesystem::GetDataDir().string ()); // make a copy
chdir(d.c_str());
// close stdin/stdout/stderr descriptors
::close (0);
::open ("/dev/null", O_RDWR);
::close (1);
::open ("/dev/null", O_RDWR);
::close (2);
::open ("/dev/null", O_RDWR);
}
// close stdin/stdout/stderr descriptors
::close (0);
::open ("/dev/null", O_RDWR);
::close (1);
::open ("/dev/null", O_RDWR);
::close (2);
::open ("/dev/null", O_RDWR);
}
// Pidfile
pidfile = IsService () ? "/var/run" : i2p::util::filesystem::GetDataDir().string();
pidfile.append("/i2pd.pid");
pidFilehandle = open(pidfile.c_str(), O_RDWR | O_CREAT, 0600);
if (pidFilehandle == -1)
{
LogPrint("Error, could not create pid file (", pidfile, ")\nIs an instance already running?");
return false;
}
if (lockf(pidFilehandle, F_TLOCK, 0) == -1)
{
LogPrint("Error, could not lock pid file (", pidfile, ")\nIs an instance already running?");
return false;
}
char pid[10];
sprintf(pid, "%d\n", getpid());
write(pidFilehandle, pid, strlen(pid));
// Pidfile
pidfile = IsService () ? "/var/run" : i2p::util::filesystem::GetDataDir().string();
pidfile.append("/i2pd.pid");
pidFilehandle = open(pidfile.c_str(), O_RDWR | O_CREAT, 0600);
if (pidFilehandle == -1)
{
LogPrint("Error, could not create pid file (", pidfile, ")\nIs an instance already running?");
return false;
}
if (lockf(pidFilehandle, F_TLOCK, 0) == -1)
{
LogPrint("Error, could not lock pid file (", pidfile, ")\nIs an instance already running?");
return false;
}
char pid[10];
sprintf(pid, "%d\n", getpid());
write(pidFilehandle, pid, strlen(pid));
// Signal handler
struct sigaction sa;
sa.sa_handler = handle_signal;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
sigaction(SIGHUP, &sa, 0);
sigaction(SIGABRT, &sa, 0);
sigaction(SIGTERM, &sa, 0);
sigaction(SIGINT, &sa, 0);
// Signal handler
struct sigaction sa;
sa.sa_handler = handle_signal;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
sigaction(SIGHUP, &sa, 0);
sigaction(SIGABRT, &sa, 0);
sigaction(SIGTERM, &sa, 0);
sigaction(SIGINT, &sa, 0);
return Daemon_Singleton::start();
}
return Daemon_Singleton::start();
}
bool DaemonLinux::stop()
{
close(pidFilehandle);
unlink(pidfile.c_str());
bool DaemonLinux::stop()
{
close(pidFilehandle);
unlink(pidfile.c_str());
return Daemon_Singleton::stop();
}
return Daemon_Singleton::stop();
}
}
}
}
#endif

View file

@ -8,76 +8,76 @@
namespace i2p
{
namespace util
{
bool DaemonWin32::init(int argc, char* argv[])
{
setlocale(LC_CTYPE, "");
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
setlocale(LC_ALL, "Russian");
namespace util
{
bool DaemonWin32::init(int argc, char* argv[])
{
setlocale(LC_CTYPE, "");
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
setlocale(LC_ALL, "Russian");
if (!Daemon_Singleton::init(argc, argv)) return false;
if (I2PService::isService())
isDaemon = 1;
else
isDaemon = 0;
if (!Daemon_Singleton::init(argc, argv)) return false;
if (I2PService::isService())
isDaemon = 1;
else
isDaemon = 0;
std::string serviceControl = i2p::util::config::GetArg("-service", "none");
if (serviceControl == "install")
{
InstallService(
SERVICE_NAME, // Name of service
SERVICE_DISPLAY_NAME, // Name to display
SERVICE_START_TYPE, // Service start type
SERVICE_DEPENDENCIES, // Dependencies
SERVICE_ACCOUNT, // Service running account
SERVICE_PASSWORD // Password of the account
);
exit(0);
}
else if (serviceControl == "remove")
{
UninstallService(SERVICE_NAME);
exit(0);
}
else if (serviceControl != "none")
{
printf(" --service=install to install the service.\n");
printf(" --service=remove to remove the service.\n");
}
if (isDaemon == 1)
{
LogPrint("Service session");
I2PService service(SERVICE_NAME);
if (!I2PService::Run(service))
{
LogPrint("Service failed to run w/err 0x%08lx\n", GetLastError());
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
else
LogPrint("User session");
std::string serviceControl = i2p::util::config::GetArg("-service", "none");
if (serviceControl == "install")
{
InstallService(
SERVICE_NAME, // Name of service
SERVICE_DISPLAY_NAME, // Name to display
SERVICE_START_TYPE, // Service start type
SERVICE_DEPENDENCIES, // Dependencies
SERVICE_ACCOUNT, // Service running account
SERVICE_PASSWORD // Password of the account
);
exit(0);
}
else if (serviceControl == "remove")
{
UninstallService(SERVICE_NAME);
exit(0);
}
else if (serviceControl != "none")
{
printf(" --service=install to install the service.\n");
printf(" --service=remove to remove the service.\n");
}
if (isDaemon == 1)
{
LogPrint("Service session");
I2PService service(SERVICE_NAME);
if (!I2PService::Run(service))
{
LogPrint("Service failed to run w/err 0x%08lx\n", GetLastError());
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
else
LogPrint("User session");
return true;
}
bool DaemonWin32::start()
{
setlocale(LC_CTYPE, "");
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
setlocale(LC_ALL, "Russian");
return true;
}
bool DaemonWin32::start()
{
setlocale(LC_CTYPE, "");
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
setlocale(LC_ALL, "Russian");
return Daemon_Singleton::start();
}
return Daemon_Singleton::start();
}
bool DaemonWin32::stop()
{
return Daemon_Singleton::stop();
}
}
bool DaemonWin32::stop()
{
return Daemon_Singleton::stop();
}
}
}
#endif

View file

@ -12,140 +12,140 @@ namespace i2p
{
namespace datagram
{
DatagramDestination::DatagramDestination (i2p::client::ClientDestination& owner):
m_Owner (owner), m_Receiver (nullptr)
{
}
void DatagramDestination::SendDatagramTo (const uint8_t * payload, size_t len, const i2p::data::IdentHash& ident, uint16_t fromPort, uint16_t toPort)
{
uint8_t buf[MAX_DATAGRAM_SIZE];
auto identityLen = m_Owner.GetIdentity ().ToBuffer (buf, MAX_DATAGRAM_SIZE);
uint8_t * signature = buf + identityLen;
auto signatureLen = m_Owner.GetIdentity ().GetSignatureLen ();
uint8_t * buf1 = signature + signatureLen;
size_t headerLen = identityLen + signatureLen;
memcpy (buf1, payload, len);
if (m_Owner.GetIdentity ().GetSigningKeyType () == i2p::data::SIGNING_KEY_TYPE_DSA_SHA1)
{
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, buf1, len);
m_Owner.Sign (hash, 32, signature);
}
else
m_Owner.Sign (buf1, len, signature);
DatagramDestination::DatagramDestination (i2p::client::ClientDestination& owner):
m_Owner (owner), m_Receiver (nullptr)
{
}
void DatagramDestination::SendDatagramTo (const uint8_t * payload, size_t len, const i2p::data::IdentHash& ident, uint16_t fromPort, uint16_t toPort)
{
uint8_t buf[MAX_DATAGRAM_SIZE];
auto identityLen = m_Owner.GetIdentity ().ToBuffer (buf, MAX_DATAGRAM_SIZE);
uint8_t * signature = buf + identityLen;
auto signatureLen = m_Owner.GetIdentity ().GetSignatureLen ();
uint8_t * buf1 = signature + signatureLen;
size_t headerLen = identityLen + signatureLen;
memcpy (buf1, payload, len);
if (m_Owner.GetIdentity ().GetSigningKeyType () == i2p::data::SIGNING_KEY_TYPE_DSA_SHA1)
{
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, buf1, len);
m_Owner.Sign (hash, 32, signature);
}
else
m_Owner.Sign (buf1, len, signature);
auto msg = CreateDataMessage (buf, len + headerLen, fromPort, toPort);
auto remote = m_Owner.FindLeaseSet (ident);
if (remote)
m_Owner.GetService ().post (std::bind (&DatagramDestination::SendMsg, this, msg, remote));
else
m_Owner.RequestDestination (ident, std::bind (&DatagramDestination::HandleLeaseSetRequestComplete, this, std::placeholders::_1, msg));
}
auto msg = CreateDataMessage (buf, len + headerLen, fromPort, toPort);
auto remote = m_Owner.FindLeaseSet (ident);
if (remote)
m_Owner.GetService ().post (std::bind (&DatagramDestination::SendMsg, this, msg, remote));
else
m_Owner.RequestDestination (ident, std::bind (&DatagramDestination::HandleLeaseSetRequestComplete, this, std::placeholders::_1, msg));
}
void DatagramDestination::HandleLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> remote, I2NPMessage * msg)
{
if (remote)
SendMsg (msg, remote);
else
DeleteI2NPMessage (msg);
}
void DatagramDestination::SendMsg (I2NPMessage * msg, std::shared_ptr<const i2p::data::LeaseSet> remote)
{
auto outboundTunnel = m_Owner.GetTunnelPool ()->GetNextOutboundTunnel ();
auto leases = remote->GetNonExpiredLeases ();
if (!leases.empty () && outboundTunnel)
{
std::vector<i2p::tunnel::TunnelMessageBlock> msgs;
uint32_t i = i2p::context.GetRandomNumberGenerator ().GenerateWord32 (0, leases.size () - 1);
auto garlic = m_Owner.WrapMessage (remote, ToSharedI2NPMessage (msg), true);
msgs.push_back (i2p::tunnel::TunnelMessageBlock
{
i2p::tunnel::eDeliveryTypeTunnel,
leases[i].tunnelGateway, leases[i].tunnelID,
garlic
});
outboundTunnel->SendTunnelDataMsg (msgs);
}
else
{
if (outboundTunnel)
LogPrint (eLogWarning, "Failed to send datagram. All leases expired");
else
LogPrint (eLogWarning, "Failed to send datagram. No outbound tunnels");
DeleteI2NPMessage (msg);
}
}
void DatagramDestination::HandleLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> remote, I2NPMessage * msg)
{
if (remote)
SendMsg (msg, remote);
else
DeleteI2NPMessage (msg);
}
void DatagramDestination::SendMsg (I2NPMessage * msg, std::shared_ptr<const i2p::data::LeaseSet> remote)
{
auto outboundTunnel = m_Owner.GetTunnelPool ()->GetNextOutboundTunnel ();
auto leases = remote->GetNonExpiredLeases ();
if (!leases.empty () && outboundTunnel)
{
std::vector<i2p::tunnel::TunnelMessageBlock> msgs;
uint32_t i = i2p::context.GetRandomNumberGenerator ().GenerateWord32 (0, leases.size () - 1);
auto garlic = m_Owner.WrapMessage (remote, ToSharedI2NPMessage (msg), true);
msgs.push_back (i2p::tunnel::TunnelMessageBlock
{
i2p::tunnel::eDeliveryTypeTunnel,
leases[i].tunnelGateway, leases[i].tunnelID,
garlic
});
outboundTunnel->SendTunnelDataMsg (msgs);
}
else
{
if (outboundTunnel)
LogPrint (eLogWarning, "Failed to send datagram. All leases expired");
else
LogPrint (eLogWarning, "Failed to send datagram. No outbound tunnels");
DeleteI2NPMessage (msg);
}
}
void DatagramDestination::HandleDatagram (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len)
{
i2p::data::IdentityEx identity;
size_t identityLen = identity.FromBuffer (buf, len);
const uint8_t * signature = buf + identityLen;
size_t headerLen = identityLen + identity.GetSignatureLen ();
void DatagramDestination::HandleDatagram (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len)
{
i2p::data::IdentityEx identity;
size_t identityLen = identity.FromBuffer (buf, len);
const uint8_t * signature = buf + identityLen;
size_t headerLen = identityLen + identity.GetSignatureLen ();
bool verified = false;
if (identity.GetSigningKeyType () == i2p::data::SIGNING_KEY_TYPE_DSA_SHA1)
{
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, buf + headerLen, len - headerLen);
verified = identity.Verify (hash, 32, signature);
}
else
verified = identity.Verify (buf + headerLen, len - headerLen, signature);
if (verified)
{
auto it = m_ReceiversByPorts.find (toPort);
if (it != m_ReceiversByPorts.end ())
it->second (identity, fromPort, toPort, buf + headerLen, len -headerLen);
else if (m_Receiver != nullptr)
m_Receiver (identity, fromPort, toPort, buf + headerLen, len -headerLen);
else
LogPrint (eLogWarning, "Receiver for datagram is not set");
}
else
LogPrint (eLogWarning, "Datagram signature verification failed");
}
bool verified = false;
if (identity.GetSigningKeyType () == i2p::data::SIGNING_KEY_TYPE_DSA_SHA1)
{
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, buf + headerLen, len - headerLen);
verified = identity.Verify (hash, 32, signature);
}
else
verified = identity.Verify (buf + headerLen, len - headerLen, signature);
if (verified)
{
auto it = m_ReceiversByPorts.find (toPort);
if (it != m_ReceiversByPorts.end ())
it->second (identity, fromPort, toPort, buf + headerLen, len -headerLen);
else if (m_Receiver != nullptr)
m_Receiver (identity, fromPort, toPort, buf + headerLen, len -headerLen);
else
LogPrint (eLogWarning, "Receiver for datagram is not set");
}
else
LogPrint (eLogWarning, "Datagram signature verification failed");
}
void DatagramDestination::HandleDataMessagePayload (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len)
{
// unzip it
CryptoPP::Gunzip decompressor;
decompressor.Put (buf, len);
decompressor.MessageEnd();
uint8_t uncompressed[MAX_DATAGRAM_SIZE];
auto uncompressedLen = decompressor.MaxRetrievable ();
if (uncompressedLen <= MAX_DATAGRAM_SIZE)
{
decompressor.Get (uncompressed, uncompressedLen);
HandleDatagram (fromPort, toPort, uncompressed, uncompressedLen);
}
else
LogPrint ("Received datagram size ", uncompressedLen, " exceeds max size");
void DatagramDestination::HandleDataMessagePayload (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len)
{
// unzip it
CryptoPP::Gunzip decompressor;
decompressor.Put (buf, len);
decompressor.MessageEnd();
uint8_t uncompressed[MAX_DATAGRAM_SIZE];
auto uncompressedLen = decompressor.MaxRetrievable ();
if (uncompressedLen <= MAX_DATAGRAM_SIZE)
{
decompressor.Get (uncompressed, uncompressedLen);
HandleDatagram (fromPort, toPort, uncompressed, uncompressedLen);
}
else
LogPrint ("Received datagram size ", uncompressedLen, " exceeds max size");
}
}
I2NPMessage * DatagramDestination::CreateDataMessage (const uint8_t * payload, size_t len, uint16_t fromPort, uint16_t toPort)
{
I2NPMessage * msg = NewI2NPMessage ();
CryptoPP::Gzip compressor; // default level
compressor.Put (payload, len);
compressor.MessageEnd();
int size = compressor.MaxRetrievable ();
uint8_t * buf = msg->GetPayload ();
htobe32buf (buf, size); // length
buf += 4;
compressor.Get (buf, size);
htobe16buf (buf + 4, fromPort); // source port
htobe16buf (buf + 6, toPort); // destination port
buf[9] = i2p::client::PROTOCOL_TYPE_DATAGRAM; // datagram protocol
msg->len += size + 4;
msg->FillI2NPMessageHeader (eI2NPData);
return msg;
}
I2NPMessage * DatagramDestination::CreateDataMessage (const uint8_t * payload, size_t len, uint16_t fromPort, uint16_t toPort)
{
I2NPMessage * msg = NewI2NPMessage ();
CryptoPP::Gzip compressor; // default level
compressor.Put (payload, len);
compressor.MessageEnd();
int size = compressor.MaxRetrievable ();
uint8_t * buf = msg->GetPayload ();
htobe32buf (buf, size); // length
buf += 4;
compressor.Get (buf, size);
htobe16buf (buf + 4, fromPort); // source port
htobe16buf (buf + 6, toPort); // destination port
buf[9] = i2p::client::PROTOCOL_TYPE_DATAGRAM; // datagram protocol
msg->len += size + 4;
msg->FillI2NPMessageHeader (eI2NPData);
return msg;
}
}
}

View file

@ -13,43 +13,43 @@ namespace i2p
{
namespace client
{
class ClientDestination;
class ClientDestination;
}
namespace datagram
{
const size_t MAX_DATAGRAM_SIZE = 32768;
class DatagramDestination
{
typedef std::function<void (const i2p::data::IdentityEx& from, uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len)> Receiver;
const size_t MAX_DATAGRAM_SIZE = 32768;
class DatagramDestination
{
typedef std::function<void (const i2p::data::IdentityEx& from, uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len)> Receiver;
public:
public:
DatagramDestination (i2p::client::ClientDestination& owner);
~DatagramDestination () {};
DatagramDestination (i2p::client::ClientDestination& owner);
~DatagramDestination () {};
void SendDatagramTo (const uint8_t * payload, size_t len, const i2p::data::IdentHash& ident, uint16_t fromPort = 0, uint16_t toPort = 0);
void HandleDataMessagePayload (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len);
void SendDatagramTo (const uint8_t * payload, size_t len, const i2p::data::IdentHash& ident, uint16_t fromPort = 0, uint16_t toPort = 0);
void HandleDataMessagePayload (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len);
void SetReceiver (const Receiver& receiver) { m_Receiver = receiver; };
void ResetReceiver () { m_Receiver = nullptr; };
void SetReceiver (const Receiver& receiver) { m_Receiver = receiver; };
void ResetReceiver () { m_Receiver = nullptr; };
void SetReceiver (const Receiver& receiver, uint16_t port) { m_ReceiversByPorts[port] = receiver; };
void ResetReceiver (uint16_t port) { m_ReceiversByPorts.erase (port); };
void SetReceiver (const Receiver& receiver, uint16_t port) { m_ReceiversByPorts[port] = receiver; };
void ResetReceiver (uint16_t port) { m_ReceiversByPorts.erase (port); };
private:
private:
void HandleLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet, I2NPMessage * msg);
I2NPMessage * CreateDataMessage (const uint8_t * payload, size_t len, uint16_t fromPort, uint16_t toPort);
void SendMsg (I2NPMessage * msg, std::shared_ptr<const i2p::data::LeaseSet> remote);
void HandleDatagram (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len);
void HandleLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet, I2NPMessage * msg);
I2NPMessage * CreateDataMessage (const uint8_t * payload, size_t len, uint16_t fromPort, uint16_t toPort);
void SendMsg (I2NPMessage * msg, std::shared_ptr<const i2p::data::LeaseSet> remote);
void HandleDatagram (uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len);
private:
private:
i2p::client::ClientDestination& m_Owner;
Receiver m_Receiver; // default
std::map<uint16_t, Receiver> m_ReceiversByPorts;
};
i2p::client::ClientDestination& m_Owner;
Receiver m_Receiver; // default
std::map<uint16_t, Receiver> m_ReceiversByPorts;
};
}
}

File diff suppressed because it is too large Load diff

View file

@ -22,135 +22,135 @@ namespace i2p
{
namespace client
{
const uint8_t PROTOCOL_TYPE_STREAMING = 6;
const uint8_t PROTOCOL_TYPE_DATAGRAM = 17;
const uint8_t PROTOCOL_TYPE_RAW = 18;
const int PUBLISH_CONFIRMATION_TIMEOUT = 5; // in seconds
const int LEASESET_REQUEST_TIMEOUT = 5; // in seconds
const int MAX_LEASESET_REQUEST_TIMEOUT = 40; // in seconds
const int MAX_NUM_FLOODFILLS_PER_REQUEST = 7;
const int DESTINATION_CLEANUP_TIMEOUT = 20; // in minutes
// I2CP
const char I2CP_PARAM_INBOUND_TUNNEL_LENGTH[] = "inbound.length";
const int DEFAULT_INBOUND_TUNNEL_LENGTH = 3;
const char I2CP_PARAM_OUTBOUND_TUNNEL_LENGTH[] = "outbound.length";
const int DEFAULT_OUTBOUND_TUNNEL_LENGTH = 3;
const char I2CP_PARAM_INBOUND_TUNNELS_QUANTITY[] = "inbound.quantity";
const int DEFAULT_INBOUND_TUNNELS_QUANTITY = 5;
const char I2CP_PARAM_OUTBOUND_TUNNELS_QUANTITY[] = "outbound.quantity";
const int DEFAULT_OUTBOUND_TUNNELS_QUANTITY = 5;
const char I2CP_PARAM_EXPLICIT_PEERS[] = "explicitPeers";
const int STREAM_REQUEST_TIMEOUT = 60; //in seconds
const uint8_t PROTOCOL_TYPE_STREAMING = 6;
const uint8_t PROTOCOL_TYPE_DATAGRAM = 17;
const uint8_t PROTOCOL_TYPE_RAW = 18;
const int PUBLISH_CONFIRMATION_TIMEOUT = 5; // in seconds
const int LEASESET_REQUEST_TIMEOUT = 5; // in seconds
const int MAX_LEASESET_REQUEST_TIMEOUT = 40; // in seconds
const int MAX_NUM_FLOODFILLS_PER_REQUEST = 7;
const int DESTINATION_CLEANUP_TIMEOUT = 20; // in minutes
// I2CP
const char I2CP_PARAM_INBOUND_TUNNEL_LENGTH[] = "inbound.length";
const int DEFAULT_INBOUND_TUNNEL_LENGTH = 3;
const char I2CP_PARAM_OUTBOUND_TUNNEL_LENGTH[] = "outbound.length";
const int DEFAULT_OUTBOUND_TUNNEL_LENGTH = 3;
const char I2CP_PARAM_INBOUND_TUNNELS_QUANTITY[] = "inbound.quantity";
const int DEFAULT_INBOUND_TUNNELS_QUANTITY = 5;
const char I2CP_PARAM_OUTBOUND_TUNNELS_QUANTITY[] = "outbound.quantity";
const int DEFAULT_OUTBOUND_TUNNELS_QUANTITY = 5;
const char I2CP_PARAM_EXPLICIT_PEERS[] = "explicitPeers";
const int STREAM_REQUEST_TIMEOUT = 60; //in seconds
typedef std::function<void (std::shared_ptr<i2p::stream::Stream> stream)> StreamRequestComplete;
typedef std::function<void (std::shared_ptr<i2p::stream::Stream> stream)> StreamRequestComplete;
class ClientDestination: public i2p::garlic::GarlicDestination
{
typedef std::function<void (std::shared_ptr<i2p::data::LeaseSet> leaseSet)> RequestComplete;
// leaseSet = nullptr means not found
struct LeaseSetRequest
{
LeaseSetRequest (boost::asio::io_service& service): requestTime (0), requestTimeoutTimer (service) {};
std::set<i2p::data::IdentHash> excluded;
uint64_t requestTime;
boost::asio::deadline_timer requestTimeoutTimer;
RequestComplete requestComplete;
};
public:
class ClientDestination: public i2p::garlic::GarlicDestination
{
typedef std::function<void (std::shared_ptr<i2p::data::LeaseSet> leaseSet)> RequestComplete;
// leaseSet = nullptr means not found
struct LeaseSetRequest
{
LeaseSetRequest (boost::asio::io_service& service): requestTime (0), requestTimeoutTimer (service) {};
std::set<i2p::data::IdentHash> excluded;
uint64_t requestTime;
boost::asio::deadline_timer requestTimeoutTimer;
RequestComplete requestComplete;
};
public:
ClientDestination (const i2p::data::PrivateKeys& keys, bool isPublic, const std::map<std::string, std::string> * params = nullptr);
~ClientDestination ();
ClientDestination (const i2p::data::PrivateKeys& keys, bool isPublic, const std::map<std::string, std::string> * params = nullptr);
~ClientDestination ();
virtual void Start ();
virtual void Stop ();
bool IsRunning () const { return m_IsRunning; };
boost::asio::io_service& GetService () { return m_Service; };
std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () { return m_Pool; };
bool IsReady () const { return m_LeaseSet && m_LeaseSet->HasNonExpiredLeases () && m_Pool->GetOutboundTunnels ().size () > 0; };
std::shared_ptr<const i2p::data::LeaseSet> FindLeaseSet (const i2p::data::IdentHash& ident);
bool RequestDestination (const i2p::data::IdentHash& dest, RequestComplete requestComplete = nullptr);
// streaming
std::shared_ptr<i2p::stream::StreamingDestination> CreateStreamingDestination (int port); // additional
std::shared_ptr<i2p::stream::StreamingDestination> GetStreamingDestination (int port = 0) const;
// following methods operate with default streaming destination
void CreateStream (StreamRequestComplete streamRequestComplete, const i2p::data::IdentHash& dest, int port = 0);
std::shared_ptr<i2p::stream::Stream> CreateStream (std::shared_ptr<const i2p::data::LeaseSet> remote, int port = 0);
void AcceptStreams (const i2p::stream::StreamingDestination::Acceptor& acceptor);
void StopAcceptingStreams ();
bool IsAcceptingStreams () const;
// datagram
i2p::datagram::DatagramDestination * GetDatagramDestination () const { return m_DatagramDestination; };
i2p::datagram::DatagramDestination * CreateDatagramDestination ();
virtual void Start ();
virtual void Stop ();
bool IsRunning () const { return m_IsRunning; };
boost::asio::io_service& GetService () { return m_Service; };
std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () { return m_Pool; };
bool IsReady () const { return m_LeaseSet && m_LeaseSet->HasNonExpiredLeases () && m_Pool->GetOutboundTunnels ().size () > 0; };
std::shared_ptr<const i2p::data::LeaseSet> FindLeaseSet (const i2p::data::IdentHash& ident);
bool RequestDestination (const i2p::data::IdentHash& dest, RequestComplete requestComplete = nullptr);
// streaming
std::shared_ptr<i2p::stream::StreamingDestination> CreateStreamingDestination (int port); // additional
std::shared_ptr<i2p::stream::StreamingDestination> GetStreamingDestination (int port = 0) const;
// following methods operate with default streaming destination
void CreateStream (StreamRequestComplete streamRequestComplete, const i2p::data::IdentHash& dest, int port = 0);
std::shared_ptr<i2p::stream::Stream> CreateStream (std::shared_ptr<const i2p::data::LeaseSet> remote, int port = 0);
void AcceptStreams (const i2p::stream::StreamingDestination::Acceptor& acceptor);
void StopAcceptingStreams ();
bool IsAcceptingStreams () const;
// datagram
i2p::datagram::DatagramDestination * GetDatagramDestination () const { return m_DatagramDestination; };
i2p::datagram::DatagramDestination * CreateDatagramDestination ();
// implements LocalDestination
const i2p::data::PrivateKeys& GetPrivateKeys () const { return m_Keys; };
const uint8_t * GetEncryptionPrivateKey () const { return m_EncryptionPrivateKey; };
const uint8_t * GetEncryptionPublicKey () const { return m_EncryptionPublicKey; };
// implements GarlicDestination
std::shared_ptr<const i2p::data::LeaseSet> GetLeaseSet ();
std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () const { return m_Pool; }
void HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
// implements LocalDestination
const i2p::data::PrivateKeys& GetPrivateKeys () const { return m_Keys; };
const uint8_t * GetEncryptionPrivateKey () const { return m_EncryptionPrivateKey; };
const uint8_t * GetEncryptionPublicKey () const { return m_EncryptionPublicKey; };
// implements GarlicDestination
std::shared_ptr<const i2p::data::LeaseSet> GetLeaseSet ();
std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () const { return m_Pool; }
void HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
// override GarlicDestination
bool SubmitSessionKey (const uint8_t * key, const uint8_t * tag);
void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
void SetLeaseSetUpdated ();
// override GarlicDestination
bool SubmitSessionKey (const uint8_t * key, const uint8_t * tag);
void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
void SetLeaseSetUpdated ();
// I2CP
void HandleDataMessage (const uint8_t * buf, size_t len);
// I2CP
void HandleDataMessage (const uint8_t * buf, size_t len);
private:
void Run ();
void UpdateLeaseSet ();
void Publish ();
void HandlePublishConfirmationTimer (const boost::system::error_code& ecode);
void HandleDatabaseStoreMessage (const uint8_t * buf, size_t len);
void HandleDatabaseSearchReplyMessage (const uint8_t * buf, size_t len);
void HandleDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
private:
void Run ();
void UpdateLeaseSet ();
void Publish ();
void HandlePublishConfirmationTimer (const boost::system::error_code& ecode);
void HandleDatabaseStoreMessage (const uint8_t * buf, size_t len);
void HandleDatabaseSearchReplyMessage (const uint8_t * buf, size_t len);
void HandleDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
void RequestLeaseSet (const i2p::data::IdentHash& dest, RequestComplete requestComplete);
bool SendLeaseSetRequest (const i2p::data::IdentHash& dest, std::shared_ptr<const i2p::data::RouterInfo> nextFloodfill, LeaseSetRequest * request);
void HandleRequestTimoutTimer (const boost::system::error_code& ecode, const i2p::data::IdentHash& dest);
void HandleCleanupTimer (const boost::system::error_code& ecode);
void CleanupRemoteLeaseSets ();
private:
void RequestLeaseSet (const i2p::data::IdentHash& dest, RequestComplete requestComplete);
bool SendLeaseSetRequest (const i2p::data::IdentHash& dest, std::shared_ptr<const i2p::data::RouterInfo> nextFloodfill, LeaseSetRequest * request);
void HandleRequestTimoutTimer (const boost::system::error_code& ecode, const i2p::data::IdentHash& dest);
void HandleCleanupTimer (const boost::system::error_code& ecode);
void CleanupRemoteLeaseSets ();
private:
volatile bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
i2p::data::PrivateKeys m_Keys;
uint8_t m_EncryptionPublicKey[256], m_EncryptionPrivateKey[256];
std::map<i2p::data::IdentHash, std::shared_ptr<i2p::data::LeaseSet> > m_RemoteLeaseSets;
std::map<i2p::data::IdentHash, LeaseSetRequest *> m_LeaseSetRequests;
volatile bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
i2p::data::PrivateKeys m_Keys;
uint8_t m_EncryptionPublicKey[256], m_EncryptionPrivateKey[256];
std::map<i2p::data::IdentHash, std::shared_ptr<i2p::data::LeaseSet> > m_RemoteLeaseSets;
std::map<i2p::data::IdentHash, LeaseSetRequest *> m_LeaseSetRequests;
std::shared_ptr<i2p::tunnel::TunnelPool> m_Pool;
std::shared_ptr<i2p::data::LeaseSet> m_LeaseSet;
bool m_IsPublic;
uint32_t m_PublishReplyToken;
std::set<i2p::data::IdentHash> m_ExcludedFloodfills; // for publishing
std::shared_ptr<i2p::stream::StreamingDestination> m_StreamingDestination; // default
std::map<uint16_t, std::shared_ptr<i2p::stream::StreamingDestination> > m_StreamingDestinationsByPorts;
i2p::datagram::DatagramDestination * m_DatagramDestination;
boost::asio::deadline_timer m_PublishConfirmationTimer, m_CleanupTimer;
std::shared_ptr<i2p::tunnel::TunnelPool> m_Pool;
std::shared_ptr<i2p::data::LeaseSet> m_LeaseSet;
bool m_IsPublic;
uint32_t m_PublishReplyToken;
std::set<i2p::data::IdentHash> m_ExcludedFloodfills; // for publishing
std::shared_ptr<i2p::stream::StreamingDestination> m_StreamingDestination; // default
std::map<uint16_t, std::shared_ptr<i2p::stream::StreamingDestination> > m_StreamingDestinationsByPorts;
i2p::datagram::DatagramDestination * m_DatagramDestination;
boost::asio::deadline_timer m_PublishConfirmationTimer, m_CleanupTimer;
public:
// for HTTP only
int GetNumRemoteLeaseSets () const { return m_RemoteLeaseSets.size (); };
};
}
}
public:
// for HTTP only
int GetNumRemoteLeaseSets () const { return m_RemoteLeaseSets.size (); };
};
}
}
#endif

120
ElGamal.h
View file

@ -14,74 +14,74 @@ namespace i2p
namespace crypto
{
class ElGamalEncryption
{
public:
class ElGamalEncryption
{
public:
ElGamalEncryption (const uint8_t * key)
{
CryptoPP::AutoSeededRandomPool rnd;
CryptoPP::Integer y (key, 256), k (rnd, CryptoPP::Integer::One(), elgp-1);
a = a_exp_b_mod_c (elgg, k, elgp);
b1 = a_exp_b_mod_c (y, k, elgp);
}
ElGamalEncryption (const uint8_t * key)
{
CryptoPP::AutoSeededRandomPool rnd;
CryptoPP::Integer y (key, 256), k (rnd, CryptoPP::Integer::One(), elgp-1);
a = a_exp_b_mod_c (elgg, k, elgp);
b1 = a_exp_b_mod_c (y, k, elgp);
}
void Encrypt (const uint8_t * data, int len, uint8_t * encrypted, bool zeroPadding = false) const
{
// calculate b = b1*m mod p
uint8_t m[255];
m[0] = 0xFF;
memcpy (m+33, data, len);
CryptoPP::SHA256().CalculateDigest(m+1, m+33, 222);
CryptoPP::Integer b (a_times_b_mod_c (b1, CryptoPP::Integer (m, 255), elgp));
void Encrypt (const uint8_t * data, int len, uint8_t * encrypted, bool zeroPadding = false) const
{
// calculate b = b1*m mod p
uint8_t m[255];
m[0] = 0xFF;
memcpy (m+33, data, len);
CryptoPP::SHA256().CalculateDigest(m+1, m+33, 222);
CryptoPP::Integer b (a_times_b_mod_c (b1, CryptoPP::Integer (m, 255), elgp));
// copy a and b
if (zeroPadding)
{
encrypted[0] = 0;
a.Encode (encrypted + 1, 256);
encrypted[257] = 0;
b.Encode (encrypted + 258, 256);
}
else
{
a.Encode (encrypted, 256);
b.Encode (encrypted + 256, 256);
}
}
// copy a and b
if (zeroPadding)
{
encrypted[0] = 0;
a.Encode (encrypted + 1, 256);
encrypted[257] = 0;
b.Encode (encrypted + 258, 256);
}
else
{
a.Encode (encrypted, 256);
b.Encode (encrypted + 256, 256);
}
}
private:
private:
CryptoPP::Integer a, b1;
};
CryptoPP::Integer a, b1;
};
inline bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted,
uint8_t * data, bool zeroPadding = false)
{
CryptoPP::Integer x(key, 256), a(zeroPadding? encrypted +1 : encrypted, 256),
b(zeroPadding? encrypted + 258 :encrypted + 256, 256);
uint8_t m[255];
a_times_b_mod_c (b, a_exp_b_mod_c (a, elgp - x - 1, elgp), elgp).Encode (m, 255);
if (!CryptoPP::SHA256().VerifyDigest (m + 1, m + 33, 222))
{
LogPrint ("ElGamal decrypt hash doesn't match");
return false;
}
memcpy (data, m + 33, 222);
return true;
}
inline bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted,
uint8_t * data, bool zeroPadding = false)
{
CryptoPP::Integer x(key, 256), a(zeroPadding? encrypted +1 : encrypted, 256),
b(zeroPadding? encrypted + 258 :encrypted + 256, 256);
uint8_t m[255];
a_times_b_mod_c (b, a_exp_b_mod_c (a, elgp - x - 1, elgp), elgp).Encode (m, 255);
if (!CryptoPP::SHA256().VerifyDigest (m + 1, m + 33, 222))
{
LogPrint ("ElGamal decrypt hash doesn't match");
return false;
}
memcpy (data, m + 33, 222);
return true;
}
inline void GenerateElGamalKeyPair (CryptoPP::RandomNumberGenerator& rnd, uint8_t * priv, uint8_t * pub)
{
#if defined(__x86_64__) || defined(__i386__) || defined(_MSC_VER)
rnd.GenerateBlock (priv, 256);
a_exp_b_mod_c (elgg, CryptoPP::Integer (priv, 256), elgp).Encode (pub, 256);
inline void GenerateElGamalKeyPair (CryptoPP::RandomNumberGenerator& rnd, uint8_t * priv, uint8_t * pub)
{
#if defined(__x86_64__) || defined(__i386__) || defined(_MSC_VER)
rnd.GenerateBlock (priv, 256);
a_exp_b_mod_c (elgg, CryptoPP::Integer (priv, 256), elgp).Encode (pub, 256);
#else
CryptoPP::DH dh (elgp, elgg);
dh.GenerateKeyPair(rnd, priv, pub);
#endif
}
CryptoPP::DH dh (elgp, elgg);
dh.GenerateKeyPair(rnd, priv, pub);
#endif
}
}
}
}
#endif

1146
Garlic.cpp

File diff suppressed because it is too large Load diff

256
Garlic.h
View file

@ -16,154 +16,154 @@
#include "Identity.h"
namespace i2p
{
{
namespace garlic
{
enum GarlicDeliveryType
{
eGarlicDeliveryTypeLocal = 0,
eGarlicDeliveryTypeDestination = 1,
eGarlicDeliveryTypeRouter = 2,
eGarlicDeliveryTypeTunnel = 3
};
enum GarlicDeliveryType
{
eGarlicDeliveryTypeLocal = 0,
eGarlicDeliveryTypeDestination = 1,
eGarlicDeliveryTypeRouter = 2,
eGarlicDeliveryTypeTunnel = 3
};
#pragma pack(1)
struct ElGamalBlock
{
uint8_t sessionKey[32];
uint8_t preIV[32];
uint8_t padding[158];
};
#pragma pack()
struct ElGamalBlock
{
uint8_t sessionKey[32];
uint8_t preIV[32];
uint8_t padding[158];
};
#pragma pack()
const int INCOMING_TAGS_EXPIRATION_TIMEOUT = 960; // 16 minutes
const int OUTGOING_TAGS_EXPIRATION_TIMEOUT = 720; // 12 minutes
const int LEASET_CONFIRMATION_TIMEOUT = 4000; // in milliseconds
struct SessionTag: public i2p::data::Tag<32>
{
SessionTag (const uint8_t * buf, uint32_t ts = 0): Tag<32>(buf), creationTime (ts) {};
SessionTag () = default;
SessionTag (const SessionTag& ) = default;
SessionTag& operator= (const SessionTag& ) = default;
const int INCOMING_TAGS_EXPIRATION_TIMEOUT = 960; // 16 minutes
const int OUTGOING_TAGS_EXPIRATION_TIMEOUT = 720; // 12 minutes
const int LEASET_CONFIRMATION_TIMEOUT = 4000; // in milliseconds
struct SessionTag: public i2p::data::Tag<32>
{
SessionTag (const uint8_t * buf, uint32_t ts = 0): Tag<32>(buf), creationTime (ts) {};
SessionTag () = default;
SessionTag (const SessionTag& ) = default;
SessionTag& operator= (const SessionTag& ) = default;
#ifndef _WIN32
SessionTag (SessionTag&& ) = default;
SessionTag& operator= (SessionTag&& ) = default;
SessionTag (SessionTag&& ) = default;
SessionTag& operator= (SessionTag&& ) = default;
#endif
uint32_t creationTime; // seconds since epoch
};
class GarlicDestination;
class GarlicRoutingSession: public std::enable_shared_from_this<GarlicRoutingSession>
{
enum LeaseSetUpdateStatus
{
eLeaseSetUpToDate = 0,
eLeaseSetUpdated,
eLeaseSetSubmitted,
eLeaseSetDoNotSend
};
struct UnconfirmedTags
{
UnconfirmedTags (int n): numTags (n), tagsCreationTime (0) { sessionTags = new SessionTag[numTags]; };
~UnconfirmedTags () { delete[] sessionTags; };
int numTags;
SessionTag * sessionTags;
uint32_t tagsCreationTime;
};
uint32_t creationTime; // seconds since epoch
};
class GarlicDestination;
class GarlicRoutingSession: public std::enable_shared_from_this<GarlicRoutingSession>
{
enum LeaseSetUpdateStatus
{
eLeaseSetUpToDate = 0,
eLeaseSetUpdated,
eLeaseSetSubmitted,
eLeaseSetDoNotSend
};
struct UnconfirmedTags
{
UnconfirmedTags (int n): numTags (n), tagsCreationTime (0) { sessionTags = new SessionTag[numTags]; };
~UnconfirmedTags () { delete[] sessionTags; };
int numTags;
SessionTag * sessionTags;
uint32_t tagsCreationTime;
};
public:
public:
GarlicRoutingSession (GarlicDestination * owner, std::shared_ptr<const i2p::data::RoutingDestination> destination,
int numTags, bool attachLeaseSet);
GarlicRoutingSession (const uint8_t * sessionKey, const SessionTag& sessionTag); // one time encryption
~GarlicRoutingSession ();
std::shared_ptr<I2NPMessage> WrapSingleMessage (std::shared_ptr<const I2NPMessage> msg);
void MessageConfirmed (uint32_t msgID);
bool CleanupExpiredTags (); // returns true if something left
GarlicRoutingSession (GarlicDestination * owner, std::shared_ptr<const i2p::data::RoutingDestination> destination,
int numTags, bool attachLeaseSet);
GarlicRoutingSession (const uint8_t * sessionKey, const SessionTag& sessionTag); // one time encryption
~GarlicRoutingSession ();
std::shared_ptr<I2NPMessage> WrapSingleMessage (std::shared_ptr<const I2NPMessage> msg);
void MessageConfirmed (uint32_t msgID);
bool CleanupExpiredTags (); // returns true if something left
void SetLeaseSetUpdated ()
{
if (m_LeaseSetUpdateStatus != eLeaseSetDoNotSend) m_LeaseSetUpdateStatus = eLeaseSetUpdated;
};
private:
void SetLeaseSetUpdated ()
{
if (m_LeaseSetUpdateStatus != eLeaseSetDoNotSend) m_LeaseSetUpdateStatus = eLeaseSetUpdated;
};
private:
size_t CreateAESBlock (uint8_t * buf, std::shared_ptr<const I2NPMessage> msg);
size_t CreateGarlicPayload (uint8_t * payload, std::shared_ptr<const I2NPMessage> msg, UnconfirmedTags * newTags);
size_t CreateGarlicClove (uint8_t * buf, std::shared_ptr<const I2NPMessage> msg, bool isDestination);
size_t CreateDeliveryStatusClove (uint8_t * buf, uint32_t msgID);
size_t CreateAESBlock (uint8_t * buf, std::shared_ptr<const I2NPMessage> msg);
size_t CreateGarlicPayload (uint8_t * payload, std::shared_ptr<const I2NPMessage> msg, UnconfirmedTags * newTags);
size_t CreateGarlicClove (uint8_t * buf, std::shared_ptr<const I2NPMessage> msg, bool isDestination);
size_t CreateDeliveryStatusClove (uint8_t * buf, uint32_t msgID);
void TagsConfirmed (uint32_t msgID);
UnconfirmedTags * GenerateSessionTags ();
void TagsConfirmed (uint32_t msgID);
UnconfirmedTags * GenerateSessionTags ();
private:
private:
GarlicDestination * m_Owner;
std::shared_ptr<const i2p::data::RoutingDestination> m_Destination;
i2p::crypto::AESKey m_SessionKey;
std::list<SessionTag> m_SessionTags;
int m_NumTags;
std::map<uint32_t, UnconfirmedTags *> m_UnconfirmedTagsMsgs;
LeaseSetUpdateStatus m_LeaseSetUpdateStatus;
uint32_t m_LeaseSetUpdateMsgID;
uint64_t m_LeaseSetSubmissionTime; // in milliseconds
i2p::crypto::CBCEncryption m_Encryption;
CryptoPP::AutoSeededRandomPool m_Rnd;
};
class GarlicDestination: public i2p::data::LocalDestination
{
public:
GarlicDestination * m_Owner;
std::shared_ptr<const i2p::data::RoutingDestination> m_Destination;
i2p::crypto::AESKey m_SessionKey;
std::list<SessionTag> m_SessionTags;
int m_NumTags;
std::map<uint32_t, UnconfirmedTags *> m_UnconfirmedTagsMsgs;
LeaseSetUpdateStatus m_LeaseSetUpdateStatus;
uint32_t m_LeaseSetUpdateMsgID;
uint64_t m_LeaseSetSubmissionTime; // in milliseconds
i2p::crypto::CBCEncryption m_Encryption;
CryptoPP::AutoSeededRandomPool m_Rnd;
};
class GarlicDestination: public i2p::data::LocalDestination
{
public:
GarlicDestination (): m_LastTagsCleanupTime (0) {};
~GarlicDestination ();
GarlicDestination (): m_LastTagsCleanupTime (0) {};
~GarlicDestination ();
std::shared_ptr<GarlicRoutingSession> GetRoutingSession (std::shared_ptr<const i2p::data::RoutingDestination> destination, bool attachLeaseSet);
void CleanupRoutingSessions ();
void RemoveCreatedSession (uint32_t msgID);
std::shared_ptr<I2NPMessage> WrapMessage (std::shared_ptr<const i2p::data::RoutingDestination> destination,
std::shared_ptr<I2NPMessage> msg, bool attachLeaseSet = false);
std::shared_ptr<GarlicRoutingSession> GetRoutingSession (std::shared_ptr<const i2p::data::RoutingDestination> destination, bool attachLeaseSet);
void CleanupRoutingSessions ();
void RemoveCreatedSession (uint32_t msgID);
std::shared_ptr<I2NPMessage> WrapMessage (std::shared_ptr<const i2p::data::RoutingDestination> destination,
std::shared_ptr<I2NPMessage> msg, bool attachLeaseSet = false);
void AddSessionKey (const uint8_t * key, const uint8_t * tag); // one tag
virtual bool SubmitSessionKey (const uint8_t * key, const uint8_t * tag); // from different thread
void DeliveryStatusSent (std::shared_ptr<GarlicRoutingSession> session, uint32_t msgID);
virtual void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
virtual void ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
virtual void SetLeaseSetUpdated ();
virtual std::shared_ptr<const i2p::data::LeaseSet> GetLeaseSet () = 0; // TODO
virtual std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () const = 0;
virtual void HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from) = 0;
protected:
void AddSessionKey (const uint8_t * key, const uint8_t * tag); // one tag
virtual bool SubmitSessionKey (const uint8_t * key, const uint8_t * tag); // from different thread
void DeliveryStatusSent (std::shared_ptr<GarlicRoutingSession> session, uint32_t msgID);
virtual void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
virtual void ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
virtual void SetLeaseSetUpdated ();
virtual std::shared_ptr<const i2p::data::LeaseSet> GetLeaseSet () = 0; // TODO
virtual std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () const = 0;
virtual void HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from) = 0;
protected:
void HandleGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void HandleDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
private:
void HandleGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void HandleDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
private:
void HandleAESBlock (uint8_t * buf, size_t len, std::shared_ptr<i2p::crypto::CBCDecryption> decryption,
std::shared_ptr<i2p::tunnel::InboundTunnel> from);
void HandleGarlicPayload (uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
void HandleAESBlock (uint8_t * buf, size_t len, std::shared_ptr<i2p::crypto::CBCDecryption> decryption,
std::shared_ptr<i2p::tunnel::InboundTunnel> from);
void HandleGarlicPayload (uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
private:
// outgoing sessions
std::mutex m_SessionsMutex;
std::map<i2p::data::IdentHash, std::shared_ptr<GarlicRoutingSession> > m_Sessions;
// incoming
std::map<SessionTag, std::shared_ptr<i2p::crypto::CBCDecryption>> m_Tags;
uint32_t m_LastTagsCleanupTime;
// DeliveryStatus
std::map<uint32_t, std::shared_ptr<GarlicRoutingSession> > m_CreatedSessions; // msgID -> session
};
}
private:
// outgoing sessions
std::mutex m_SessionsMutex;
std::map<i2p::data::IdentHash, std::shared_ptr<GarlicRoutingSession> > m_Sessions;
// incoming
std::map<SessionTag, std::shared_ptr<i2p::crypto::CBCDecryption>> m_Tags;
uint32_t m_LastTagsCleanupTime;
// DeliveryStatus
std::map<uint32_t, std::shared_ptr<GarlicRoutingSession> > m_CreatedSessions; // msgID -> session
};
}
}
#endif

View file

@ -17,283 +17,283 @@ namespace i2p
{
namespace proxy
{
static const size_t http_buffer_size = 8192;
class HTTPProxyHandler: public i2p::client::I2PServiceHandler, public std::enable_shared_from_this<HTTPProxyHandler>
{
private:
enum state
{
GET_METHOD,
GET_HOSTNAME,
GET_HTTPV,
GET_HTTPVNL, //TODO: fallback to finding HOst: header if needed
DONE
};
static const size_t http_buffer_size = 8192;
class HTTPProxyHandler: public i2p::client::I2PServiceHandler, public std::enable_shared_from_this<HTTPProxyHandler>
{
private:
enum state
{
GET_METHOD,
GET_HOSTNAME,
GET_HTTPV,
GET_HTTPVNL, //TODO: fallback to finding HOst: header if needed
DONE
};
void EnterState(state nstate);
bool HandleData(uint8_t *http_buff, std::size_t len);
void HandleSockRecv(const boost::system::error_code & ecode, std::size_t bytes_transfered);
void Terminate();
void AsyncSockRead();
void HTTPRequestFailed(/*std::string message*/);
void ExtractRequest();
bool ValidateHTTPRequest();
void HandleJumpServices();
bool CreateHTTPRequest(uint8_t *http_buff, std::size_t len);
void SentHTTPFailed(const boost::system::error_code & ecode);
void HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream);
void EnterState(state nstate);
bool HandleData(uint8_t *http_buff, std::size_t len);
void HandleSockRecv(const boost::system::error_code & ecode, std::size_t bytes_transfered);
void Terminate();
void AsyncSockRead();
void HTTPRequestFailed(/*std::string message*/);
void ExtractRequest();
bool ValidateHTTPRequest();
void HandleJumpServices();
bool CreateHTTPRequest(uint8_t *http_buff, std::size_t len);
void SentHTTPFailed(const boost::system::error_code & ecode);
void HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream);
uint8_t m_http_buff[http_buffer_size];
std::shared_ptr<boost::asio::ip::tcp::socket> m_sock;
std::string m_request; //Data left to be sent
std::string m_url; //URL
std::string m_method; //Method
std::string m_version; //HTTP version
std::string m_address; //Address
std::string m_path; //Path
int m_port; //Port
state m_state;//Parsing state
uint8_t m_http_buff[http_buffer_size];
std::shared_ptr<boost::asio::ip::tcp::socket> m_sock;
std::string m_request; //Data left to be sent
std::string m_url; //URL
std::string m_method; //Method
std::string m_version; //HTTP version
std::string m_address; //Address
std::string m_path; //Path
int m_port; //Port
state m_state;//Parsing state
public:
public:
HTTPProxyHandler(HTTPProxyServer * parent, std::shared_ptr<boost::asio::ip::tcp::socket> sock) :
I2PServiceHandler(parent), m_sock(sock)
{ EnterState(GET_METHOD); }
~HTTPProxyHandler() { Terminate(); }
void Handle () { AsyncSockRead(); }
};
HTTPProxyHandler(HTTPProxyServer * parent, std::shared_ptr<boost::asio::ip::tcp::socket> sock) :
I2PServiceHandler(parent), m_sock(sock)
{ EnterState(GET_METHOD); }
~HTTPProxyHandler() { Terminate(); }
void Handle () { AsyncSockRead(); }
};
void HTTPProxyHandler::AsyncSockRead()
{
LogPrint(eLogDebug,"--- HTTP Proxy async sock read");
if(m_sock) {
m_sock->async_receive(boost::asio::buffer(m_http_buff, http_buffer_size),
std::bind(&HTTPProxyHandler::HandleSockRecv, shared_from_this(),
std::placeholders::_1, std::placeholders::_2));
} else {
LogPrint(eLogError,"--- HTTP Proxy no socket for read");
}
}
void HTTPProxyHandler::AsyncSockRead()
{
LogPrint(eLogDebug,"--- HTTP Proxy async sock read");
if(m_sock) {
m_sock->async_receive(boost::asio::buffer(m_http_buff, http_buffer_size),
std::bind(&HTTPProxyHandler::HandleSockRecv, shared_from_this(),
std::placeholders::_1, std::placeholders::_2));
} else {
LogPrint(eLogError,"--- HTTP Proxy no socket for read");
}
}
void HTTPProxyHandler::Terminate() {
if (Kill()) return;
if (m_sock)
{
LogPrint(eLogDebug,"--- HTTP Proxy close sock");
m_sock->close();
m_sock = nullptr;
}
Done(shared_from_this());
}
void HTTPProxyHandler::Terminate() {
if (Kill()) return;
if (m_sock)
{
LogPrint(eLogDebug,"--- HTTP Proxy close sock");
m_sock->close();
m_sock = nullptr;
}
Done(shared_from_this());
}
/* All hope is lost beyond this point */
//TODO: handle this apropriately
void HTTPProxyHandler::HTTPRequestFailed(/*HTTPProxyHandler::errTypes error*/)
{
static std::string response = "HTTP/1.0 500 Internal Server Error\r\nContent-type: text/html\r\nContent-length: 0\r\n";
boost::asio::async_write(*m_sock, boost::asio::buffer(response,response.size()),
std::bind(&HTTPProxyHandler::SentHTTPFailed, shared_from_this(), std::placeholders::_1));
}
/* All hope is lost beyond this point */
//TODO: handle this apropriately
void HTTPProxyHandler::HTTPRequestFailed(/*HTTPProxyHandler::errTypes error*/)
{
static std::string response = "HTTP/1.0 500 Internal Server Error\r\nContent-type: text/html\r\nContent-length: 0\r\n";
boost::asio::async_write(*m_sock, boost::asio::buffer(response,response.size()),
std::bind(&HTTPProxyHandler::SentHTTPFailed, shared_from_this(), std::placeholders::_1));
}
void HTTPProxyHandler::EnterState(HTTPProxyHandler::state nstate)
{
m_state = nstate;
}
void HTTPProxyHandler::EnterState(HTTPProxyHandler::state nstate)
{
m_state = nstate;
}
void HTTPProxyHandler::ExtractRequest()
{
LogPrint(eLogDebug,"--- HTTP Proxy method is: ", m_method, "\nRequest is: ", m_url);
std::string server="";
std::string port="80";
boost::regex rHTTP("http://(.*?)(:(\\d+))?(/.*)");
boost::smatch m;
std::string path;
if(boost::regex_search(m_url, m, rHTTP, boost::match_extra))
{
server=m[1].str();
if (m[2].str() != "") port=m[3].str();
path=m[4].str();
}
LogPrint(eLogDebug,"--- HTTP Proxy server is: ",server, " port is: ", port, "\n path is: ",path);
m_address = server;
m_port = boost::lexical_cast<int>(port);
m_path = path;
}
void HTTPProxyHandler::ExtractRequest()
{
LogPrint(eLogDebug,"--- HTTP Proxy method is: ", m_method, "\nRequest is: ", m_url);
std::string server="";
std::string port="80";
boost::regex rHTTP("http://(.*?)(:(\\d+))?(/.*)");
boost::smatch m;
std::string path;
if(boost::regex_search(m_url, m, rHTTP, boost::match_extra))
{
server=m[1].str();
if (m[2].str() != "") port=m[3].str();
path=m[4].str();
}
LogPrint(eLogDebug,"--- HTTP Proxy server is: ",server, " port is: ", port, "\n path is: ",path);
m_address = server;
m_port = boost::lexical_cast<int>(port);
m_path = path;
}
bool HTTPProxyHandler::ValidateHTTPRequest()
{
if ( m_version != "HTTP/1.0" && m_version != "HTTP/1.1" )
{
LogPrint(eLogError,"--- HTTP Proxy unsupported version: ", m_version);
HTTPRequestFailed(); //TODO: send right stuff
return false;
}
return true;
}
bool HTTPProxyHandler::ValidateHTTPRequest()
{
if ( m_version != "HTTP/1.0" && m_version != "HTTP/1.1" )
{
LogPrint(eLogError,"--- HTTP Proxy unsupported version: ", m_version);
HTTPRequestFailed(); //TODO: send right stuff
return false;
}
return true;
}
void HTTPProxyHandler::HandleJumpServices()
{
static const char * helpermark1 = "?i2paddresshelper=";
static const char * helpermark2 = "&i2paddresshelper=";
size_t addressHelperPos1 = m_path.rfind (helpermark1);
size_t addressHelperPos2 = m_path.rfind (helpermark2);
size_t addressHelperPos;
if (addressHelperPos1 == std::string::npos)
{
if (addressHelperPos2 == std::string::npos)
return; //Not a jump service
else
addressHelperPos = addressHelperPos2;
}
else
{
if (addressHelperPos2 == std::string::npos)
addressHelperPos = addressHelperPos1;
else if ( addressHelperPos1 > addressHelperPos2 )
addressHelperPos = addressHelperPos1;
else
addressHelperPos = addressHelperPos2;
}
auto base64 = m_path.substr (addressHelperPos + strlen(helpermark1));
base64 = i2p::util::http::urlDecode(base64); //Some of the symbols may be urlencoded
LogPrint (eLogDebug,"Jump service for ", m_address, " found at ", base64, ". Inserting to address book");
//TODO: this is very dangerous and broken. We should ask the user before doing anything see http://pastethis.i2p/raw/pn5fL4YNJL7OSWj3Sc6N/
//TODO: we could redirect the user again to avoid dirtiness in the browser
i2p::client::context.GetAddressBook ().InsertAddress (m_address, base64);
m_path.erase(addressHelperPos);
}
void HTTPProxyHandler::HandleJumpServices()
{
static const char * helpermark1 = "?i2paddresshelper=";
static const char * helpermark2 = "&i2paddresshelper=";
size_t addressHelperPos1 = m_path.rfind (helpermark1);
size_t addressHelperPos2 = m_path.rfind (helpermark2);
size_t addressHelperPos;
if (addressHelperPos1 == std::string::npos)
{
if (addressHelperPos2 == std::string::npos)
return; //Not a jump service
else
addressHelperPos = addressHelperPos2;
}
else
{
if (addressHelperPos2 == std::string::npos)
addressHelperPos = addressHelperPos1;
else if ( addressHelperPos1 > addressHelperPos2 )
addressHelperPos = addressHelperPos1;
else
addressHelperPos = addressHelperPos2;
}
auto base64 = m_path.substr (addressHelperPos + strlen(helpermark1));
base64 = i2p::util::http::urlDecode(base64); //Some of the symbols may be urlencoded
LogPrint (eLogDebug,"Jump service for ", m_address, " found at ", base64, ". Inserting to address book");
//TODO: this is very dangerous and broken. We should ask the user before doing anything see http://pastethis.i2p/raw/pn5fL4YNJL7OSWj3Sc6N/
//TODO: we could redirect the user again to avoid dirtiness in the browser
i2p::client::context.GetAddressBook ().InsertAddress (m_address, base64);
m_path.erase(addressHelperPos);
}
bool HTTPProxyHandler::CreateHTTPRequest(uint8_t *http_buff, std::size_t len)
{
ExtractRequest(); //TODO: parse earlier
if (!ValidateHTTPRequest()) return false;
HandleJumpServices();
m_request = m_method;
m_request.push_back(' ');
m_request += m_path;
m_request.push_back(' ');
m_request += m_version;
m_request.push_back('\r');
m_request.push_back('\n');
m_request.append("Connection: close\r\n");
m_request.append(reinterpret_cast<const char *>(http_buff),len);
return true;
}
bool HTTPProxyHandler::CreateHTTPRequest(uint8_t *http_buff, std::size_t len)
{
ExtractRequest(); //TODO: parse earlier
if (!ValidateHTTPRequest()) return false;
HandleJumpServices();
m_request = m_method;
m_request.push_back(' ');
m_request += m_path;
m_request.push_back(' ');
m_request += m_version;
m_request.push_back('\r');
m_request.push_back('\n');
m_request.append("Connection: close\r\n");
m_request.append(reinterpret_cast<const char *>(http_buff),len);
return true;
}
bool HTTPProxyHandler::HandleData(uint8_t *http_buff, std::size_t len)
{
assert(len); // This should always be called with a least a byte left to parse
while (len > 0)
{
//TODO: fallback to finding HOst: header if needed
switch (m_state)
{
case GET_METHOD:
switch (*http_buff)
{
case ' ': EnterState(GET_HOSTNAME); break;
default: m_method.push_back(*http_buff); break;
}
break;
case GET_HOSTNAME:
switch (*http_buff)
{
case ' ': EnterState(GET_HTTPV); break;
default: m_url.push_back(*http_buff); break;
}
break;
case GET_HTTPV:
switch (*http_buff)
{
case '\r': EnterState(GET_HTTPVNL); break;
default: m_version.push_back(*http_buff); break;
}
break;
case GET_HTTPVNL:
switch (*http_buff)
{
case '\n': EnterState(DONE); break;
default:
LogPrint(eLogError,"--- HTTP Proxy rejected invalid request ending with: ", ((int)*http_buff));
HTTPRequestFailed(); //TODO: add correct code
return false;
}
break;
default:
LogPrint(eLogError,"--- HTTP Proxy invalid state: ", m_state);
HTTPRequestFailed(); //TODO: add correct code 500
return false;
}
http_buff++;
len--;
if (m_state == DONE)
return CreateHTTPRequest(http_buff,len);
}
return true;
}
bool HTTPProxyHandler::HandleData(uint8_t *http_buff, std::size_t len)
{
assert(len); // This should always be called with a least a byte left to parse
while (len > 0)
{
//TODO: fallback to finding HOst: header if needed
switch (m_state)
{
case GET_METHOD:
switch (*http_buff)
{
case ' ': EnterState(GET_HOSTNAME); break;
default: m_method.push_back(*http_buff); break;
}
break;
case GET_HOSTNAME:
switch (*http_buff)
{
case ' ': EnterState(GET_HTTPV); break;
default: m_url.push_back(*http_buff); break;
}
break;
case GET_HTTPV:
switch (*http_buff)
{
case '\r': EnterState(GET_HTTPVNL); break;
default: m_version.push_back(*http_buff); break;
}
break;
case GET_HTTPVNL:
switch (*http_buff)
{
case '\n': EnterState(DONE); break;
default:
LogPrint(eLogError,"--- HTTP Proxy rejected invalid request ending with: ", ((int)*http_buff));
HTTPRequestFailed(); //TODO: add correct code
return false;
}
break;
default:
LogPrint(eLogError,"--- HTTP Proxy invalid state: ", m_state);
HTTPRequestFailed(); //TODO: add correct code 500
return false;
}
http_buff++;
len--;
if (m_state == DONE)
return CreateHTTPRequest(http_buff,len);
}
return true;
}
void HTTPProxyHandler::HandleSockRecv(const boost::system::error_code & ecode, std::size_t len)
{
LogPrint(eLogDebug,"--- HTTP Proxy sock recv: ", len);
if(ecode)
{
LogPrint(eLogWarning," --- HTTP Proxy sock recv got error: ", ecode);
void HTTPProxyHandler::HandleSockRecv(const boost::system::error_code & ecode, std::size_t len)
{
LogPrint(eLogDebug,"--- HTTP Proxy sock recv: ", len);
if(ecode)
{
LogPrint(eLogWarning," --- HTTP Proxy sock recv got error: ", ecode);
Terminate();
return;
}
return;
}
if (HandleData(m_http_buff, len))
{
if (m_state == DONE)
{
LogPrint(eLogInfo,"--- HTTP Proxy requested: ", m_url);
GetOwner()->CreateStream (std::bind (&HTTPProxyHandler::HandleStreamRequestComplete,
shared_from_this(), std::placeholders::_1), m_address, m_port);
}
else
AsyncSockRead();
}
if (HandleData(m_http_buff, len))
{
if (m_state == DONE)
{
LogPrint(eLogInfo,"--- HTTP Proxy requested: ", m_url);
GetOwner()->CreateStream (std::bind (&HTTPProxyHandler::HandleStreamRequestComplete,
shared_from_this(), std::placeholders::_1), m_address, m_port);
}
else
AsyncSockRead();
}
}
}
void HTTPProxyHandler::SentHTTPFailed(const boost::system::error_code & ecode)
{
if (!ecode)
Terminate();
else
{
LogPrint (eLogError,"--- HTTP Proxy Closing socket after sending failure because: ", ecode.message ());
Terminate();
}
}
void HTTPProxyHandler::SentHTTPFailed(const boost::system::error_code & ecode)
{
if (!ecode)
Terminate();
else
{
LogPrint (eLogError,"--- HTTP Proxy Closing socket after sending failure because: ", ecode.message ());
Terminate();
}
}
void HTTPProxyHandler::HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
{
if (Kill()) return;
LogPrint (eLogInfo,"--- HTTP Proxy New I2PTunnel connection");
auto connection = std::make_shared<i2p::client::I2PTunnelConnection>(GetOwner(), m_sock, stream);
GetOwner()->AddHandler (connection);
connection->I2PConnect (reinterpret_cast<const uint8_t*>(m_request.data()), m_request.size());
Done(shared_from_this());
}
else
{
LogPrint (eLogError,"--- HTTP Proxy Issue when creating the stream, check the previous warnings for more info.");
HTTPRequestFailed(); // TODO: Send correct error message host unreachable
}
}
void HTTPProxyHandler::HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
{
if (Kill()) return;
LogPrint (eLogInfo,"--- HTTP Proxy New I2PTunnel connection");
auto connection = std::make_shared<i2p::client::I2PTunnelConnection>(GetOwner(), m_sock, stream);
GetOwner()->AddHandler (connection);
connection->I2PConnect (reinterpret_cast<const uint8_t*>(m_request.data()), m_request.size());
Done(shared_from_this());
}
else
{
LogPrint (eLogError,"--- HTTP Proxy Issue when creating the stream, check the previous warnings for more info.");
HTTPRequestFailed(); // TODO: Send correct error message host unreachable
}
}
HTTPProxyServer::HTTPProxyServer(int port, std::shared_ptr<i2p::client::ClientDestination> localDestination):
TCPIPAcceptor(port, localDestination ? localDestination : i2p::client::context.GetSharedLocalDestination ())
{
}
std::shared_ptr<i2p::client::I2PServiceHandler> HTTPProxyServer::CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
return std::make_shared<HTTPProxyHandler> (this, socket);
}
HTTPProxyServer::HTTPProxyServer(int port, std::shared_ptr<i2p::client::ClientDestination> localDestination):
TCPIPAcceptor(port, localDestination ? localDestination : i2p::client::context.GetSharedLocalDestination ())
{
}
std::shared_ptr<i2p::client::I2PServiceHandler> HTTPProxyServer::CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
return std::make_shared<HTTPProxyHandler> (this, socket);
}
}
}

View file

@ -12,20 +12,20 @@ namespace i2p
{
namespace proxy
{
class HTTPProxyServer: public i2p::client::TCPIPAcceptor
{
public:
class HTTPProxyServer: public i2p::client::TCPIPAcceptor
{
public:
HTTPProxyServer(int port, std::shared_ptr<i2p::client::ClientDestination> localDestination = nullptr);
~HTTPProxyServer() {};
HTTPProxyServer(int port, std::shared_ptr<i2p::client::ClientDestination> localDestination = nullptr);
~HTTPProxyServer() {};
protected:
// Implements TCPIPAcceptor
std::shared_ptr<i2p::client::I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket);
const char* GetName() { return "HTTP Proxy"; }
};
protected:
// Implements TCPIPAcceptor
std::shared_ptr<i2p::client::I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket);
const char* GetName() { return "HTTP Proxy"; }
};
typedef HTTPProxyServer HTTPProxy;
typedef HTTPProxyServer HTTPProxy;
}
}

File diff suppressed because it is too large Load diff

View file

@ -13,123 +13,123 @@ namespace i2p
{
namespace util
{
const size_t HTTP_CONNECTION_BUFFER_SIZE = 8192;
const int HTTP_DESTINATION_REQUEST_TIMEOUT = 10; // in seconds
class HTTPConnection: public std::enable_shared_from_this<HTTPConnection>
{
protected:
const size_t HTTP_CONNECTION_BUFFER_SIZE = 8192;
const int HTTP_DESTINATION_REQUEST_TIMEOUT = 10; // in seconds
class HTTPConnection: public std::enable_shared_from_this<HTTPConnection>
{
protected:
struct header
{
std::string name;
std::string value;
};
struct header
{
std::string name;
std::string value;
};
struct request
{
std::string method;
std::string uri;
std::string host;
int port;
int http_version_major;
int http_version_minor;
std::vector<header> headers;
};
struct request
{
std::string method;
std::string uri;
std::string host;
int port;
int http_version_major;
int http_version_minor;
std::vector<header> headers;
};
struct reply
{
std::vector<header> headers;
std::string content;
struct reply
{
std::vector<header> headers;
std::string content;
std::vector<boost::asio::const_buffer> to_buffers (int status);
};
std::vector<boost::asio::const_buffer> to_buffers (int status);
};
public:
public:
HTTPConnection (boost::asio::ip::tcp::socket * socket):
m_Socket (socket), m_Timer (socket->get_io_service ()),
m_Stream (nullptr), m_BufferLen (0) {};
~HTTPConnection() { delete m_Socket; }
void Receive ();
private:
HTTPConnection (boost::asio::ip::tcp::socket * socket):
m_Socket (socket), m_Timer (socket->get_io_service ()),
m_Stream (nullptr), m_BufferLen (0) {};
~HTTPConnection() { delete m_Socket; }
void Receive ();
private:
void Terminate ();
void HandleReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void AsyncStreamReceive ();
void HandleStreamReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleWriteReply(const boost::system::error_code& ecode);
void HandleWrite (const boost::system::error_code& ecode);
void SendReply (const std::string& content, int status = 200);
void Terminate ();
void HandleReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void AsyncStreamReceive ();
void HandleStreamReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleWriteReply(const boost::system::error_code& ecode);
void HandleWrite (const boost::system::error_code& ecode);
void SendReply (const std::string& content, int status = 200);
void HandleRequest (const std::string& address);
void HandleCommand (const std::string& command, std::stringstream& s);
void ShowTransports (std::stringstream& s);
void ShowTunnels (std::stringstream& s);
void ShowTransitTunnels (std::stringstream& s);
void ShowLocalDestinations (std::stringstream& s);
void ShowLocalDestination (const std::string& b32, std::stringstream& s);
void ShowSAMSessions (std::stringstream& s);
void ShowSAMSession (const std::string& id, std::stringstream& s);
void StartAcceptingTunnels (std::stringstream& s);
void StopAcceptingTunnels (std::stringstream& s);
void FillContent (std::stringstream& s);
std::string ExtractAddress ();
void ExtractParams (const std::string& str, std::map<std::string, std::string>& params);
protected:
void HandleRequest (const std::string& address);
void HandleCommand (const std::string& command, std::stringstream& s);
void ShowTransports (std::stringstream& s);
void ShowTunnels (std::stringstream& s);
void ShowTransitTunnels (std::stringstream& s);
void ShowLocalDestinations (std::stringstream& s);
void ShowLocalDestination (const std::string& b32, std::stringstream& s);
void ShowSAMSessions (std::stringstream& s);
void ShowSAMSession (const std::string& id, std::stringstream& s);
void StartAcceptingTunnels (std::stringstream& s);
void StopAcceptingTunnels (std::stringstream& s);
void FillContent (std::stringstream& s);
std::string ExtractAddress ();
void ExtractParams (const std::string& str, std::map<std::string, std::string>& params);
protected:
boost::asio::ip::tcp::socket * m_Socket;
boost::asio::deadline_timer m_Timer;
std::shared_ptr<i2p::stream::Stream> m_Stream;
char m_Buffer[HTTP_CONNECTION_BUFFER_SIZE + 1], m_StreamBuffer[HTTP_CONNECTION_BUFFER_SIZE + 1];
size_t m_BufferLen;
request m_Request;
reply m_Reply;
boost::asio::ip::tcp::socket * m_Socket;
boost::asio::deadline_timer m_Timer;
std::shared_ptr<i2p::stream::Stream> m_Stream;
char m_Buffer[HTTP_CONNECTION_BUFFER_SIZE + 1], m_StreamBuffer[HTTP_CONNECTION_BUFFER_SIZE + 1];
size_t m_BufferLen;
request m_Request;
reply m_Reply;
protected:
virtual void RunRequest ();
void HandleDestinationRequest(const std::string& address, const std::string& uri);
void SendToAddress (const std::string& address, int port, const char * buf, size_t len);
void HandleDestinationRequestTimeout (const boost::system::error_code& ecode,
i2p::data::IdentHash destination, int port, const char * buf, size_t len);
void SendToDestination (std::shared_ptr<const i2p::data::LeaseSet> remote, int port, const char * buf, size_t len);
protected:
virtual void RunRequest ();
void HandleDestinationRequest(const std::string& address, const std::string& uri);
void SendToAddress (const std::string& address, int port, const char * buf, size_t len);
void HandleDestinationRequestTimeout (const boost::system::error_code& ecode,
i2p::data::IdentHash destination, int port, const char * buf, size_t len);
void SendToDestination (std::shared_ptr<const i2p::data::LeaseSet> remote, int port, const char * buf, size_t len);
public:
public:
static const std::string itoopieImage;
static const std::string itoopieFavicon;
};
static const std::string itoopieImage;
static const std::string itoopieFavicon;
};
class HTTPServer
{
public:
class HTTPServer
{
public:
HTTPServer (int port);
virtual ~HTTPServer ();
HTTPServer (int port);
virtual ~HTTPServer ();
void Start ();
void Stop ();
void Start ();
void Stop ();
private:
private:
void Run ();
void Accept ();
void HandleAccept(const boost::system::error_code& ecode);
private:
void Run ();
void Accept ();
void HandleAccept(const boost::system::error_code& ecode);
private:
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::ip::tcp::socket * m_NewSocket;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::ip::tcp::socket * m_NewSocket;
protected:
virtual void CreateConnection(boost::asio::ip::tcp::socket * m_NewSocket);
};
protected:
virtual void CreateConnection(boost::asio::ip::tcp::socket * m_NewSocket);
};
}
}

File diff suppressed because it is too large Load diff

View file

@ -12,240 +12,241 @@
#include "LeaseSet.h"
namespace i2p
{
// I2NP header
const size_t I2NP_HEADER_TYPEID_OFFSET = 0;
const size_t I2NP_HEADER_MSGID_OFFSET = I2NP_HEADER_TYPEID_OFFSET + 1;
const size_t I2NP_HEADER_EXPIRATION_OFFSET = I2NP_HEADER_MSGID_OFFSET + 4;
const size_t I2NP_HEADER_SIZE_OFFSET = I2NP_HEADER_EXPIRATION_OFFSET + 8;
const size_t I2NP_HEADER_CHKS_OFFSET = I2NP_HEADER_SIZE_OFFSET + 2;
const size_t I2NP_HEADER_SIZE = I2NP_HEADER_CHKS_OFFSET + 1;
{
// I2NP header
const size_t I2NP_HEADER_TYPEID_OFFSET = 0;
const size_t I2NP_HEADER_MSGID_OFFSET = I2NP_HEADER_TYPEID_OFFSET + 1;
const size_t I2NP_HEADER_EXPIRATION_OFFSET = I2NP_HEADER_MSGID_OFFSET + 4;
const size_t I2NP_HEADER_SIZE_OFFSET = I2NP_HEADER_EXPIRATION_OFFSET + 8;
const size_t I2NP_HEADER_CHKS_OFFSET = I2NP_HEADER_SIZE_OFFSET + 2;
const size_t I2NP_HEADER_SIZE = I2NP_HEADER_CHKS_OFFSET + 1;
// I2NP short header
const size_t I2NP_SHORT_HEADER_TYPEID_OFFSET = 0;
const size_t I2NP_SHORT_HEADER_EXPIRATION_OFFSET = I2NP_SHORT_HEADER_TYPEID_OFFSET + 1;
const size_t I2NP_SHORT_HEADER_SIZE = I2NP_SHORT_HEADER_EXPIRATION_OFFSET + 4;
// Tunnel Gateway header
const size_t TUNNEL_GATEWAY_HEADER_TUNNELID_OFFSET = 0;
const size_t TUNNEL_GATEWAY_HEADER_LENGTH_OFFSET = TUNNEL_GATEWAY_HEADER_TUNNELID_OFFSET + 4;
const size_t TUNNEL_GATEWAY_HEADER_SIZE = TUNNEL_GATEWAY_HEADER_LENGTH_OFFSET + 2;
// I2NP short header
const size_t I2NP_SHORT_HEADER_TYPEID_OFFSET = 0;
const size_t I2NP_SHORT_HEADER_EXPIRATION_OFFSET = I2NP_SHORT_HEADER_TYPEID_OFFSET + 1;
const size_t I2NP_SHORT_HEADER_SIZE = I2NP_SHORT_HEADER_EXPIRATION_OFFSET + 4;
// Tunnel Gateway header
const size_t TUNNEL_GATEWAY_HEADER_TUNNELID_OFFSET = 0;
const size_t TUNNEL_GATEWAY_HEADER_LENGTH_OFFSET = TUNNEL_GATEWAY_HEADER_TUNNELID_OFFSET + 4;
const size_t TUNNEL_GATEWAY_HEADER_SIZE = TUNNEL_GATEWAY_HEADER_LENGTH_OFFSET + 2;
// DeliveryStatus
const size_t DELIVERY_STATUS_MSGID_OFFSET = 0;
const size_t DELIVERY_STATUS_TIMESTAMP_OFFSET = DELIVERY_STATUS_MSGID_OFFSET + 4;
const size_t DELIVERY_STATUS_SIZE = DELIVERY_STATUS_TIMESTAMP_OFFSET + 8;
// DeliveryStatus
const size_t DELIVERY_STATUS_MSGID_OFFSET = 0;
const size_t DELIVERY_STATUS_TIMESTAMP_OFFSET = DELIVERY_STATUS_MSGID_OFFSET + 4;
const size_t DELIVERY_STATUS_SIZE = DELIVERY_STATUS_TIMESTAMP_OFFSET + 8;
// DatabaseStore
const size_t DATABASE_STORE_KEY_OFFSET = 0;
const size_t DATABASE_STORE_TYPE_OFFSET = DATABASE_STORE_KEY_OFFSET + 32;
const size_t DATABASE_STORE_REPLY_TOKEN_OFFSET = DATABASE_STORE_TYPE_OFFSET + 1;
const size_t DATABASE_STORE_HEADER_SIZE = DATABASE_STORE_REPLY_TOKEN_OFFSET + 4;
// DatabaseStore
const size_t DATABASE_STORE_KEY_OFFSET = 0;
const size_t DATABASE_STORE_TYPE_OFFSET = DATABASE_STORE_KEY_OFFSET + 32;
const size_t DATABASE_STORE_REPLY_TOKEN_OFFSET = DATABASE_STORE_TYPE_OFFSET + 1;
const size_t DATABASE_STORE_HEADER_SIZE = DATABASE_STORE_REPLY_TOKEN_OFFSET + 4;
// TunnelBuild
const size_t TUNNEL_BUILD_RECORD_SIZE = 528;
// TunnelBuild
const size_t TUNNEL_BUILD_RECORD_SIZE = 528;
//BuildRequestRecordClearText
const size_t BUILD_REQUEST_RECORD_RECEIVE_TUNNEL_OFFSET = 0;
const size_t BUILD_REQUEST_RECORD_OUR_IDENT_OFFSET = BUILD_REQUEST_RECORD_RECEIVE_TUNNEL_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_NEXT_TUNNEL_OFFSET = BUILD_REQUEST_RECORD_OUR_IDENT_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_NEXT_IDENT_OFFSET = BUILD_REQUEST_RECORD_NEXT_TUNNEL_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_LAYER_KEY_OFFSET = BUILD_REQUEST_RECORD_NEXT_IDENT_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_IV_KEY_OFFSET = BUILD_REQUEST_RECORD_LAYER_KEY_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_REPLY_KEY_OFFSET = BUILD_REQUEST_RECORD_IV_KEY_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_REPLY_IV_OFFSET = BUILD_REQUEST_RECORD_REPLY_KEY_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_FLAG_OFFSET = BUILD_REQUEST_RECORD_REPLY_IV_OFFSET + 16;
const size_t BUILD_REQUEST_RECORD_REQUEST_TIME_OFFSET = BUILD_REQUEST_RECORD_FLAG_OFFSET + 1;
const size_t BUILD_REQUEST_RECORD_SEND_MSG_ID_OFFSET = BUILD_REQUEST_RECORD_REQUEST_TIME_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_PADDING_OFFSET = BUILD_REQUEST_RECORD_SEND_MSG_ID_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_CLEAR_TEXT_SIZE = 222;
// BuildRequestRecordEncrypted
const size_t BUILD_REQUEST_RECORD_TO_PEER_OFFSET = 0;
const size_t BUILD_REQUEST_RECORD_ENCRYPTED_OFFSET = BUILD_REQUEST_RECORD_TO_PEER_OFFSET + 16;
// BuildResponseRecord
const size_t BUILD_RESPONSE_RECORD_HASH_OFFSET = 0;
const size_t BUILD_RESPONSE_RECORD_PADDING_OFFSET = 32;
const size_t BUILD_RESPONSE_RECORD_PADDING_SIZE = 495;
const size_t BUILD_RESPONSE_RECORD_RET_OFFSET = BUILD_RESPONSE_RECORD_PADDING_OFFSET + BUILD_RESPONSE_RECORD_PADDING_SIZE;
//BuildRequestRecordClearText
const size_t BUILD_REQUEST_RECORD_RECEIVE_TUNNEL_OFFSET = 0;
const size_t BUILD_REQUEST_RECORD_OUR_IDENT_OFFSET = BUILD_REQUEST_RECORD_RECEIVE_TUNNEL_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_NEXT_TUNNEL_OFFSET = BUILD_REQUEST_RECORD_OUR_IDENT_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_NEXT_IDENT_OFFSET = BUILD_REQUEST_RECORD_NEXT_TUNNEL_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_LAYER_KEY_OFFSET = BUILD_REQUEST_RECORD_NEXT_IDENT_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_IV_KEY_OFFSET = BUILD_REQUEST_RECORD_LAYER_KEY_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_REPLY_KEY_OFFSET = BUILD_REQUEST_RECORD_IV_KEY_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_REPLY_IV_OFFSET = BUILD_REQUEST_RECORD_REPLY_KEY_OFFSET + 32;
const size_t BUILD_REQUEST_RECORD_FLAG_OFFSET = BUILD_REQUEST_RECORD_REPLY_IV_OFFSET + 16;
const size_t BUILD_REQUEST_RECORD_REQUEST_TIME_OFFSET = BUILD_REQUEST_RECORD_FLAG_OFFSET + 1;
const size_t BUILD_REQUEST_RECORD_SEND_MSG_ID_OFFSET = BUILD_REQUEST_RECORD_REQUEST_TIME_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_PADDING_OFFSET = BUILD_REQUEST_RECORD_SEND_MSG_ID_OFFSET + 4;
const size_t BUILD_REQUEST_RECORD_CLEAR_TEXT_SIZE = 222;
// BuildRequestRecordEncrypted
const size_t BUILD_REQUEST_RECORD_TO_PEER_OFFSET = 0;
const size_t BUILD_REQUEST_RECORD_ENCRYPTED_OFFSET = BUILD_REQUEST_RECORD_TO_PEER_OFFSET + 16;
// BuildResponseRecord
const size_t BUILD_RESPONSE_RECORD_HASH_OFFSET = 0;
const size_t BUILD_RESPONSE_RECORD_PADDING_OFFSET = 32;
const size_t BUILD_RESPONSE_RECORD_PADDING_SIZE = 495;
const size_t BUILD_RESPONSE_RECORD_RET_OFFSET = BUILD_RESPONSE_RECORD_PADDING_OFFSET + BUILD_RESPONSE_RECORD_PADDING_SIZE;
enum I2NPMessageType
{
eI2NPDatabaseStore = 1,
eI2NPDatabaseLookup = 2,
eI2NPDatabaseSearchReply = 3,
eI2NPDeliveryStatus = 10,
eI2NPGarlic = 11,
eI2NPTunnelData = 18,
eI2NPTunnelGateway = 19,
eI2NPData = 20,
eI2NPTunnelBuild = 21,
eI2NPTunnelBuildReply = 22,
eI2NPVariableTunnelBuild = 23,
eI2NPVariableTunnelBuildReply = 24
};
enum I2NPMessageType
{
eI2NPDatabaseStore = 1,
eI2NPDatabaseLookup = 2,
eI2NPDatabaseSearchReply = 3,
eI2NPDeliveryStatus = 10,
eI2NPGarlic = 11,
eI2NPTunnelData = 18,
eI2NPTunnelGateway = 19,
eI2NPData = 20,
eI2NPTunnelBuild = 21,
eI2NPTunnelBuildReply = 22,
eI2NPVariableTunnelBuild = 23,
eI2NPVariableTunnelBuildReply = 24
};
const int NUM_TUNNEL_BUILD_RECORDS = 8;
const int NUM_TUNNEL_BUILD_RECORDS = 8;
// DatabaseLookup flags
const uint8_t DATABASE_LOOKUP_DELIVERY_FLAG = 0x01;
const uint8_t DATABASE_LOOKUP_ENCYPTION_FLAG = 0x02;
const uint8_t DATABASE_LOOKUP_TYPE_FLAGS_MASK = 0x0C;
const uint8_t DATABASE_LOOKUP_TYPE_NORMAL_LOOKUP = 0;
const uint8_t DATABASE_LOOKUP_TYPE_LEASESET_LOOKUP = 0x04; // 0100
const uint8_t DATABASE_LOOKUP_TYPE_ROUTERINFO_LOOKUP = 0x08; // 1000
const uint8_t DATABASE_LOOKUP_TYPE_EXPLORATORY_LOOKUP = 0x0C; // 1100
// DatabaseLookup flags
const uint8_t DATABASE_LOOKUP_DELIVERY_FLAG = 0x01;
const uint8_t DATABASE_LOOKUP_ENCYPTION_FLAG = 0x02;
const uint8_t DATABASE_LOOKUP_TYPE_FLAGS_MASK = 0x0C;
const uint8_t DATABASE_LOOKUP_TYPE_NORMAL_LOOKUP = 0;
const uint8_t DATABASE_LOOKUP_TYPE_LEASESET_LOOKUP = 0x04; // 0100
const uint8_t DATABASE_LOOKUP_TYPE_ROUTERINFO_LOOKUP = 0x08; // 1000
const uint8_t DATABASE_LOOKUP_TYPE_EXPLORATORY_LOOKUP = 0x0C; // 1100
const int MAX_NUM_TRANSIT_TUNNELS = 2500;
const int MAX_NUM_TRANSIT_TUNNELS = 2500;
namespace tunnel
{
class InboundTunnel;
class TunnelPool;
{
class InboundTunnel;
class TunnelPool;
}
const size_t I2NP_MAX_MESSAGE_SIZE = 32768;
const size_t I2NP_MAX_SHORT_MESSAGE_SIZE = 4096;
struct I2NPMessage
{
uint8_t * buf;
size_t len, offset, maxLen;
std::shared_ptr<i2p::tunnel::InboundTunnel> from;
I2NPMessage (): buf (nullptr),len (I2NP_HEADER_SIZE + 2),
offset(2), maxLen (0), from (nullptr) {}; // reserve 2 bytes for NTCP header
// header accessors
uint8_t * GetHeader () { return GetBuffer (); };
const uint8_t * GetHeader () const { return GetBuffer (); };
void SetTypeID (uint8_t typeID) { GetHeader ()[I2NP_HEADER_TYPEID_OFFSET] = typeID; };
uint8_t GetTypeID () const { return GetHeader ()[I2NP_HEADER_TYPEID_OFFSET]; };
void SetMsgID (uint32_t msgID) { htobe32buf (GetHeader () + I2NP_HEADER_MSGID_OFFSET, msgID); };
uint32_t GetMsgID () const { return bufbe32toh (GetHeader () + I2NP_HEADER_MSGID_OFFSET); };
void SetExpiration (uint64_t expiration) { htobe64buf (GetHeader () + I2NP_HEADER_EXPIRATION_OFFSET, expiration); };
uint64_t GetExpiration () const { return bufbe64toh (GetHeader () + I2NP_HEADER_EXPIRATION_OFFSET); };
void SetSize (uint16_t size) { htobe16buf (GetHeader () + I2NP_HEADER_SIZE_OFFSET, size); };
uint16_t GetSize () const { return bufbe16toh (GetHeader () + I2NP_HEADER_SIZE_OFFSET); };
void UpdateSize () { SetSize (GetPayloadLength ()); };
void SetChks (uint8_t chks) { GetHeader ()[I2NP_HEADER_CHKS_OFFSET] = chks; };
void UpdateChks ()
{
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest(hash, GetPayload (), GetPayloadLength ());
GetHeader ()[I2NP_HEADER_CHKS_OFFSET] = hash[0];
}
// payload
uint8_t * GetPayload () { return GetBuffer () + I2NP_HEADER_SIZE; };
const uint8_t * GetPayload () const { return GetBuffer () + I2NP_HEADER_SIZE; };
uint8_t * GetBuffer () { return buf + offset; };
const uint8_t * GetBuffer () const { return buf + offset; };
size_t GetLength () const { return len - offset; };
size_t GetPayloadLength () const { return GetLength () - I2NP_HEADER_SIZE; };
void Align (size_t alignment)
{
if (len + alignment > maxLen) return;
size_t rem = ((size_t)GetBuffer ()) % alignment;
if (rem)
{
offset += (alignment - rem);
len += (alignment - rem);
}
}
const size_t I2NP_MAX_MESSAGE_SIZE = 32768;
const size_t I2NP_MAX_SHORT_MESSAGE_SIZE = 4096;
struct I2NPMessage
{
uint8_t * buf;
size_t len, offset, maxLen;
std::shared_ptr<i2p::tunnel::InboundTunnel> from;
I2NPMessage (): buf (nullptr),len (I2NP_HEADER_SIZE + 2),
offset(2), maxLen (0), from (nullptr) {}; // reserve 2 bytes for NTCP header
// header accessors
uint8_t * GetHeader () { return GetBuffer (); };
const uint8_t * GetHeader () const { return GetBuffer (); };
void SetTypeID (uint8_t typeID) { GetHeader ()[I2NP_HEADER_TYPEID_OFFSET] = typeID; };
uint8_t GetTypeID () const { return GetHeader ()[I2NP_HEADER_TYPEID_OFFSET]; };
void SetMsgID (uint32_t msgID) { htobe32buf (GetHeader () + I2NP_HEADER_MSGID_OFFSET, msgID); };
uint32_t GetMsgID () const { return bufbe32toh (GetHeader () + I2NP_HEADER_MSGID_OFFSET); };
void SetExpiration (uint64_t expiration) { htobe64buf (GetHeader () + I2NP_HEADER_EXPIRATION_OFFSET, expiration); };
uint64_t GetExpiration () const { return bufbe64toh (GetHeader () + I2NP_HEADER_EXPIRATION_OFFSET); };
void SetSize (uint16_t size) { htobe16buf (GetHeader () + I2NP_HEADER_SIZE_OFFSET, size); };
uint16_t GetSize () const { return bufbe16toh (GetHeader () + I2NP_HEADER_SIZE_OFFSET); };
void UpdateSize () { SetSize (GetPayloadLength ()); };
void SetChks (uint8_t chks) { GetHeader ()[I2NP_HEADER_CHKS_OFFSET] = chks; };
void UpdateChks ()
{
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest(hash, GetPayload (), GetPayloadLength ());
GetHeader ()[I2NP_HEADER_CHKS_OFFSET] = hash[0];
}
// payload
uint8_t * GetPayload () { return GetBuffer () + I2NP_HEADER_SIZE; };
const uint8_t * GetPayload () const { return GetBuffer () + I2NP_HEADER_SIZE; };
uint8_t * GetBuffer () { return buf + offset; };
const uint8_t * GetBuffer () const { return buf + offset; };
size_t GetLength () const { return len - offset; };
size_t GetPayloadLength () const { return GetLength () - I2NP_HEADER_SIZE; };
void Align (size_t alignment)
{
if (len + alignment > maxLen) return;
size_t rem = ((size_t)GetBuffer ()) % alignment;
if (rem)
{
offset += (alignment - rem);
len += (alignment - rem);
}
}
I2NPMessage& operator=(const I2NPMessage& other)
{
memcpy (buf + offset, other.buf + other.offset, other.GetLength ());
len = offset + other.GetLength ();
from = other.from;
return *this;
}
I2NPMessage& operator=(const I2NPMessage& other)
{
memcpy (buf + offset, other.buf + other.offset, other.GetLength ());
len = offset + other.GetLength ();
from = other.from;
maxLen = other.maxLen;
return *this;
}
// for SSU only
uint8_t * GetSSUHeader () { return buf + offset + I2NP_HEADER_SIZE - I2NP_SHORT_HEADER_SIZE; };
void FromSSU (uint32_t msgID) // we have received SSU message and convert it to regular
{
const uint8_t * ssu = GetSSUHeader ();
GetHeader ()[I2NP_HEADER_TYPEID_OFFSET] = ssu[I2NP_SHORT_HEADER_TYPEID_OFFSET]; // typeid
SetMsgID (msgID);
SetExpiration (bufbe32toh (ssu + I2NP_SHORT_HEADER_EXPIRATION_OFFSET)*1000LL);
SetSize (len - offset - I2NP_HEADER_SIZE);
SetChks (0);
}
uint32_t ToSSU () // return msgID
{
uint8_t header[I2NP_HEADER_SIZE];
memcpy (header, GetHeader (), I2NP_HEADER_SIZE);
uint8_t * ssu = GetSSUHeader ();
ssu[I2NP_SHORT_HEADER_TYPEID_OFFSET] = header[I2NP_HEADER_TYPEID_OFFSET]; // typeid
htobe32buf (ssu + I2NP_SHORT_HEADER_EXPIRATION_OFFSET, bufbe64toh (header + I2NP_HEADER_EXPIRATION_OFFSET)/1000LL);
len = offset + I2NP_SHORT_HEADER_SIZE + bufbe16toh (header + I2NP_HEADER_SIZE_OFFSET);
return bufbe32toh (header + I2NP_HEADER_MSGID_OFFSET);
}
// for SSU only
uint8_t * GetSSUHeader () { return buf + offset + I2NP_HEADER_SIZE - I2NP_SHORT_HEADER_SIZE; };
void FromSSU (uint32_t msgID) // we have received SSU message and convert it to regular
{
const uint8_t * ssu = GetSSUHeader ();
GetHeader ()[I2NP_HEADER_TYPEID_OFFSET] = ssu[I2NP_SHORT_HEADER_TYPEID_OFFSET]; // typeid
SetMsgID (msgID);
SetExpiration (bufbe32toh (ssu + I2NP_SHORT_HEADER_EXPIRATION_OFFSET)*1000LL);
SetSize (len - offset - I2NP_HEADER_SIZE);
SetChks (0);
}
uint32_t ToSSU () // return msgID
{
uint8_t header[I2NP_HEADER_SIZE];
memcpy (header, GetHeader (), I2NP_HEADER_SIZE);
uint8_t * ssu = GetSSUHeader ();
ssu[I2NP_SHORT_HEADER_TYPEID_OFFSET] = header[I2NP_HEADER_TYPEID_OFFSET]; // typeid
htobe32buf (ssu + I2NP_SHORT_HEADER_EXPIRATION_OFFSET, bufbe64toh (header + I2NP_HEADER_EXPIRATION_OFFSET)/1000LL);
len = offset + I2NP_SHORT_HEADER_SIZE + bufbe16toh (header + I2NP_HEADER_SIZE_OFFSET);
return bufbe32toh (header + I2NP_HEADER_MSGID_OFFSET);
}
void FillI2NPMessageHeader (I2NPMessageType msgType, uint32_t replyMsgID = 0);
void RenewI2NPMessageHeader ();
};
void FillI2NPMessageHeader (I2NPMessageType msgType, uint32_t replyMsgID = 0);
void RenewI2NPMessageHeader ();
};
template<int sz>
struct I2NPMessageBuffer: public I2NPMessage
{
I2NPMessageBuffer () { buf = m_Buffer; maxLen = sz; };
uint8_t m_Buffer[sz + 16];
};
template<int sz>
struct I2NPMessageBuffer: public I2NPMessage
{
I2NPMessageBuffer () { buf = m_Buffer; maxLen = sz; };
uint8_t m_Buffer[sz + 16] = {};
};
I2NPMessage * NewI2NPMessage ();
I2NPMessage * NewI2NPShortMessage ();
I2NPMessage * NewI2NPMessage (size_t len);
void DeleteI2NPMessage (I2NPMessage * msg);
std::shared_ptr<I2NPMessage> ToSharedI2NPMessage (I2NPMessage * msg);
I2NPMessage * CreateI2NPMessage (I2NPMessageType msgType, const uint8_t * buf, int len, uint32_t replyMsgID = 0);
std::shared_ptr<I2NPMessage> CreateI2NPMessage (const uint8_t * buf, int len, std::shared_ptr<i2p::tunnel::InboundTunnel> from = nullptr);
std::shared_ptr<I2NPMessage> CreateDeliveryStatusMsg (uint32_t msgID);
std::shared_ptr<I2NPMessage> CreateRouterInfoDatabaseLookupMsg (const uint8_t * key, const uint8_t * from,
uint32_t replyTunnelID, bool exploratory = false, std::set<i2p::data::IdentHash> * excludedPeers = nullptr);
std::shared_ptr<I2NPMessage> CreateLeaseSetDatabaseLookupMsg (const i2p::data::IdentHash& dest,
const std::set<i2p::data::IdentHash>& excludedFloodfills,
const i2p::tunnel::InboundTunnel * replyTunnel, const uint8_t * replyKey, const uint8_t * replyTag);
std::shared_ptr<I2NPMessage> CreateDatabaseSearchReply (const i2p::data::IdentHash& ident, std::vector<i2p::data::IdentHash> routers);
std::shared_ptr<I2NPMessage> CreateDatabaseStoreMsg (std::shared_ptr<const i2p::data::RouterInfo> router = nullptr, uint32_t replyToken = 0);
std::shared_ptr<I2NPMessage> CreateDatabaseStoreMsg (std::shared_ptr<const i2p::data::LeaseSet> leaseSet, uint32_t replyToken = 0);
bool HandleBuildRequestRecords (int num, uint8_t * records, uint8_t * clearText);
void HandleVariableTunnelBuildMsg (uint32_t replyMsgID, uint8_t * buf, size_t len);
void HandleVariableTunnelBuildReplyMsg (uint32_t replyMsgID, uint8_t * buf, size_t len);
void HandleTunnelBuildMsg (uint8_t * buf, size_t len);
I2NPMessage * NewI2NPMessage ();
I2NPMessage * NewI2NPShortMessage ();
I2NPMessage * NewI2NPMessage (size_t len);
void DeleteI2NPMessage (I2NPMessage * msg);
std::shared_ptr<I2NPMessage> ToSharedI2NPMessage (I2NPMessage * msg);
I2NPMessage * CreateI2NPMessage (I2NPMessageType msgType, const uint8_t * buf, int len, uint32_t replyMsgID = 0);
std::shared_ptr<I2NPMessage> CreateI2NPMessage (const uint8_t * buf, int len, std::shared_ptr<i2p::tunnel::InboundTunnel> from = nullptr);
std::shared_ptr<I2NPMessage> CreateDeliveryStatusMsg (uint32_t msgID);
std::shared_ptr<I2NPMessage> CreateRouterInfoDatabaseLookupMsg (const uint8_t * key, const uint8_t * from,
uint32_t replyTunnelID, bool exploratory = false, std::set<i2p::data::IdentHash> * excludedPeers = nullptr);
std::shared_ptr<I2NPMessage> CreateLeaseSetDatabaseLookupMsg (const i2p::data::IdentHash& dest,
const std::set<i2p::data::IdentHash>& excludedFloodfills,
const i2p::tunnel::InboundTunnel * replyTunnel, const uint8_t * replyKey, const uint8_t * replyTag);
std::shared_ptr<I2NPMessage> CreateDatabaseSearchReply (const i2p::data::IdentHash& ident, std::vector<i2p::data::IdentHash> routers);
std::shared_ptr<I2NPMessage> CreateDatabaseStoreMsg (std::shared_ptr<const i2p::data::RouterInfo> router = nullptr, uint32_t replyToken = 0);
std::shared_ptr<I2NPMessage> CreateDatabaseStoreMsg (std::shared_ptr<const i2p::data::LeaseSet> leaseSet, uint32_t replyToken = 0);
bool HandleBuildRequestRecords (int num, uint8_t * records, uint8_t * clearText);
void HandleVariableTunnelBuildMsg (uint32_t replyMsgID, uint8_t * buf, size_t len);
void HandleVariableTunnelBuildReplyMsg (uint32_t replyMsgID, uint8_t * buf, size_t len);
void HandleTunnelBuildMsg (uint8_t * buf, size_t len);
I2NPMessage * CreateTunnelDataMsg (const uint8_t * buf);
I2NPMessage * CreateTunnelDataMsg (uint32_t tunnelID, const uint8_t * payload);
std::shared_ptr<I2NPMessage> CreateEmptyTunnelDataMsg ();
I2NPMessage * CreateTunnelGatewayMsg (uint32_t tunnelID, const uint8_t * buf, size_t len);
I2NPMessage * CreateTunnelGatewayMsg (uint32_t tunnelID, I2NPMessageType msgType,
const uint8_t * buf, size_t len, uint32_t replyMsgID = 0);
std::shared_ptr<I2NPMessage> CreateTunnelGatewayMsg (uint32_t tunnelID, std::shared_ptr<I2NPMessage> msg);
I2NPMessage * CreateTunnelDataMsg (const uint8_t * buf);
I2NPMessage * CreateTunnelDataMsg (uint32_t tunnelID, const uint8_t * payload);
std::shared_ptr<I2NPMessage> CreateEmptyTunnelDataMsg ();
I2NPMessage * CreateTunnelGatewayMsg (uint32_t tunnelID, const uint8_t * buf, size_t len);
I2NPMessage * CreateTunnelGatewayMsg (uint32_t tunnelID, I2NPMessageType msgType,
const uint8_t * buf, size_t len, uint32_t replyMsgID = 0);
std::shared_ptr<I2NPMessage> CreateTunnelGatewayMsg (uint32_t tunnelID, std::shared_ptr<I2NPMessage> msg);
size_t GetI2NPMessageLength (const uint8_t * msg);
void HandleI2NPMessage (uint8_t * msg, size_t len);
void HandleI2NPMessage (std::shared_ptr<I2NPMessage> msg);
size_t GetI2NPMessageLength (const uint8_t * msg);
void HandleI2NPMessage (uint8_t * msg, size_t len);
void HandleI2NPMessage (std::shared_ptr<I2NPMessage> msg);
class I2NPMessagesHandler
{
public:
class I2NPMessagesHandler
{
public:
~I2NPMessagesHandler ();
void PutNextMessage (std::shared_ptr<I2NPMessage> msg);
void Flush ();
private:
~I2NPMessagesHandler ();
void PutNextMessage (std::shared_ptr<I2NPMessage> msg);
void Flush ();
private:
std::vector<std::shared_ptr<I2NPMessage> > m_TunnelMsgs, m_TunnelGatewayMsgs;
};
}
std::vector<std::shared_ptr<I2NPMessage> > m_TunnelMsgs, m_TunnelGatewayMsgs;
};
}
#endif

View file

@ -22,395 +22,395 @@ namespace i2p
{
namespace client
{
I2PControlService::I2PControlService (int port):
m_Password (I2P_CONTROL_DEFAULT_PASSWORD), m_IsRunning (false), m_Thread (nullptr),
m_Acceptor (m_Service, boost::asio::ip::tcp::endpoint(boost::asio::ip::tcp::v4(), port)),
m_ShutdownTimer (m_Service)
{
m_MethodHandlers[I2P_CONTROL_METHOD_AUTHENTICATE] = &I2PControlService::AuthenticateHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_ECHO] = &I2PControlService::EchoHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_I2PCONTROL] = &I2PControlService::I2PControlHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_ROUTER_INFO] = &I2PControlService::RouterInfoHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_ROUTER_MANAGER] = &I2PControlService::RouterManagerHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_NETWORK_SETTING] = &I2PControlService::NetworkSettingHandler;
I2PControlService::I2PControlService (int port):
m_Password (I2P_CONTROL_DEFAULT_PASSWORD), m_IsRunning (false), m_Thread (nullptr),
m_Acceptor (m_Service, boost::asio::ip::tcp::endpoint(boost::asio::ip::tcp::v4(), port)),
m_ShutdownTimer (m_Service)
{
m_MethodHandlers[I2P_CONTROL_METHOD_AUTHENTICATE] = &I2PControlService::AuthenticateHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_ECHO] = &I2PControlService::EchoHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_I2PCONTROL] = &I2PControlService::I2PControlHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_ROUTER_INFO] = &I2PControlService::RouterInfoHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_ROUTER_MANAGER] = &I2PControlService::RouterManagerHandler;
m_MethodHandlers[I2P_CONTROL_METHOD_NETWORK_SETTING] = &I2PControlService::NetworkSettingHandler;
// RouterInfo
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_UPTIME] = &I2PControlService::UptimeHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_VERSION] = &I2PControlService::VersionHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_STATUS] = &I2PControlService::StatusHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_NETDB_KNOWNPEERS] = &I2PControlService::NetDbKnownPeersHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_NETDB_ACTIVEPEERS] = &I2PControlService::NetDbActivePeersHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_NET_STATUS] = &I2PControlService::NetStatusHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_TUNNELS_PARTICIPATING] = &I2PControlService::TunnelsParticipatingHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_BW_IB_1S] = &I2PControlService::InboundBandwidth1S ;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_BW_OB_1S] = &I2PControlService::OutboundBandwidth1S ;
// RouterInfo
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_UPTIME] = &I2PControlService::UptimeHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_VERSION] = &I2PControlService::VersionHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_STATUS] = &I2PControlService::StatusHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_NETDB_KNOWNPEERS] = &I2PControlService::NetDbKnownPeersHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_NETDB_ACTIVEPEERS] = &I2PControlService::NetDbActivePeersHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_NET_STATUS] = &I2PControlService::NetStatusHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_TUNNELS_PARTICIPATING] = &I2PControlService::TunnelsParticipatingHandler;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_BW_IB_1S] = &I2PControlService::InboundBandwidth1S ;
m_RouterInfoHandlers[I2P_CONTROL_ROUTER_INFO_BW_OB_1S] = &I2PControlService::OutboundBandwidth1S ;
// RouterManager
m_RouterManagerHandlers[I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN] = &I2PControlService::ShutdownHandler;
m_RouterManagerHandlers[I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN_GRACEFUL] = &I2PControlService::ShutdownGracefulHandler;
m_RouterManagerHandlers[I2P_CONTROL_ROUTER_MANAGER_RESEED] = &I2PControlService::ReseedHandler;
}
// RouterManager
m_RouterManagerHandlers[I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN] = &I2PControlService::ShutdownHandler;
m_RouterManagerHandlers[I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN_GRACEFUL] = &I2PControlService::ShutdownGracefulHandler;
m_RouterManagerHandlers[I2P_CONTROL_ROUTER_MANAGER_RESEED] = &I2PControlService::ReseedHandler;
}
I2PControlService::~I2PControlService ()
{
Stop ();
}
I2PControlService::~I2PControlService ()
{
Stop ();
}
void I2PControlService::Start ()
{
if (!m_IsRunning)
{
Accept ();
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&I2PControlService::Run, this));
}
}
void I2PControlService::Start ()
{
if (!m_IsRunning)
{
Accept ();
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&I2PControlService::Run, this));
}
}
void I2PControlService::Stop ()
{
if (m_IsRunning)
{
m_IsRunning = false;
m_Acceptor.cancel ();
m_Service.stop ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = nullptr;
}
}
}
void I2PControlService::Stop ()
{
if (m_IsRunning)
{
m_IsRunning = false;
m_Acceptor.cancel ();
m_Service.stop ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = nullptr;
}
}
}
void I2PControlService::Run ()
{
while (m_IsRunning)
{
try
{
m_Service.run ();
}
catch (std::exception& ex)
{
LogPrint (eLogError, "I2PControl: ", ex.what ());
}
}
}
void I2PControlService::Run ()
{
while (m_IsRunning)
{
try
{
m_Service.run ();
}
catch (std::exception& ex)
{
LogPrint (eLogError, "I2PControl: ", ex.what ());
}
}
}
void I2PControlService::Accept ()
{
auto newSocket = std::make_shared<boost::asio::ip::tcp::socket> (m_Service);
m_Acceptor.async_accept (*newSocket, std::bind (&I2PControlService::HandleAccept, this,
std::placeholders::_1, newSocket));
}
void I2PControlService::Accept ()
{
auto newSocket = std::make_shared<boost::asio::ip::tcp::socket> (m_Service);
m_Acceptor.async_accept (*newSocket, std::bind (&I2PControlService::HandleAccept, this,
std::placeholders::_1, newSocket));
}
void I2PControlService::HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
if (ecode != boost::asio::error::operation_aborted)
Accept ();
void I2PControlService::HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
if (ecode != boost::asio::error::operation_aborted)
Accept ();
if (!ecode)
{
LogPrint (eLogInfo, "New I2PControl request from ", socket->remote_endpoint ());
std::this_thread::sleep_for (std::chrono::milliseconds(5));
ReadRequest (socket);
}
else
LogPrint (eLogError, "I2PControl accept error: ", ecode.message ());
}
if (!ecode)
{
LogPrint (eLogInfo, "New I2PControl request from ", socket->remote_endpoint ());
std::this_thread::sleep_for (std::chrono::milliseconds(5));
ReadRequest (socket);
}
else
LogPrint (eLogError, "I2PControl accept error: ", ecode.message ());
}
void I2PControlService::ReadRequest (std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
auto request = std::make_shared<I2PControlBuffer>();
socket->async_read_some (
void I2PControlService::ReadRequest (std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
auto request = std::make_shared<I2PControlBuffer>();
socket->async_read_some (
#if BOOST_VERSION >= 104900
boost::asio::buffer (*request),
boost::asio::buffer (*request),
#else
boost::asio::buffer (request->data (), request->size ()),
boost::asio::buffer (request->data (), request->size ()),
#endif
std::bind(&I2PControlService::HandleRequestReceived, this,
std::placeholders::_1, std::placeholders::_2, socket, request));
}
std::bind(&I2PControlService::HandleRequestReceived, this,
std::placeholders::_1, std::placeholders::_2, socket, request));
}
void I2PControlService::HandleRequestReceived (const boost::system::error_code& ecode,
size_t bytes_transferred, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<I2PControlBuffer> buf)
{
if (ecode)
{
LogPrint (eLogError, "I2PControl read error: ", ecode.message ());
}
else
{
try
{
bool isHtml = !memcmp (buf->data (), "POST", 4);
std::stringstream ss;
ss.write (buf->data (), bytes_transferred);
if (isHtml)
{
std::string header;
while (!ss.eof () && header != "\r")
std::getline(ss, header);
if (ss.eof ())
{
LogPrint (eLogError, "Malformed I2PControl request. HTTP header expected");
return; // TODO:
}
}
void I2PControlService::HandleRequestReceived (const boost::system::error_code& ecode,
size_t bytes_transferred, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<I2PControlBuffer> buf)
{
if (ecode)
{
LogPrint (eLogError, "I2PControl read error: ", ecode.message ());
}
else
{
try
{
bool isHtml = !memcmp (buf->data (), "POST", 4);
std::stringstream ss;
ss.write (buf->data (), bytes_transferred);
if (isHtml)
{
std::string header;
while (!ss.eof () && header != "\r")
std::getline(ss, header);
if (ss.eof ())
{
LogPrint (eLogError, "Malformed I2PControl request. HTTP header expected");
return; // TODO:
}
}
#if GCC47_BOOST149
LogPrint (eLogError, "json_read is not supported due bug in boost 1.49 with gcc 4.7");
LogPrint (eLogError, "json_read is not supported due bug in boost 1.49 with gcc 4.7");
#else
boost::property_tree::ptree pt;
boost::property_tree::read_json (ss, pt);
boost::property_tree::ptree pt;
boost::property_tree::read_json (ss, pt);
std::string method = pt.get<std::string>(I2P_CONTROL_PROPERTY_METHOD);
auto it = m_MethodHandlers.find (method);
if (it != m_MethodHandlers.end ())
{
std::ostringstream response;
response << "{\"id\":" << pt.get<std::string>(I2P_CONTROL_PROPERTY_ID) << ",\"result\":{";
std::string method = pt.get<std::string>(I2P_CONTROL_PROPERTY_METHOD);
auto it = m_MethodHandlers.find (method);
if (it != m_MethodHandlers.end ())
{
std::ostringstream response;
response << "{\"id\":" << pt.get<std::string>(I2P_CONTROL_PROPERTY_ID) << ",\"result\":{";
(this->*(it->second))(pt.get_child (I2P_CONTROL_PROPERTY_PARAMS), response);
response << "},\"jsonrpc\":\"2.0\"}";
SendResponse (socket, buf, response, isHtml);
}
else
LogPrint (eLogWarning, "Unknown I2PControl method ", method);
(this->*(it->second))(pt.get_child (I2P_CONTROL_PROPERTY_PARAMS), response);
response << "},\"jsonrpc\":\"2.0\"}";
SendResponse (socket, buf, response, isHtml);
}
else
LogPrint (eLogWarning, "Unknown I2PControl method ", method);
#endif
}
catch (std::exception& ex)
{
LogPrint (eLogError, "I2PControl handle request: ", ex.what ());
}
catch (...)
{
LogPrint (eLogError, "I2PControl handle request unknown exception");
}
}
}
}
catch (std::exception& ex)
{
LogPrint (eLogError, "I2PControl handle request: ", ex.what ());
}
catch (...)
{
LogPrint (eLogError, "I2PControl handle request unknown exception");
}
}
}
void I2PControlService::InsertParam (std::ostringstream& ss, const std::string& name, int value) const
{
ss << "\"" << name << "\":" << value;
}
void I2PControlService::InsertParam (std::ostringstream& ss, const std::string& name, int value) const
{
ss << "\"" << name << "\":" << value;
}
void I2PControlService::InsertParam (std::ostringstream& ss, const std::string& name, const std::string& value) const
{
ss << "\"" << name << "\":";
if (value.length () > 0)
ss << "\"" << value << "\"";
else
ss << "null";
}
void I2PControlService::InsertParam (std::ostringstream& ss, const std::string& name, double value) const
{
ss << "\"" << name << "\":" << std::fixed << std::setprecision(2) << value;
}
void I2PControlService::InsertParam (std::ostringstream& ss, const std::string& name, const std::string& value) const
{
ss << "\"" << name << "\":";
if (value.length () > 0)
ss << "\"" << value << "\"";
else
ss << "null";
}
void I2PControlService::InsertParam (std::ostringstream& ss, const std::string& name, double value) const
{
ss << "\"" << name << "\":" << std::fixed << std::setprecision(2) << value;
}
void I2PControlService::SendResponse (std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<I2PControlBuffer> buf, std::ostringstream& response, bool isHtml)
{
size_t len = response.str ().length (), offset = 0;
if (isHtml)
{
std::ostringstream header;
header << "HTTP/1.1 200 OK\r\n";
header << "Connection: close\r\n";
header << "Content-Length: " << boost::lexical_cast<std::string>(len) << "\r\n";
header << "Content-Type: application/json\r\n";
header << "Date: ";
auto facet = new boost::local_time::local_time_facet ("%a, %d %b %Y %H:%M:%S GMT");
header.imbue(std::locale (header.getloc(), facet));
header << boost::posix_time::second_clock::local_time() << "\r\n";
header << "\r\n";
offset = header.str ().size ();
memcpy (buf->data (), header.str ().c_str (), offset);
}
memcpy (buf->data () + offset, response.str ().c_str (), len);
boost::asio::async_write (*socket, boost::asio::buffer (buf->data (), offset + len),
boost::asio::transfer_all (),
std::bind(&I2PControlService::HandleResponseSent, this,
std::placeholders::_1, std::placeholders::_2, socket, buf));
}
void I2PControlService::SendResponse (std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<I2PControlBuffer> buf, std::ostringstream& response, bool isHtml)
{
size_t len = response.str ().length (), offset = 0;
if (isHtml)
{
std::ostringstream header;
header << "HTTP/1.1 200 OK\r\n";
header << "Connection: close\r\n";
header << "Content-Length: " << boost::lexical_cast<std::string>(len) << "\r\n";
header << "Content-Type: application/json\r\n";
header << "Date: ";
auto facet = new boost::local_time::local_time_facet ("%a, %d %b %Y %H:%M:%S GMT");
header.imbue(std::locale (header.getloc(), facet));
header << boost::posix_time::second_clock::local_time() << "\r\n";
header << "\r\n";
offset = header.str ().size ();
memcpy (buf->data (), header.str ().c_str (), offset);
}
memcpy (buf->data () + offset, response.str ().c_str (), len);
boost::asio::async_write (*socket, boost::asio::buffer (buf->data (), offset + len),
boost::asio::transfer_all (),
std::bind(&I2PControlService::HandleResponseSent, this,
std::placeholders::_1, std::placeholders::_2, socket, buf));
}
void I2PControlService::HandleResponseSent (const boost::system::error_code& ecode, std::size_t bytes_transferred,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<I2PControlBuffer> buf)
{
if (ecode)
LogPrint (eLogError, "I2PControl write error: ", ecode.message ());
socket->close ();
}
void I2PControlService::HandleResponseSent (const boost::system::error_code& ecode, std::size_t bytes_transferred,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<I2PControlBuffer> buf)
{
if (ecode)
LogPrint (eLogError, "I2PControl write error: ", ecode.message ());
socket->close ();
}
// handlers
void I2PControlService::AuthenticateHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
int api = params.get<int> (I2P_CONTROL_PARAM_API);
auto password = params.get<std::string> (I2P_CONTROL_PARAM_PASSWORD);
LogPrint (eLogDebug, "I2PControl Authenticate API=", api, " Password=", password);
if (password != m_Password)
LogPrint (eLogError, "I2PControl Authenticate Invalid password ", password, " expected ", m_Password);
InsertParam (results, I2P_CONTROL_PARAM_API, api);
results << ",";
std::string token = boost::lexical_cast<std::string>(i2p::util::GetSecondsSinceEpoch ());
m_Tokens.insert (token);
InsertParam (results, I2P_CONTROL_PARAM_TOKEN, token);
}
void I2PControlService::AuthenticateHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
int api = params.get<int> (I2P_CONTROL_PARAM_API);
auto password = params.get<std::string> (I2P_CONTROL_PARAM_PASSWORD);
LogPrint (eLogDebug, "I2PControl Authenticate API=", api, " Password=", password);
if (password != m_Password)
LogPrint (eLogError, "I2PControl Authenticate Invalid password ", password, " expected ", m_Password);
InsertParam (results, I2P_CONTROL_PARAM_API, api);
results << ",";
std::string token = boost::lexical_cast<std::string>(i2p::util::GetSecondsSinceEpoch ());
m_Tokens.insert (token);
InsertParam (results, I2P_CONTROL_PARAM_TOKEN, token);
}
void I2PControlService::EchoHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
auto echo = params.get<std::string> (I2P_CONTROL_PARAM_ECHO);
LogPrint (eLogDebug, "I2PControl Echo Echo=", echo);
InsertParam (results, I2P_CONTROL_PARAM_RESULT, echo);
}
void I2PControlService::EchoHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
auto echo = params.get<std::string> (I2P_CONTROL_PARAM_ECHO);
LogPrint (eLogDebug, "I2PControl Echo Echo=", echo);
InsertParam (results, I2P_CONTROL_PARAM_RESULT, echo);
}
// I2PControl
void I2PControlService::I2PControlHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl I2PControl");
for (auto& it: params)
{
LogPrint (eLogDebug, it.first);
auto it1 = m_I2PControlHandlers.find (it.first);
if (it1 != m_I2PControlHandlers.end ())
(this->*(it1->second))(it.second.data ());
else
LogPrint (eLogError, "I2PControl NetworkSetting unknown request ", it.first);
}
}
void I2PControlService::I2PControlHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl I2PControl");
for (auto& it: params)
{
LogPrint (eLogDebug, it.first);
auto it1 = m_I2PControlHandlers.find (it.first);
if (it1 != m_I2PControlHandlers.end ())
(this->*(it1->second))(it.second.data ());
else
LogPrint (eLogError, "I2PControl NetworkSetting unknown request ", it.first);
}
}
// RouterInfo
void I2PControlService::RouterInfoHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl RouterInfo");
for (auto it = params.begin (); it != params.end (); it++)
{
if (it != params.begin ()) results << ",";
LogPrint (eLogDebug, it->first);
auto it1 = m_RouterInfoHandlers.find (it->first);
if (it1 != m_RouterInfoHandlers.end ())
(this->*(it1->second))(results);
else
LogPrint (eLogError, "I2PControl RouterInfo unknown request ", it->first);
}
}
void I2PControlService::RouterInfoHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl RouterInfo");
for (auto it = params.begin (); it != params.end (); it++)
{
if (it != params.begin ()) results << ",";
LogPrint (eLogDebug, it->first);
auto it1 = m_RouterInfoHandlers.find (it->first);
if (it1 != m_RouterInfoHandlers.end ())
(this->*(it1->second))(results);
else
LogPrint (eLogError, "I2PControl RouterInfo unknown request ", it->first);
}
}
void I2PControlService::UptimeHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_UPTIME, (int)i2p::context.GetUptime ()*1000);
}
void I2PControlService::UptimeHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_UPTIME, (int)i2p::context.GetUptime ()*1000);
}
void I2PControlService::VersionHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_VERSION, VERSION);
}
void I2PControlService::VersionHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_VERSION, VERSION);
}
void I2PControlService::StatusHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_STATUS, "???"); // TODO:
}
void I2PControlService::NetDbKnownPeersHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_NETDB_KNOWNPEERS, i2p::data::netdb.GetNumRouters ());
}
void I2PControlService::StatusHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_STATUS, "???"); // TODO:
}
void I2PControlService::NetDbKnownPeersHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_NETDB_KNOWNPEERS, i2p::data::netdb.GetNumRouters ());
}
void I2PControlService::NetDbActivePeersHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_NETDB_ACTIVEPEERS, (int)i2p::transport::transports.GetPeers ().size ());
}
void I2PControlService::NetDbActivePeersHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_NETDB_ACTIVEPEERS, (int)i2p::transport::transports.GetPeers ().size ());
}
void I2PControlService::NetStatusHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_NET_STATUS, (int)i2p::context.GetStatus ());
}
void I2PControlService::NetStatusHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_NET_STATUS, (int)i2p::context.GetStatus ());
}
void I2PControlService::TunnelsParticipatingHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_TUNNELS_PARTICIPATING, (int)i2p::tunnel::tunnels.GetTransitTunnels ().size ());
}
void I2PControlService::TunnelsParticipatingHandler (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_TUNNELS_PARTICIPATING, (int)i2p::tunnel::tunnels.GetTransitTunnels ().size ());
}
void I2PControlService::InboundBandwidth1S (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_BW_IB_1S, (double)i2p::transport::transports.GetInBandwidth ());
}
void I2PControlService::InboundBandwidth1S (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_BW_IB_1S, (double)i2p::transport::transports.GetInBandwidth ());
}
void I2PControlService::OutboundBandwidth1S (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_BW_OB_1S, (double)i2p::transport::transports.GetOutBandwidth ());
}
void I2PControlService::OutboundBandwidth1S (std::ostringstream& results)
{
InsertParam (results, I2P_CONTROL_ROUTER_INFO_BW_OB_1S, (double)i2p::transport::transports.GetOutBandwidth ());
}
// RouterManager
void I2PControlService::RouterManagerHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl RouterManager");
for (auto it = params.begin (); it != params.end (); it++)
{
if (it != params.begin ()) results << ",";
LogPrint (eLogDebug, it->first);
auto it1 = m_RouterManagerHandlers.find (it->first);
if (it1 != m_RouterManagerHandlers.end ())
(this->*(it1->second))(results);
else
LogPrint (eLogError, "I2PControl RouterManager unknown request ", it->first);
}
}
void I2PControlService::RouterManagerHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl RouterManager");
for (auto it = params.begin (); it != params.end (); it++)
{
if (it != params.begin ()) results << ",";
LogPrint (eLogDebug, it->first);
auto it1 = m_RouterManagerHandlers.find (it->first);
if (it1 != m_RouterManagerHandlers.end ())
(this->*(it1->second))(results);
else
LogPrint (eLogError, "I2PControl RouterManager unknown request ", it->first);
}
}
void I2PControlService::ShutdownHandler (std::ostringstream& results)
{
LogPrint (eLogInfo, "Shutdown requested");
InsertParam (results, I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN, "");
m_ShutdownTimer.expires_from_now (boost::posix_time::seconds(1)); // 1 second to make sure response has been sent
m_ShutdownTimer.async_wait (
[](const boost::system::error_code& ecode)
{
Daemon.running = 0;
});
}
void I2PControlService::ShutdownHandler (std::ostringstream& results)
{
LogPrint (eLogInfo, "Shutdown requested");
InsertParam (results, I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN, "");
m_ShutdownTimer.expires_from_now (boost::posix_time::seconds(1)); // 1 second to make sure response has been sent
m_ShutdownTimer.async_wait (
[](const boost::system::error_code& ecode)
{
Daemon.running = 0;
});
}
void I2PControlService::ShutdownGracefulHandler (std::ostringstream& results)
{
i2p::context.SetAcceptsTunnels (false);
int timeout = i2p::tunnel::tunnels.GetTransitTunnelsExpirationTimeout ();
LogPrint (eLogInfo, "Graceful shutdown requested. Will shutdown after ", timeout, " seconds");
InsertParam (results, I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN_GRACEFUL, "");
m_ShutdownTimer.expires_from_now (boost::posix_time::seconds(timeout + 1)); // + 1 second
m_ShutdownTimer.async_wait (
[](const boost::system::error_code& ecode)
{
Daemon.running = 0;
});
}
void I2PControlService::ShutdownGracefulHandler (std::ostringstream& results)
{
i2p::context.SetAcceptsTunnels (false);
int timeout = i2p::tunnel::tunnels.GetTransitTunnelsExpirationTimeout ();
LogPrint (eLogInfo, "Graceful shutdown requested. Will shutdown after ", timeout, " seconds");
InsertParam (results, I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN_GRACEFUL, "");
m_ShutdownTimer.expires_from_now (boost::posix_time::seconds(timeout + 1)); // + 1 second
m_ShutdownTimer.async_wait (
[](const boost::system::error_code& ecode)
{
Daemon.running = 0;
});
}
void I2PControlService::ReseedHandler (std::ostringstream& results)
{
LogPrint (eLogInfo, "Reseed requested");
InsertParam (results, I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN, "");
i2p::data::netdb.Reseed ();
}
void I2PControlService::ReseedHandler (std::ostringstream& results)
{
LogPrint (eLogInfo, "Reseed requested");
InsertParam (results, I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN, "");
i2p::data::netdb.Reseed ();
}
// network setting
void I2PControlService::NetworkSettingHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl NetworkSetting");
for (auto it = params.begin (); it != params.end (); it++)
{
if (it != params.begin ()) results << ",";
LogPrint (eLogDebug, it->first);
auto it1 = m_NetworkSettingHandlers.find (it->first);
if (it1 != m_NetworkSettingHandlers.end ())
(this->*(it1->second))(it->second.data (), results);
else
LogPrint (eLogError, "I2PControl NetworkSetting unknown request ", it->first);
}
}
void I2PControlService::NetworkSettingHandler (const boost::property_tree::ptree& params, std::ostringstream& results)
{
LogPrint (eLogDebug, "I2PControl NetworkSetting");
for (auto it = params.begin (); it != params.end (); it++)
{
if (it != params.begin ()) results << ",";
LogPrint (eLogDebug, it->first);
auto it1 = m_NetworkSettingHandlers.find (it->first);
if (it1 != m_NetworkSettingHandlers.end ())
(this->*(it1->second))(it->second.data (), results);
else
LogPrint (eLogError, "I2PControl NetworkSetting unknown request ", it->first);
}
}
}
}

View file

@ -16,132 +16,132 @@ namespace i2p
{
namespace client
{
const size_t I2P_CONTROL_MAX_REQUEST_SIZE = 1024;
typedef std::array<char, I2P_CONTROL_MAX_REQUEST_SIZE> I2PControlBuffer;
const size_t I2P_CONTROL_MAX_REQUEST_SIZE = 1024;
typedef std::array<char, I2P_CONTROL_MAX_REQUEST_SIZE> I2PControlBuffer;
const char I2P_CONTROL_DEFAULT_PASSWORD[] = "itoopie";
const char I2P_CONTROL_DEFAULT_PASSWORD[] = "itoopie";
const char I2P_CONTROL_PROPERTY_ID[] = "id";
const char I2P_CONTROL_PROPERTY_METHOD[] = "method";
const char I2P_CONTROL_PROPERTY_PARAMS[] = "params";
const char I2P_CONTROL_PROPERTY_RESULT[] = "result";
const char I2P_CONTROL_PROPERTY_ID[] = "id";
const char I2P_CONTROL_PROPERTY_METHOD[] = "method";
const char I2P_CONTROL_PROPERTY_PARAMS[] = "params";
const char I2P_CONTROL_PROPERTY_RESULT[] = "result";
// methods
const char I2P_CONTROL_METHOD_AUTHENTICATE[] = "Authenticate";
const char I2P_CONTROL_METHOD_ECHO[] = "Echo";
const char I2P_CONTROL_METHOD_I2PCONTROL[] = "I2PControl";
const char I2P_CONTROL_METHOD_ROUTER_INFO[] = "RouterInfo";
const char I2P_CONTROL_METHOD_ROUTER_MANAGER[] = "RouterManager";
const char I2P_CONTROL_METHOD_NETWORK_SETTING[] = "NetworkSetting";
// methods
const char I2P_CONTROL_METHOD_AUTHENTICATE[] = "Authenticate";
const char I2P_CONTROL_METHOD_ECHO[] = "Echo";
const char I2P_CONTROL_METHOD_I2PCONTROL[] = "I2PControl";
const char I2P_CONTROL_METHOD_ROUTER_INFO[] = "RouterInfo";
const char I2P_CONTROL_METHOD_ROUTER_MANAGER[] = "RouterManager";
const char I2P_CONTROL_METHOD_NETWORK_SETTING[] = "NetworkSetting";
// params
const char I2P_CONTROL_PARAM_API[] = "API";
const char I2P_CONTROL_PARAM_PASSWORD[] = "Password";
const char I2P_CONTROL_PARAM_TOKEN[] = "Token";
const char I2P_CONTROL_PARAM_ECHO[] = "Echo";
const char I2P_CONTROL_PARAM_RESULT[] = "Result";
// params
const char I2P_CONTROL_PARAM_API[] = "API";
const char I2P_CONTROL_PARAM_PASSWORD[] = "Password";
const char I2P_CONTROL_PARAM_TOKEN[] = "Token";
const char I2P_CONTROL_PARAM_ECHO[] = "Echo";
const char I2P_CONTROL_PARAM_RESULT[] = "Result";
// I2PControl
const char I2P_CONTROL_I2PCONTROL_ADDRESS[] = "i2pcontrol.address";
const char I2P_CONTROL_I2PCONTROL_PASSWORD[] = "i2pcontrol.password";
const char I2P_CONTROL_I2PCONTROL_PORT[] = "i2pcontrol.port";
// I2PControl
const char I2P_CONTROL_I2PCONTROL_ADDRESS[] = "i2pcontrol.address";
const char I2P_CONTROL_I2PCONTROL_PASSWORD[] = "i2pcontrol.password";
const char I2P_CONTROL_I2PCONTROL_PORT[] = "i2pcontrol.port";
// RouterInfo requests
const char I2P_CONTROL_ROUTER_INFO_UPTIME[] = "i2p.router.uptime";
const char I2P_CONTROL_ROUTER_INFO_VERSION[] = "i2p.router.version";
const char I2P_CONTROL_ROUTER_INFO_STATUS[] = "i2p.router.status";
const char I2P_CONTROL_ROUTER_INFO_NETDB_KNOWNPEERS[] = "i2p.router.netdb.knownpeers";
const char I2P_CONTROL_ROUTER_INFO_NETDB_ACTIVEPEERS[] = "i2p.router.netdb.activepeers";
const char I2P_CONTROL_ROUTER_INFO_NET_STATUS[] = "i2p.router.net.status";
const char I2P_CONTROL_ROUTER_INFO_TUNNELS_PARTICIPATING[] = "i2p.router.net.tunnels.participating";
const char I2P_CONTROL_ROUTER_INFO_BW_IB_1S[] = "i2p.router.net.bw.inbound.1s";
const char I2P_CONTROL_ROUTER_INFO_BW_OB_1S[] = "i2p.router.net.bw.outbound.1s";
// RouterInfo requests
const char I2P_CONTROL_ROUTER_INFO_UPTIME[] = "i2p.router.uptime";
const char I2P_CONTROL_ROUTER_INFO_VERSION[] = "i2p.router.version";
const char I2P_CONTROL_ROUTER_INFO_STATUS[] = "i2p.router.status";
const char I2P_CONTROL_ROUTER_INFO_NETDB_KNOWNPEERS[] = "i2p.router.netdb.knownpeers";
const char I2P_CONTROL_ROUTER_INFO_NETDB_ACTIVEPEERS[] = "i2p.router.netdb.activepeers";
const char I2P_CONTROL_ROUTER_INFO_NET_STATUS[] = "i2p.router.net.status";
const char I2P_CONTROL_ROUTER_INFO_TUNNELS_PARTICIPATING[] = "i2p.router.net.tunnels.participating";
const char I2P_CONTROL_ROUTER_INFO_BW_IB_1S[] = "i2p.router.net.bw.inbound.1s";
const char I2P_CONTROL_ROUTER_INFO_BW_OB_1S[] = "i2p.router.net.bw.outbound.1s";
// RouterManager requests
const char I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN[] = "Shutdown";
const char I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN_GRACEFUL[] = "ShutdownGraceful";
const char I2P_CONTROL_ROUTER_MANAGER_RESEED[] = "Reseed";
// RouterManager requests
const char I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN[] = "Shutdown";
const char I2P_CONTROL_ROUTER_MANAGER_SHUTDOWN_GRACEFUL[] = "ShutdownGraceful";
const char I2P_CONTROL_ROUTER_MANAGER_RESEED[] = "Reseed";
class I2PControlService
{
public:
class I2PControlService
{
public:
I2PControlService (int port);
~I2PControlService ();
I2PControlService (int port);
~I2PControlService ();
void Start ();
void Stop ();
void Start ();
void Stop ();
private:
private:
void Run ();
void Accept ();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket);
void ReadRequest (std::shared_ptr<boost::asio::ip::tcp::socket> socket);
void HandleRequestReceived (const boost::system::error_code& ecode, size_t bytes_transferred,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<I2PControlBuffer> buf);
void SendResponse (std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<I2PControlBuffer> buf, std::ostringstream& response, bool isHtml);
void HandleResponseSent (const boost::system::error_code& ecode, std::size_t bytes_transferred,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<I2PControlBuffer> buf);
void Run ();
void Accept ();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket);
void ReadRequest (std::shared_ptr<boost::asio::ip::tcp::socket> socket);
void HandleRequestReceived (const boost::system::error_code& ecode, size_t bytes_transferred,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<I2PControlBuffer> buf);
void SendResponse (std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<I2PControlBuffer> buf, std::ostringstream& response, bool isHtml);
void HandleResponseSent (const boost::system::error_code& ecode, std::size_t bytes_transferred,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<I2PControlBuffer> buf);
private:
private:
void InsertParam (std::ostringstream& ss, const std::string& name, int value) const;
void InsertParam (std::ostringstream& ss, const std::string& name, double value) const;
void InsertParam (std::ostringstream& ss, const std::string& name, const std::string& value) const;
void InsertParam (std::ostringstream& ss, const std::string& name, int value) const;
void InsertParam (std::ostringstream& ss, const std::string& name, double value) const;
void InsertParam (std::ostringstream& ss, const std::string& name, const std::string& value) const;
// methods
typedef void (I2PControlService::*MethodHandler)(const boost::property_tree::ptree& params, std::ostringstream& results);
// methods
typedef void (I2PControlService::*MethodHandler)(const boost::property_tree::ptree& params, std::ostringstream& results);
void AuthenticateHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void EchoHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void I2PControlHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void RouterInfoHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void RouterManagerHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void NetworkSettingHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void AuthenticateHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void EchoHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void I2PControlHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void RouterInfoHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void RouterManagerHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
void NetworkSettingHandler (const boost::property_tree::ptree& params, std::ostringstream& results);
// I2PControl
typedef void (I2PControlService::*I2PControlRequestHandler)(const std::string& value);
// I2PControl
typedef void (I2PControlService::*I2PControlRequestHandler)(const std::string& value);
// RouterInfo
typedef void (I2PControlService::*RouterInfoRequestHandler)(std::ostringstream& results);
void UptimeHandler (std::ostringstream& results);
void VersionHandler (std::ostringstream& results);
void StatusHandler (std::ostringstream& results);
void NetDbKnownPeersHandler (std::ostringstream& results);
void NetDbActivePeersHandler (std::ostringstream& results);
void NetStatusHandler (std::ostringstream& results);
void TunnelsParticipatingHandler (std::ostringstream& results);
void InboundBandwidth1S (std::ostringstream& results);
void OutboundBandwidth1S (std::ostringstream& results);
// RouterInfo
typedef void (I2PControlService::*RouterInfoRequestHandler)(std::ostringstream& results);
void UptimeHandler (std::ostringstream& results);
void VersionHandler (std::ostringstream& results);
void StatusHandler (std::ostringstream& results);
void NetDbKnownPeersHandler (std::ostringstream& results);
void NetDbActivePeersHandler (std::ostringstream& results);
void NetStatusHandler (std::ostringstream& results);
void TunnelsParticipatingHandler (std::ostringstream& results);
void InboundBandwidth1S (std::ostringstream& results);
void OutboundBandwidth1S (std::ostringstream& results);
// RouterManager
typedef void (I2PControlService::*RouterManagerRequestHandler)(std::ostringstream& results);
void ShutdownHandler (std::ostringstream& results);
void ShutdownGracefulHandler (std::ostringstream& results);
void ReseedHandler (std::ostringstream& results);
// RouterManager
typedef void (I2PControlService::*RouterManagerRequestHandler)(std::ostringstream& results);
void ShutdownHandler (std::ostringstream& results);
void ShutdownGracefulHandler (std::ostringstream& results);
void ReseedHandler (std::ostringstream& results);
// NetworkSetting
typedef void (I2PControlService::*NetworkSettingRequestHandler)(const std::string& value, std::ostringstream& results);
// NetworkSetting
typedef void (I2PControlService::*NetworkSettingRequestHandler)(const std::string& value, std::ostringstream& results);
private:
private:
std::string m_Password;
bool m_IsRunning;
std::thread * m_Thread;
std::string m_Password;
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::deadline_timer m_ShutdownTimer;
std::set<std::string> m_Tokens;
std::map<std::string, MethodHandler> m_MethodHandlers;
std::map<std::string, I2PControlRequestHandler> m_I2PControlHandlers;
std::map<std::string, RouterInfoRequestHandler> m_RouterInfoHandlers;
std::map<std::string, RouterManagerRequestHandler> m_RouterManagerHandlers;
std::map<std::string, NetworkSettingRequestHandler> m_NetworkSettingHandlers;
};
boost::asio::io_service m_Service;
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::deadline_timer m_ShutdownTimer;
std::set<std::string> m_Tokens;
std::map<std::string, MethodHandler> m_MethodHandlers;
std::map<std::string, I2PControlRequestHandler> m_I2PControlHandlers;
std::map<std::string, RouterInfoRequestHandler> m_RouterInfoHandlers;
std::map<std::string, RouterManagerRequestHandler> m_RouterManagerHandlers;
std::map<std::string, NetworkSettingRequestHandler> m_NetworkSettingHandlers;
};
}
}

View file

@ -8,38 +8,38 @@
#ifdef NEEDS_LOCAL_ENDIAN
uint16_t htobe16(uint16_t int16)
{
BigEndian<uint16_t> u16(int16);
return u16.raw_value;
BigEndian<uint16_t> u16(int16);
return u16.raw_value;
}
uint32_t htobe32(uint32_t int32)
{
BigEndian<uint32_t> u32(int32);
return u32.raw_value;
BigEndian<uint32_t> u32(int32);
return u32.raw_value;
}
uint64_t htobe64(uint64_t int64)
{
BigEndian<uint64_t> u64(int64);
return u64.raw_value;
BigEndian<uint64_t> u64(int64);
return u64.raw_value;
}
uint16_t be16toh(uint16_t big16)
{
LittleEndian<uint16_t> u16(big16);
return u16.raw_value;
LittleEndian<uint16_t> u16(big16);
return u16.raw_value;
}
uint32_t be32toh(uint32_t big32)
{
LittleEndian<uint32_t> u32(big32);
return u32.raw_value;
LittleEndian<uint32_t> u32(big32);
return u32.raw_value;
}
uint64_t be64toh(uint64_t big64)
{
LittleEndian<uint64_t> u64(big64);
return u64.raw_value;
LittleEndian<uint64_t> u64(big64);
return u64.raw_value;
}
#endif
@ -48,36 +48,36 @@ uint64_t be64toh(uint64_t big64)
uint16_t htobe16(uint16_t int16)
{
return htons(int16);
return htons(int16);
}
uint32_t htobe32(uint32_t int32)
{
return htonl(int32);
return htonl(int32);
}
uint64_t htobe64(uint64_t int64)
{
// http://msdn.microsoft.com/en-us/library/windows/desktop/jj710199%28v=vs.85%29.aspx
//return htonll(int64);
return 0;
// http://msdn.microsoft.com/en-us/library/windows/desktop/jj710199%28v=vs.85%29.aspx
//return htonll(int64);
return 0;
}
uint16_t be16toh(uint16_t big16)
{
return ntohs(big16);
return ntohs(big16);
}
uint32_t be32toh(uint32_t big32)
{
return ntohl(big32);
return ntohl(big32);
}
uint64_t be64toh(uint64_t big64)
{
// http://msdn.microsoft.com/en-us/library/windows/desktop/jj710199%28v=vs.85%29.aspx
//return ntohll(big64);
return 0;
// http://msdn.microsoft.com/en-us/library/windows/desktop/jj710199%28v=vs.85%29.aspx
//return ntohll(big64);
return 0;
}
*/

View file

@ -49,68 +49,68 @@ uint64_t be64toh(uint64_t big64);
inline uint16_t buf16toh(const void *buf)
{
uint16_t b16;
memcpy(&b16, buf, sizeof(uint16_t));
return b16;
uint16_t b16;
memcpy(&b16, buf, sizeof(uint16_t));
return b16;
}
inline uint32_t buf32toh(const void *buf)
{
uint32_t b32;
memcpy(&b32, buf, sizeof(uint32_t));
return b32;
uint32_t b32;
memcpy(&b32, buf, sizeof(uint32_t));
return b32;
}
inline uint64_t buf64toh(const void *buf)
{
uint64_t b64;
memcpy(&b64, buf, sizeof(uint64_t));
return b64;
uint64_t b64;
memcpy(&b64, buf, sizeof(uint64_t));
return b64;
}
inline uint16_t bufbe16toh(const void *buf)
{
return be16toh(buf16toh(buf));
return be16toh(buf16toh(buf));
}
inline uint32_t bufbe32toh(const void *buf)
{
return be32toh(buf32toh(buf));
return be32toh(buf32toh(buf));
}
inline uint64_t bufbe64toh(const void *buf)
{
return be64toh(buf64toh(buf));
return be64toh(buf64toh(buf));
}
inline void htobuf16(void *buf, uint16_t b16)
{
memcpy(buf, &b16, sizeof(uint16_t));
memcpy(buf, &b16, sizeof(uint16_t));
}
inline void htobuf32(void *buf, uint32_t b32)
{
memcpy(buf, &b32, sizeof(uint32_t));
memcpy(buf, &b32, sizeof(uint32_t));
}
inline void htobuf64(void *buf, uint64_t b64)
{
memcpy(buf, &b64, sizeof(uint64_t));
memcpy(buf, &b64, sizeof(uint64_t));
}
inline void htobe16buf(void *buf, uint16_t big16)
{
htobuf16(buf, htobe16(big16));
htobuf16(buf, htobe16(big16));
}
inline void htobe32buf(void *buf, uint32_t big32)
{
htobuf32(buf, htobe32(big32));
htobuf32(buf, htobe32(big32));
}
inline void htobe64buf(void *buf, uint64_t big64)
{
htobuf64(buf, htobe64(big64));
htobuf64(buf, htobe64(big64));
}

View file

@ -8,72 +8,72 @@ namespace i2p
{
namespace client
{
static const i2p::data::SigningKeyType I2P_SERVICE_DEFAULT_KEY_TYPE = i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256;
static const i2p::data::SigningKeyType I2P_SERVICE_DEFAULT_KEY_TYPE = i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256;
I2PService::I2PService (std::shared_ptr<ClientDestination> localDestination):
m_LocalDestination (localDestination ? localDestination :
i2p::client::context.CreateNewLocalDestination (false, I2P_SERVICE_DEFAULT_KEY_TYPE))
{
}
I2PService::I2PService (i2p::data::SigningKeyType kt):
m_LocalDestination (i2p::client::context.CreateNewLocalDestination (false, kt))
{
}
void I2PService::CreateStream (StreamRequestComplete streamRequestComplete, const std::string& dest, int port) {
assert(streamRequestComplete);
i2p::data::IdentHash identHash;
if (i2p::client::context.GetAddressBook ().GetIdentHash (dest, identHash))
m_LocalDestination->CreateStream (streamRequestComplete, identHash, port);
else
{
LogPrint (eLogWarning, "Remote destination ", dest, " not found");
streamRequestComplete (nullptr);
}
}
I2PService::I2PService (std::shared_ptr<ClientDestination> localDestination):
m_LocalDestination (localDestination ? localDestination :
i2p::client::context.CreateNewLocalDestination (false, I2P_SERVICE_DEFAULT_KEY_TYPE))
{
}
I2PService::I2PService (i2p::data::SigningKeyType kt):
m_LocalDestination (i2p::client::context.CreateNewLocalDestination (false, kt))
{
}
void I2PService::CreateStream (StreamRequestComplete streamRequestComplete, const std::string& dest, int port) {
assert(streamRequestComplete);
i2p::data::IdentHash identHash;
if (i2p::client::context.GetAddressBook ().GetIdentHash (dest, identHash))
m_LocalDestination->CreateStream (streamRequestComplete, identHash, port);
else
{
LogPrint (eLogWarning, "Remote destination ", dest, " not found");
streamRequestComplete (nullptr);
}
}
void TCPIPAcceptor::Start ()
{
m_Acceptor.listen ();
Accept ();
}
void TCPIPAcceptor::Start ()
{
m_Acceptor.listen ();
Accept ();
}
void TCPIPAcceptor::Stop ()
{
m_Acceptor.close();
m_Timer.cancel ();
ClearHandlers();
}
void TCPIPAcceptor::Stop ()
{
m_Acceptor.close();
m_Timer.cancel ();
ClearHandlers();
}
void TCPIPAcceptor::Accept ()
{
auto newSocket = std::make_shared<boost::asio::ip::tcp::socket> (GetService ());
m_Acceptor.async_accept (*newSocket, std::bind (&TCPIPAcceptor::HandleAccept, this,
std::placeholders::_1, newSocket));
}
void TCPIPAcceptor::Accept ()
{
auto newSocket = std::make_shared<boost::asio::ip::tcp::socket> (GetService ());
m_Acceptor.async_accept (*newSocket, std::bind (&TCPIPAcceptor::HandleAccept, this,
std::placeholders::_1, newSocket));
}
void TCPIPAcceptor::HandleAccept (const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
if (!ecode)
{
LogPrint(eLogDebug,"--- ",GetName()," accepted");
auto handler = CreateHandler(socket);
if (handler)
{
AddHandler(handler);
handler->Handle();
}
else
socket->close();
Accept();
}
else
{
if (ecode != boost::asio::error::operation_aborted)
LogPrint (eLogError,"--- ",GetName()," Closing socket on accept because: ", ecode.message ());
}
}
void TCPIPAcceptor::HandleAccept (const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
if (!ecode)
{
LogPrint(eLogDebug,"--- ",GetName()," accepted");
auto handler = CreateHandler(socket);
if (handler)
{
AddHandler(handler);
handler->Handle();
}
else
socket->close();
Accept();
}
else
{
if (ecode != boost::asio::error::operation_aborted)
LogPrint (eLogError,"--- ",GetName()," Closing socket on accept because: ", ecode.message ());
}
}
}
}

View file

@ -13,96 +13,96 @@ namespace i2p
{
namespace client
{
class I2PServiceHandler;
class I2PService
{
public:
I2PService (std::shared_ptr<ClientDestination> localDestination = nullptr);
I2PService (i2p::data::SigningKeyType kt);
virtual ~I2PService () { ClearHandlers (); }
class I2PServiceHandler;
class I2PService
{
public:
I2PService (std::shared_ptr<ClientDestination> localDestination = nullptr);
I2PService (i2p::data::SigningKeyType kt);
virtual ~I2PService () { ClearHandlers (); }
inline void AddHandler (std::shared_ptr<I2PServiceHandler> conn)
{
std::unique_lock<std::mutex> l(m_HandlersMutex);
m_Handlers.insert(conn);
}
inline void RemoveHandler (std::shared_ptr<I2PServiceHandler> conn)
{
std::unique_lock<std::mutex> l(m_HandlersMutex);
m_Handlers.erase(conn);
}
inline void ClearHandlers ()
{
std::unique_lock<std::mutex> l(m_HandlersMutex);
m_Handlers.clear();
}
inline void AddHandler (std::shared_ptr<I2PServiceHandler> conn)
{
std::unique_lock<std::mutex> l(m_HandlersMutex);
m_Handlers.insert(conn);
}
inline void RemoveHandler (std::shared_ptr<I2PServiceHandler> conn)
{
std::unique_lock<std::mutex> l(m_HandlersMutex);
m_Handlers.erase(conn);
}
inline void ClearHandlers ()
{
std::unique_lock<std::mutex> l(m_HandlersMutex);
m_Handlers.clear();
}
inline std::shared_ptr<ClientDestination> GetLocalDestination () { return m_LocalDestination; }
inline void SetLocalDestination (std::shared_ptr<ClientDestination> dest) { m_LocalDestination = dest; }
void CreateStream (StreamRequestComplete streamRequestComplete, const std::string& dest, int port = 0);
inline std::shared_ptr<ClientDestination> GetLocalDestination () { return m_LocalDestination; }
inline void SetLocalDestination (std::shared_ptr<ClientDestination> dest) { m_LocalDestination = dest; }
void CreateStream (StreamRequestComplete streamRequestComplete, const std::string& dest, int port = 0);
inline boost::asio::io_service& GetService () { return m_LocalDestination->GetService (); }
inline boost::asio::io_service& GetService () { return m_LocalDestination->GetService (); }
virtual void Start () = 0;
virtual void Stop () = 0;
virtual void Start () = 0;
virtual void Stop () = 0;
virtual const char* GetName() { return "Generic I2P Service"; }
private:
virtual const char* GetName() { return "Generic I2P Service"; }
private:
std::shared_ptr<ClientDestination> m_LocalDestination;
std::unordered_set<std::shared_ptr<I2PServiceHandler> > m_Handlers;
std::mutex m_HandlersMutex;
};
std::shared_ptr<ClientDestination> m_LocalDestination;
std::unordered_set<std::shared_ptr<I2PServiceHandler> > m_Handlers;
std::mutex m_HandlersMutex;
};
/*Simple interface for I2PHandlers, allows detection of finalization amongst other things */
class I2PServiceHandler
{
public:
I2PServiceHandler(I2PService * parent) : m_Service(parent), m_Dead(false) { }
virtual ~I2PServiceHandler() { }
//If you override this make sure you call it from the children
virtual void Handle() {}; //Start handling the socket
protected:
// Call when terminating or handing over to avoid race conditions
inline bool Kill () { return m_Dead.exchange(true); }
// Call to know if the handler is dead
inline bool Dead () { return m_Dead; }
// Call when done to clean up (make sure Kill is called first)
inline void Done (std::shared_ptr<I2PServiceHandler> me) { if(m_Service) m_Service->RemoveHandler(me); }
// Call to talk with the owner
inline I2PService * GetOwner() { return m_Service; }
private:
I2PService *m_Service;
std::atomic<bool> m_Dead; //To avoid cleaning up multiple times
};
/*Simple interface for I2PHandlers, allows detection of finalization amongst other things */
class I2PServiceHandler
{
public:
I2PServiceHandler(I2PService * parent) : m_Service(parent), m_Dead(false) { }
virtual ~I2PServiceHandler() { }
//If you override this make sure you call it from the children
virtual void Handle() {}; //Start handling the socket
protected:
// Call when terminating or handing over to avoid race conditions
inline bool Kill () { return m_Dead.exchange(true); }
// Call to know if the handler is dead
inline bool Dead () { return m_Dead; }
// Call when done to clean up (make sure Kill is called first)
inline void Done (std::shared_ptr<I2PServiceHandler> me) { if(m_Service) m_Service->RemoveHandler(me); }
// Call to talk with the owner
inline I2PService * GetOwner() { return m_Service; }
private:
I2PService *m_Service;
std::atomic<bool> m_Dead; //To avoid cleaning up multiple times
};
/* TODO: support IPv6 too */
//This is a service that listens for connections on the IP network and interacts with I2P
class TCPIPAcceptor: public I2PService
{
public:
TCPIPAcceptor (int port, std::shared_ptr<ClientDestination> localDestination = nullptr) :
I2PService(localDestination),
/* TODO: support IPv6 too */
//This is a service that listens for connections on the IP network and interacts with I2P
class TCPIPAcceptor: public I2PService
{
public:
TCPIPAcceptor (int port, std::shared_ptr<ClientDestination> localDestination = nullptr) :
I2PService(localDestination),
m_Acceptor (GetService (), boost::asio::ip::tcp::endpoint (boost::asio::ip::tcp::v4 (), port)),
m_Timer (GetService ()) {}
TCPIPAcceptor (int port, i2p::data::SigningKeyType kt) :
I2PService(kt),
m_Acceptor (GetService (), boost::asio::ip::tcp::endpoint (boost::asio::ip::tcp::v4 (), port)),
m_Timer (GetService ()) {}
virtual ~TCPIPAcceptor () { TCPIPAcceptor::Stop(); }
//If you override this make sure you call it from the children
void Start ();
//If you override this make sure you call it from the children
void Stop ();
protected:
virtual std::shared_ptr<I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket) = 0;
virtual const char* GetName() { return "Generic TCP/IP accepting daemon"; }
private:
void Accept();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket);
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::deadline_timer m_Timer;
};
m_Timer (GetService ()) {}
TCPIPAcceptor (int port, i2p::data::SigningKeyType kt) :
I2PService(kt),
m_Acceptor (GetService (), boost::asio::ip::tcp::endpoint (boost::asio::ip::tcp::v4 (), port)),
m_Timer (GetService ()) {}
virtual ~TCPIPAcceptor () { TCPIPAcceptor::Stop(); }
//If you override this make sure you call it from the children
void Start ();
//If you override this make sure you call it from the children
void Stop ();
protected:
virtual std::shared_ptr<I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket) = 0;
virtual const char* GetName() { return "Generic TCP/IP accepting daemon"; }
private:
void Accept();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<boost::asio::ip::tcp::socket> socket);
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::deadline_timer m_Timer;
};
}
}

View file

@ -9,394 +9,394 @@ namespace i2p
{
namespace client
{
I2PTunnelConnection::I2PTunnelConnection (I2PService * owner, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<const i2p::data::LeaseSet> leaseSet, int port):
I2PServiceHandler(owner), m_Socket (socket), m_RemoteEndpoint (socket->remote_endpoint ()),
m_IsQuiet (true)
{
m_Stream = GetOwner()->GetLocalDestination ()->CreateStream (leaseSet, port);
}
I2PTunnelConnection::I2PTunnelConnection (I2PService * owner, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<const i2p::data::LeaseSet> leaseSet, int port):
I2PServiceHandler(owner), m_Socket (socket), m_RemoteEndpoint (socket->remote_endpoint ()),
m_IsQuiet (true)
{
m_Stream = GetOwner()->GetLocalDestination ()->CreateStream (leaseSet, port);
}
I2PTunnelConnection::I2PTunnelConnection (I2PService * owner,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<i2p::stream::Stream> stream):
I2PServiceHandler(owner), m_Socket (socket), m_Stream (stream),
m_RemoteEndpoint (socket->remote_endpoint ()), m_IsQuiet (true)
{
}
I2PTunnelConnection::I2PTunnelConnection (I2PService * owner,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, std::shared_ptr<i2p::stream::Stream> stream):
I2PServiceHandler(owner), m_Socket (socket), m_Stream (stream),
m_RemoteEndpoint (socket->remote_endpoint ()), m_IsQuiet (true)
{
}
I2PTunnelConnection::I2PTunnelConnection (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, const boost::asio::ip::tcp::endpoint& target, bool quiet):
I2PServiceHandler(owner), m_Socket (socket), m_Stream (stream),
m_RemoteEndpoint (target), m_IsQuiet (quiet)
{
}
I2PTunnelConnection::I2PTunnelConnection (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream,
std::shared_ptr<boost::asio::ip::tcp::socket> socket, const boost::asio::ip::tcp::endpoint& target, bool quiet):
I2PServiceHandler(owner), m_Socket (socket), m_Stream (stream),
m_RemoteEndpoint (target), m_IsQuiet (quiet)
{
}
I2PTunnelConnection::~I2PTunnelConnection ()
{
}
I2PTunnelConnection::~I2PTunnelConnection ()
{
}
void I2PTunnelConnection::I2PConnect (const uint8_t * msg, size_t len)
{
if (m_Stream)
{
if (msg)
m_Stream->Send (msg, len); // connect and send
else
m_Stream->Send (m_Buffer, 0); // connect
}
StreamReceive ();
Receive ();
}
void I2PTunnelConnection::Connect ()
{
if (m_Socket)
m_Socket->async_connect (m_RemoteEndpoint, std::bind (&I2PTunnelConnection::HandleConnect,
shared_from_this (), std::placeholders::_1));
}
void I2PTunnelConnection::Terminate ()
{
if (Kill()) return;
if (m_Stream)
{
m_Stream->Close ();
m_Stream.reset ();
}
m_Socket->close ();
Done(shared_from_this ());
}
void I2PTunnelConnection::I2PConnect (const uint8_t * msg, size_t len)
{
if (m_Stream)
{
if (msg)
m_Stream->Send (msg, len); // connect and send
else
m_Stream->Send (m_Buffer, 0); // connect
}
StreamReceive ();
Receive ();
}
void I2PTunnelConnection::Connect ()
{
if (m_Socket)
m_Socket->async_connect (m_RemoteEndpoint, std::bind (&I2PTunnelConnection::HandleConnect,
shared_from_this (), std::placeholders::_1));
}
void I2PTunnelConnection::Terminate ()
{
if (Kill()) return;
if (m_Stream)
{
m_Stream->Close ();
m_Stream.reset ();
}
m_Socket->close ();
Done(shared_from_this ());
}
void I2PTunnelConnection::Receive ()
{
m_Socket->async_read_some (boost::asio::buffer(m_Buffer, I2P_TUNNEL_CONNECTION_BUFFER_SIZE),
std::bind(&I2PTunnelConnection::HandleReceived, shared_from_this (),
std::placeholders::_1, std::placeholders::_2));
}
void I2PTunnelConnection::HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred)
{
if (ecode)
{
LogPrint ("I2PTunnel read error: ", ecode.message ());
if (ecode != boost::asio::error::operation_aborted)
Terminate ();
}
else
{
if (m_Stream)
{
auto s = shared_from_this ();
m_Stream->AsyncSend (m_Buffer, bytes_transferred,
[s](const boost::system::error_code& ecode)
{
if (!ecode)
s->Receive ();
else
s->Terminate ();
});
}
}
}
void I2PTunnelConnection::Receive ()
{
m_Socket->async_read_some (boost::asio::buffer(m_Buffer, I2P_TUNNEL_CONNECTION_BUFFER_SIZE),
std::bind(&I2PTunnelConnection::HandleReceived, shared_from_this (),
std::placeholders::_1, std::placeholders::_2));
}
void I2PTunnelConnection::HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred)
{
if (ecode)
{
LogPrint ("I2PTunnel read error: ", ecode.message ());
if (ecode != boost::asio::error::operation_aborted)
Terminate ();
}
else
{
if (m_Stream)
{
auto s = shared_from_this ();
m_Stream->AsyncSend (m_Buffer, bytes_transferred,
[s](const boost::system::error_code& ecode)
{
if (!ecode)
s->Receive ();
else
s->Terminate ();
});
}
}
}
void I2PTunnelConnection::HandleWrite (const boost::system::error_code& ecode)
{
if (ecode)
{
LogPrint ("I2PTunnel write error: ", ecode.message ());
if (ecode != boost::asio::error::operation_aborted)
Terminate ();
}
else
StreamReceive ();
}
void I2PTunnelConnection::HandleWrite (const boost::system::error_code& ecode)
{
if (ecode)
{
LogPrint ("I2PTunnel write error: ", ecode.message ());
if (ecode != boost::asio::error::operation_aborted)
Terminate ();
}
else
StreamReceive ();
}
void I2PTunnelConnection::StreamReceive ()
{
if (m_Stream)
m_Stream->AsyncReceive (boost::asio::buffer (m_StreamBuffer, I2P_TUNNEL_CONNECTION_BUFFER_SIZE),
std::bind (&I2PTunnelConnection::HandleStreamReceive, shared_from_this (),
std::placeholders::_1, std::placeholders::_2),
I2P_TUNNEL_CONNECTION_MAX_IDLE);
}
void I2PTunnelConnection::StreamReceive ()
{
if (m_Stream)
m_Stream->AsyncReceive (boost::asio::buffer (m_StreamBuffer, I2P_TUNNEL_CONNECTION_BUFFER_SIZE),
std::bind (&I2PTunnelConnection::HandleStreamReceive, shared_from_this (),
std::placeholders::_1, std::placeholders::_2),
I2P_TUNNEL_CONNECTION_MAX_IDLE);
}
void I2PTunnelConnection::HandleStreamReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred)
{
if (ecode)
{
LogPrint ("I2PTunnel stream read error: ", ecode.message ());
if (ecode != boost::asio::error::operation_aborted)
Terminate ();
}
else
Write (m_StreamBuffer, bytes_transferred);
}
void I2PTunnelConnection::HandleStreamReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred)
{
if (ecode)
{
LogPrint ("I2PTunnel stream read error: ", ecode.message ());
if (ecode != boost::asio::error::operation_aborted)
Terminate ();
}
else
Write (m_StreamBuffer, bytes_transferred);
}
void I2PTunnelConnection::Write (const uint8_t * buf, size_t len)
{
m_Socket->async_send (boost::asio::buffer (buf, len),
std::bind (&I2PTunnelConnection::HandleWrite, shared_from_this (), std::placeholders::_1));
}
void I2PTunnelConnection::Write (const uint8_t * buf, size_t len)
{
m_Socket->async_send (boost::asio::buffer (buf, len),
std::bind (&I2PTunnelConnection::HandleWrite, shared_from_this (), std::placeholders::_1));
}
void I2PTunnelConnection::HandleConnect (const boost::system::error_code& ecode)
{
if (ecode)
{
LogPrint ("I2PTunnel connect error: ", ecode.message ());
Terminate ();
}
else
{
LogPrint ("I2PTunnel connected");
if (m_IsQuiet)
StreamReceive ();
else
{
// send destination first like received from I2P
std::string dest = m_Stream->GetRemoteIdentity ().ToBase64 ();
dest += "\n";
memcpy (m_StreamBuffer, dest.c_str (), dest.size ());
HandleStreamReceive (boost::system::error_code (), dest.size ());
}
Receive ();
}
}
void I2PTunnelConnection::HandleConnect (const boost::system::error_code& ecode)
{
if (ecode)
{
LogPrint ("I2PTunnel connect error: ", ecode.message ());
Terminate ();
}
else
{
LogPrint ("I2PTunnel connected");
if (m_IsQuiet)
StreamReceive ();
else
{
// send destination first like received from I2P
std::string dest = m_Stream->GetRemoteIdentity ().ToBase64 ();
dest += "\n";
memcpy (m_StreamBuffer, dest.c_str (), dest.size ());
HandleStreamReceive (boost::system::error_code (), dest.size ());
}
Receive ();
}
}
I2PTunnelConnectionHTTP::I2PTunnelConnectionHTTP (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream,
std::shared_ptr<boost::asio::ip::tcp::socket> socket,
const boost::asio::ip::tcp::endpoint& target, const std::string& host):
I2PTunnelConnection (owner, stream, socket, target), m_Host (host), m_HeaderSent (false)
{
}
I2PTunnelConnectionHTTP::I2PTunnelConnectionHTTP (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream,
std::shared_ptr<boost::asio::ip::tcp::socket> socket,
const boost::asio::ip::tcp::endpoint& target, const std::string& host):
I2PTunnelConnection (owner, stream, socket, target), m_Host (host), m_HeaderSent (false)
{
}
void I2PTunnelConnectionHTTP::Write (const uint8_t * buf, size_t len)
{
if (m_HeaderSent)
I2PTunnelConnection::Write (buf, len);
else
{
m_InHeader.clear ();
m_InHeader.write ((const char *)buf, len);
std::string line;
bool endOfHeader = false;
while (!endOfHeader)
{
std::getline(m_InHeader, line);
if (!m_InHeader.fail ())
{
if (line.find ("Host:") != std::string::npos)
m_OutHeader << "Host: " << m_Host << "\r\n";
else
m_OutHeader << line << "\n";
if (line == "\r") endOfHeader = true;
}
else
break;
}
void I2PTunnelConnectionHTTP::Write (const uint8_t * buf, size_t len)
{
if (m_HeaderSent)
I2PTunnelConnection::Write (buf, len);
else
{
m_InHeader.clear ();
m_InHeader.write ((const char *)buf, len);
std::string line;
bool endOfHeader = false;
while (!endOfHeader)
{
std::getline(m_InHeader, line);
if (!m_InHeader.fail ())
{
if (line.find ("Host:") != std::string::npos)
m_OutHeader << "Host: " << m_Host << "\r\n";
else
m_OutHeader << line << "\n";
if (line == "\r") endOfHeader = true;
}
else
break;
}
if (endOfHeader)
{
m_OutHeader << m_InHeader.str (); // data right after header
m_HeaderSent = true;
I2PTunnelConnection::Write ((uint8_t *)m_OutHeader.str ().c_str (), m_OutHeader.str ().length ());
}
}
}
if (endOfHeader)
{
m_OutHeader << m_InHeader.str (); // data right after header
m_HeaderSent = true;
I2PTunnelConnection::Write ((uint8_t *)m_OutHeader.str ().c_str (), m_OutHeader.str ().length ());
}
}
}
/* This handler tries to stablish a connection with the desired server and dies if it fails to do so */
class I2PClientTunnelHandler: public I2PServiceHandler, public std::enable_shared_from_this<I2PClientTunnelHandler>
{
public:
I2PClientTunnelHandler (I2PClientTunnel * parent, i2p::data::IdentHash destination,
int destinationPort, std::shared_ptr<boost::asio::ip::tcp::socket> socket):
I2PServiceHandler(parent), m_DestinationIdentHash(destination),
m_DestinationPort (destinationPort), m_Socket(socket) {};
void Handle();
void Terminate();
private:
void HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream);
i2p::data::IdentHash m_DestinationIdentHash;
int m_DestinationPort;
std::shared_ptr<boost::asio::ip::tcp::socket> m_Socket;
};
/* This handler tries to stablish a connection with the desired server and dies if it fails to do so */
class I2PClientTunnelHandler: public I2PServiceHandler, public std::enable_shared_from_this<I2PClientTunnelHandler>
{
public:
I2PClientTunnelHandler (I2PClientTunnel * parent, i2p::data::IdentHash destination,
int destinationPort, std::shared_ptr<boost::asio::ip::tcp::socket> socket):
I2PServiceHandler(parent), m_DestinationIdentHash(destination),
m_DestinationPort (destinationPort), m_Socket(socket) {};
void Handle();
void Terminate();
private:
void HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream);
i2p::data::IdentHash m_DestinationIdentHash;
int m_DestinationPort;
std::shared_ptr<boost::asio::ip::tcp::socket> m_Socket;
};
void I2PClientTunnelHandler::Handle()
{
GetOwner()->GetLocalDestination ()->CreateStream (
std::bind (&I2PClientTunnelHandler::HandleStreamRequestComplete, shared_from_this(), std::placeholders::_1),
m_DestinationIdentHash, m_DestinationPort);
}
void I2PClientTunnelHandler::Handle()
{
GetOwner()->GetLocalDestination ()->CreateStream (
std::bind (&I2PClientTunnelHandler::HandleStreamRequestComplete, shared_from_this(), std::placeholders::_1),
m_DestinationIdentHash, m_DestinationPort);
}
void I2PClientTunnelHandler::HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
{
if (Kill()) return;
LogPrint (eLogInfo,"New I2PTunnel connection");
auto connection = std::make_shared<I2PTunnelConnection>(GetOwner(), m_Socket, stream);
GetOwner()->AddHandler (connection);
connection->I2PConnect ();
Done(shared_from_this());
}
else
{
LogPrint (eLogError,"I2P Client Tunnel Issue when creating the stream, check the previous warnings for more info.");
Terminate();
}
}
void I2PClientTunnelHandler::HandleStreamRequestComplete (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
{
if (Kill()) return;
LogPrint (eLogInfo,"New I2PTunnel connection");
auto connection = std::make_shared<I2PTunnelConnection>(GetOwner(), m_Socket, stream);
GetOwner()->AddHandler (connection);
connection->I2PConnect ();
Done(shared_from_this());
}
else
{
LogPrint (eLogError,"I2P Client Tunnel Issue when creating the stream, check the previous warnings for more info.");
Terminate();
}
}
void I2PClientTunnelHandler::Terminate()
{
if (Kill()) return;
if (m_Socket)
{
m_Socket->close();
m_Socket = nullptr;
}
Done(shared_from_this());
}
void I2PClientTunnelHandler::Terminate()
{
if (Kill()) return;
if (m_Socket)
{
m_Socket->close();
m_Socket = nullptr;
}
Done(shared_from_this());
}
I2PClientTunnel::I2PClientTunnel (const std::string& destination, int port, std::shared_ptr<ClientDestination> localDestination, int destinationPort):
TCPIPAcceptor (port,localDestination), m_Destination (destination), m_DestinationIdentHash (nullptr), m_DestinationPort (destinationPort)
{}
I2PClientTunnel::I2PClientTunnel (const std::string& destination, int port, std::shared_ptr<ClientDestination> localDestination, int destinationPort):
TCPIPAcceptor (port,localDestination), m_Destination (destination), m_DestinationIdentHash (nullptr), m_DestinationPort (destinationPort)
{}
void I2PClientTunnel::Start ()
{
TCPIPAcceptor::Start ();
GetIdentHash();
}
void I2PClientTunnel::Start ()
{
TCPIPAcceptor::Start ();
GetIdentHash();
}
void I2PClientTunnel::Stop ()
{
TCPIPAcceptor::Stop();
auto *originalIdentHash = m_DestinationIdentHash;
m_DestinationIdentHash = nullptr;
delete originalIdentHash;
}
void I2PClientTunnel::Stop ()
{
TCPIPAcceptor::Stop();
auto *originalIdentHash = m_DestinationIdentHash;
m_DestinationIdentHash = nullptr;
delete originalIdentHash;
}
/* HACK: maybe we should create a caching IdentHash provider in AddressBook */
const i2p::data::IdentHash * I2PClientTunnel::GetIdentHash ()
{
if (!m_DestinationIdentHash)
{
i2p::data::IdentHash identHash;
if (i2p::client::context.GetAddressBook ().GetIdentHash (m_Destination, identHash))
m_DestinationIdentHash = new i2p::data::IdentHash (identHash);
else
LogPrint (eLogWarning,"Remote destination ", m_Destination, " not found");
}
return m_DestinationIdentHash;
}
/* HACK: maybe we should create a caching IdentHash provider in AddressBook */
const i2p::data::IdentHash * I2PClientTunnel::GetIdentHash ()
{
if (!m_DestinationIdentHash)
{
i2p::data::IdentHash identHash;
if (i2p::client::context.GetAddressBook ().GetIdentHash (m_Destination, identHash))
m_DestinationIdentHash = new i2p::data::IdentHash (identHash);
else
LogPrint (eLogWarning,"Remote destination ", m_Destination, " not found");
}
return m_DestinationIdentHash;
}
std::shared_ptr<I2PServiceHandler> I2PClientTunnel::CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
const i2p::data::IdentHash *identHash = GetIdentHash();
if (identHash)
return std::make_shared<I2PClientTunnelHandler>(this, *identHash, m_DestinationPort, socket);
else
return nullptr;
}
std::shared_ptr<I2PServiceHandler> I2PClientTunnel::CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket)
{
const i2p::data::IdentHash *identHash = GetIdentHash();
if (identHash)
return std::make_shared<I2PClientTunnelHandler>(this, *identHash, m_DestinationPort, socket);
else
return nullptr;
}
I2PServerTunnel::I2PServerTunnel (const std::string& address, int port,
std::shared_ptr<ClientDestination> localDestination, int inport):
I2PService (localDestination), m_Address (address), m_Port (port), m_IsAccessList (false)
{
m_PortDestination = localDestination->CreateStreamingDestination (inport > 0 ? inport : port);
}
void I2PServerTunnel::Start ()
{
m_Endpoint.port (m_Port);
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (m_Address, ec);
if (!ec)
{
m_Endpoint.address (addr);
Accept ();
}
else
{
auto resolver = std::make_shared<boost::asio::ip::tcp::resolver>(GetService ());
resolver->async_resolve (boost::asio::ip::tcp::resolver::query (m_Address, ""),
std::bind (&I2PServerTunnel::HandleResolve, this,
std::placeholders::_1, std::placeholders::_2, resolver));
}
}
I2PServerTunnel::I2PServerTunnel (const std::string& address, int port,
std::shared_ptr<ClientDestination> localDestination, int inport):
I2PService (localDestination), m_Address (address), m_Port (port), m_IsAccessList (false)
{
m_PortDestination = localDestination->CreateStreamingDestination (inport > 0 ? inport : port);
}
void I2PServerTunnel::Start ()
{
m_Endpoint.port (m_Port);
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (m_Address, ec);
if (!ec)
{
m_Endpoint.address (addr);
Accept ();
}
else
{
auto resolver = std::make_shared<boost::asio::ip::tcp::resolver>(GetService ());
resolver->async_resolve (boost::asio::ip::tcp::resolver::query (m_Address, ""),
std::bind (&I2PServerTunnel::HandleResolve, this,
std::placeholders::_1, std::placeholders::_2, resolver));
}
}
void I2PServerTunnel::Stop ()
{
ClearHandlers ();
}
void I2PServerTunnel::Stop ()
{
ClearHandlers ();
}
void I2PServerTunnel::HandleResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
std::shared_ptr<boost::asio::ip::tcp::resolver> resolver)
{
if (!ecode)
{
auto addr = (*it).endpoint ().address ();
LogPrint (eLogInfo, "server tunnel ", (*it).host_name (), " has been resolved to ", addr);
m_Endpoint.address (addr);
Accept ();
}
else
LogPrint (eLogError, "Unable to resolve server tunnel address: ", ecode.message ());
}
void I2PServerTunnel::HandleResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
std::shared_ptr<boost::asio::ip::tcp::resolver> resolver)
{
if (!ecode)
{
auto addr = (*it).endpoint ().address ();
LogPrint (eLogInfo, "server tunnel ", (*it).host_name (), " has been resolved to ", addr);
m_Endpoint.address (addr);
Accept ();
}
else
LogPrint (eLogError, "Unable to resolve server tunnel address: ", ecode.message ());
}
void I2PServerTunnel::SetAccessList (const std::set<i2p::data::IdentHash>& accessList)
{
m_AccessList = accessList;
m_IsAccessList = true;
}
void I2PServerTunnel::SetAccessList (const std::set<i2p::data::IdentHash>& accessList)
{
m_AccessList = accessList;
m_IsAccessList = true;
}
void I2PServerTunnel::Accept ()
{
if (m_PortDestination)
m_PortDestination->SetAcceptor (std::bind (&I2PServerTunnel::HandleAccept, this, std::placeholders::_1));
void I2PServerTunnel::Accept ()
{
if (m_PortDestination)
m_PortDestination->SetAcceptor (std::bind (&I2PServerTunnel::HandleAccept, this, std::placeholders::_1));
auto localDestination = GetLocalDestination ();
if (localDestination)
{
if (!localDestination->IsAcceptingStreams ()) // set it as default if not set yet
localDestination->AcceptStreams (std::bind (&I2PServerTunnel::HandleAccept, this, std::placeholders::_1));
}
else
LogPrint ("Local destination not set for server tunnel");
}
auto localDestination = GetLocalDestination ();
if (localDestination)
{
if (!localDestination->IsAcceptingStreams ()) // set it as default if not set yet
localDestination->AcceptStreams (std::bind (&I2PServerTunnel::HandleAccept, this, std::placeholders::_1));
}
else
LogPrint ("Local destination not set for server tunnel");
}
void I2PServerTunnel::HandleAccept (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
{
if (m_IsAccessList)
{
if (!m_AccessList.count (stream->GetRemoteIdentity ().GetIdentHash ()))
{
LogPrint (eLogWarning, "Address ", stream->GetRemoteIdentity ().GetIdentHash ().ToBase32 (), " is not in white list. Incoming connection dropped");
stream->Close ();
return;
}
}
CreateI2PConnection (stream);
}
}
void I2PServerTunnel::HandleAccept (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
{
if (m_IsAccessList)
{
if (!m_AccessList.count (stream->GetRemoteIdentity ().GetIdentHash ()))
{
LogPrint (eLogWarning, "Address ", stream->GetRemoteIdentity ().GetIdentHash ().ToBase32 (), " is not in white list. Incoming connection dropped");
stream->Close ();
return;
}
}
CreateI2PConnection (stream);
}
}
void I2PServerTunnel::CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream)
{
auto conn = std::make_shared<I2PTunnelConnection> (this, stream, std::make_shared<boost::asio::ip::tcp::socket> (GetService ()), GetEndpoint ());
AddHandler (conn);
conn->Connect ();
}
void I2PServerTunnel::CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream)
{
auto conn = std::make_shared<I2PTunnelConnection> (this, stream, std::make_shared<boost::asio::ip::tcp::socket> (GetService ()), GetEndpoint ());
AddHandler (conn);
conn->Connect ();
}
I2PServerTunnelHTTP::I2PServerTunnelHTTP (const std::string& address, int port, std::shared_ptr<ClientDestination> localDestination, int inport):
I2PServerTunnel (address, port, localDestination, inport)
{
}
I2PServerTunnelHTTP::I2PServerTunnelHTTP (const std::string& address, int port, std::shared_ptr<ClientDestination> localDestination, int inport):
I2PServerTunnel (address, port, localDestination, inport)
{
}
void I2PServerTunnelHTTP::CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream)
{
auto conn = std::make_shared<I2PTunnelConnectionHTTP> (this, stream, std::make_shared<boost::asio::ip::tcp::socket> (GetService ()), GetEndpoint (), GetAddress ());
AddHandler (conn);
conn->Connect ();
}
}
}
void I2PServerTunnelHTTP::CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream)
{
auto conn = std::make_shared<I2PTunnelConnectionHTTP> (this, stream, std::make_shared<boost::asio::ip::tcp::socket> (GetService ()), GetEndpoint (), GetAddress ());
AddHandler (conn);
conn->Connect ();
}
}
}

View file

@ -16,138 +16,138 @@ namespace i2p
{
namespace client
{
const size_t I2P_TUNNEL_CONNECTION_BUFFER_SIZE = 8192;
const int I2P_TUNNEL_CONNECTION_MAX_IDLE = 3600; // in seconds
const int I2P_TUNNEL_DESTINATION_REQUEST_TIMEOUT = 10; // in seconds
const size_t I2P_TUNNEL_CONNECTION_BUFFER_SIZE = 8192;
const int I2P_TUNNEL_CONNECTION_MAX_IDLE = 3600; // in seconds
const int I2P_TUNNEL_DESTINATION_REQUEST_TIMEOUT = 10; // in seconds
class I2PTunnelConnection: public I2PServiceHandler, public std::enable_shared_from_this<I2PTunnelConnection>
{
public:
class I2PTunnelConnection: public I2PServiceHandler, public std::enable_shared_from_this<I2PTunnelConnection>
{
public:
I2PTunnelConnection (I2PService * owner, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<const i2p::data::LeaseSet> leaseSet, int port = 0); // to I2P
I2PTunnelConnection (I2PService * owner, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<i2p::stream::Stream> stream); // to I2P using simplified API
I2PTunnelConnection (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
const boost::asio::ip::tcp::endpoint& target, bool quiet = true); // from I2P
~I2PTunnelConnection ();
void I2PConnect (const uint8_t * msg = nullptr, size_t len = 0);
void Connect ();
protected:
I2PTunnelConnection (I2PService * owner, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<const i2p::data::LeaseSet> leaseSet, int port = 0); // to I2P
I2PTunnelConnection (I2PService * owner, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
std::shared_ptr<i2p::stream::Stream> stream); // to I2P using simplified API
I2PTunnelConnection (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream, std::shared_ptr<boost::asio::ip::tcp::socket> socket,
const boost::asio::ip::tcp::endpoint& target, bool quiet = true); // from I2P
~I2PTunnelConnection ();
void I2PConnect (const uint8_t * msg = nullptr, size_t len = 0);
void Connect ();
protected:
void Terminate ();
void Terminate ();
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
virtual void Write (const uint8_t * buf, size_t len); // can be overloaded
void HandleWrite (const boost::system::error_code& ecode);
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
virtual void Write (const uint8_t * buf, size_t len); // can be overloaded
void HandleWrite (const boost::system::error_code& ecode);
void StreamReceive ();
void HandleStreamReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleConnect (const boost::system::error_code& ecode);
void StreamReceive ();
void HandleStreamReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleConnect (const boost::system::error_code& ecode);
private:
private:
uint8_t m_Buffer[I2P_TUNNEL_CONNECTION_BUFFER_SIZE], m_StreamBuffer[I2P_TUNNEL_CONNECTION_BUFFER_SIZE];
std::shared_ptr<boost::asio::ip::tcp::socket> m_Socket;
std::shared_ptr<i2p::stream::Stream> m_Stream;
boost::asio::ip::tcp::endpoint m_RemoteEndpoint;
bool m_IsQuiet; // don't send destination
};
uint8_t m_Buffer[I2P_TUNNEL_CONNECTION_BUFFER_SIZE], m_StreamBuffer[I2P_TUNNEL_CONNECTION_BUFFER_SIZE];
std::shared_ptr<boost::asio::ip::tcp::socket> m_Socket;
std::shared_ptr<i2p::stream::Stream> m_Stream;
boost::asio::ip::tcp::endpoint m_RemoteEndpoint;
bool m_IsQuiet; // don't send destination
};
class I2PTunnelConnectionHTTP: public I2PTunnelConnection
{
public:
I2PTunnelConnectionHTTP (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream,
std::shared_ptr<boost::asio::ip::tcp::socket> socket,
const boost::asio::ip::tcp::endpoint& target, const std::string& host);
class I2PTunnelConnectionHTTP: public I2PTunnelConnection
{
public:
I2PTunnelConnectionHTTP (I2PService * owner, std::shared_ptr<i2p::stream::Stream> stream,
std::shared_ptr<boost::asio::ip::tcp::socket> socket,
const boost::asio::ip::tcp::endpoint& target, const std::string& host);
protected:
protected:
void Write (const uint8_t * buf, size_t len);
void Write (const uint8_t * buf, size_t len);
private:
std::string m_Host;
std::stringstream m_InHeader, m_OutHeader;
bool m_HeaderSent;
};
private:
std::string m_Host;
std::stringstream m_InHeader, m_OutHeader;
bool m_HeaderSent;
};
class I2PClientTunnel: public TCPIPAcceptor
{
protected:
class I2PClientTunnel: public TCPIPAcceptor
{
protected:
// Implements TCPIPAcceptor
std::shared_ptr<I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket);
const char* GetName() { return "I2P Client Tunnel"; }
// Implements TCPIPAcceptor
std::shared_ptr<I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket);
const char* GetName() { return "I2P Client Tunnel"; }
public:
public:
I2PClientTunnel (const std::string& destination, int port, std::shared_ptr<ClientDestination> localDestination, int destinationPort = 0);
~I2PClientTunnel () {}
void Start ();
void Stop ();
I2PClientTunnel (const std::string& destination, int port, std::shared_ptr<ClientDestination> localDestination, int destinationPort = 0);
~I2PClientTunnel () {}
void Start ();
void Stop ();
private:
private:
const i2p::data::IdentHash * GetIdentHash ();
const i2p::data::IdentHash * GetIdentHash ();
std::string m_Destination;
const i2p::data::IdentHash * m_DestinationIdentHash;
int m_DestinationPort;
};
std::string m_Destination;
const i2p::data::IdentHash * m_DestinationIdentHash;
int m_DestinationPort;
};
class I2PServerTunnel: public I2PService
{
public:
class I2PServerTunnel: public I2PService
{
public:
I2PServerTunnel (const std::string& address, int port,
std::shared_ptr<ClientDestination> localDestination, int inport = 0);
I2PServerTunnel (const std::string& address, int port,
std::shared_ptr<ClientDestination> localDestination, int inport = 0);
void Start ();
void Stop ();
void Start ();
void Stop ();
void SetAccessList (const std::set<i2p::data::IdentHash>& accessList);
void SetAccessList (const std::set<i2p::data::IdentHash>& accessList);
const std::string& GetAddress() const { return m_Address; }
int GetPort () const { return m_Port; };
const boost::asio::ip::tcp::endpoint& GetEndpoint () const { return m_Endpoint; }
const std::string& GetAddress() const { return m_Address; }
int GetPort () const { return m_Port; };
const boost::asio::ip::tcp::endpoint& GetEndpoint () const { return m_Endpoint; }
private:
private:
void HandleResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
std::shared_ptr<boost::asio::ip::tcp::resolver> resolver);
void HandleResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
std::shared_ptr<boost::asio::ip::tcp::resolver> resolver);
void Accept ();
void HandleAccept (std::shared_ptr<i2p::stream::Stream> stream);
virtual void CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream);
void Accept ();
void HandleAccept (std::shared_ptr<i2p::stream::Stream> stream);
virtual void CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream);
private:
private:
std::string m_Address;
int m_Port;
boost::asio::ip::tcp::endpoint m_Endpoint;
std::shared_ptr<i2p::stream::StreamingDestination> m_PortDestination;
std::set<i2p::data::IdentHash> m_AccessList;
bool m_IsAccessList;
};
std::string m_Address;
int m_Port;
boost::asio::ip::tcp::endpoint m_Endpoint;
std::shared_ptr<i2p::stream::StreamingDestination> m_PortDestination;
std::set<i2p::data::IdentHash> m_AccessList;
bool m_IsAccessList;
};
class I2PServerTunnelHTTP: public I2PServerTunnel
{
public:
class I2PServerTunnelHTTP: public I2PServerTunnel
{
public:
I2PServerTunnelHTTP (const std::string& address, int port,
std::shared_ptr<ClientDestination> localDestination, int inport = 0);
I2PServerTunnelHTTP (const std::string& address, int port,
std::shared_ptr<ClientDestination> localDestination, int inport = 0);
private:
private:
void CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream);
};
void CreateI2PConnection (std::shared_ptr<i2p::stream::Stream> stream);
};
}
}
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -13,261 +13,261 @@ namespace i2p
{
namespace data
{
template<int sz>
class Tag
{
public:
template<int sz>
class Tag
{
public:
Tag (const uint8_t * buf) { memcpy (m_Buf, buf, sz); };
Tag (const Tag<sz>& ) = default;
Tag (const uint8_t * buf) { memcpy (m_Buf, buf, sz); };
Tag (const Tag<sz>& ) = default;
#ifndef _WIN32 // FIXME!!! msvs 2013 can't compile it
Tag (Tag<sz>&& ) = default;
Tag (Tag<sz>&& ) = default;
#endif
Tag () = default;
Tag<sz>& operator= (const Tag<sz>& ) = default;
Tag () = default;
Tag<sz>& operator= (const Tag<sz>& ) = default;
#ifndef _WIN32
Tag<sz>& operator= (Tag<sz>&& ) = default;
Tag<sz>& operator= (Tag<sz>&& ) = default;
#endif
uint8_t * operator()() { return m_Buf; };
const uint8_t * operator()() const { return m_Buf; };
uint8_t * operator()() { return m_Buf; };
const uint8_t * operator()() const { return m_Buf; };
operator uint8_t * () { return m_Buf; };
operator const uint8_t * () const { return m_Buf; };
const uint64_t * GetLL () const { return ll; };
operator uint8_t * () { return m_Buf; };
operator const uint8_t * () const { return m_Buf; };
const uint64_t * GetLL () const { return ll; };
bool operator== (const Tag<sz>& other) const { return !memcmp (m_Buf, other.m_Buf, sz); };
bool operator< (const Tag<sz>& other) const { return memcmp (m_Buf, other.m_Buf, sz) < 0; };
bool operator== (const Tag<sz>& other) const { return !memcmp (m_Buf, other.m_Buf, sz); };
bool operator< (const Tag<sz>& other) const { return memcmp (m_Buf, other.m_Buf, sz) < 0; };
bool IsZero () const
{
for (int i = 0; i < sz/8; i++)
if (ll[i]) return false;
return true;
}
std::string ToBase64 () const
{
char str[sz*2];
int l = i2p::data::ByteStreamToBase64 (m_Buf, sz, str, sz*2);
str[l] = 0;
return std::string (str);
}
bool IsZero () const
{
for (int i = 0; i < sz/8; i++)
if (ll[i]) return false;
return true;
}
std::string ToBase64 () const
{
char str[sz*2];
int l = i2p::data::ByteStreamToBase64 (m_Buf, sz, str, sz*2);
str[l] = 0;
return std::string (str);
}
std::string ToBase32 () const
{
char str[sz*2];
int l = i2p::data::ByteStreamToBase32 (m_Buf, sz, str, sz*2);
str[l] = 0;
return std::string (str);
}
std::string ToBase32 () const
{
char str[sz*2];
int l = i2p::data::ByteStreamToBase32 (m_Buf, sz, str, sz*2);
str[l] = 0;
return std::string (str);
}
void FromBase32 (const std::string& s)
{
i2p::data::Base32ToByteStream (s.c_str (), s.length (), m_Buf, sz);
}
void FromBase32 (const std::string& s)
{
i2p::data::Base32ToByteStream (s.c_str (), s.length (), m_Buf, sz);
}
void FromBase64 (const std::string& s)
{
i2p::data::Base64ToByteStream (s.c_str (), s.length (), m_Buf, sz);
}
void FromBase64 (const std::string& s)
{
i2p::data::Base64ToByteStream (s.c_str (), s.length (), m_Buf, sz);
}
private:
private:
union // 8 bytes alignment
{
uint8_t m_Buf[sz];
uint64_t ll[sz/8];
};
};
typedef Tag<32> IdentHash;
union // 8 bytes alignment
{
uint8_t m_Buf[sz];
uint64_t ll[sz/8];
};
};
typedef Tag<32> IdentHash;
#pragma pack(1)
struct Keys
{
uint8_t privateKey[256];
uint8_t signingPrivateKey[20];
uint8_t publicKey[256];
uint8_t signingKey[128];
};
const uint8_t CERTIFICATE_TYPE_NULL = 0;
const uint8_t CERTIFICATE_TYPE_HASHCASH = 1;
const uint8_t CERTIFICATE_TYPE_HIDDEN = 2;
const uint8_t CERTIFICATE_TYPE_SIGNED = 3;
const uint8_t CERTIFICATE_TYPE_MULTIPLE = 4;
const uint8_t CERTIFICATE_TYPE_KEY = 5;
struct Keys
{
uint8_t privateKey[256];
uint8_t signingPrivateKey[20];
uint8_t publicKey[256];
uint8_t signingKey[128];
};
const uint8_t CERTIFICATE_TYPE_NULL = 0;
const uint8_t CERTIFICATE_TYPE_HASHCASH = 1;
const uint8_t CERTIFICATE_TYPE_HIDDEN = 2;
const uint8_t CERTIFICATE_TYPE_SIGNED = 3;
const uint8_t CERTIFICATE_TYPE_MULTIPLE = 4;
const uint8_t CERTIFICATE_TYPE_KEY = 5;
struct Identity
{
uint8_t publicKey[256];
uint8_t signingKey[128];
struct
{
uint8_t type;
uint16_t length;
} certificate;
struct Identity
{
uint8_t publicKey[256];
uint8_t signingKey[128];
struct
{
uint8_t type;
uint16_t length;
} certificate;
Identity () = default;
Identity (const Keys& keys) { *this = keys; };
Identity& operator=(const Keys& keys);
size_t FromBuffer (const uint8_t * buf, size_t len);
IdentHash Hash () const;
};
Identity () = default;
Identity (const Keys& keys) { *this = keys; };
Identity& operator=(const Keys& keys);
size_t FromBuffer (const uint8_t * buf, size_t len);
IdentHash Hash () const;
};
#pragma pack()
Keys CreateRandomKeys ();
const size_t DEFAULT_IDENTITY_SIZE = sizeof (Identity); // 387 bytes
const uint16_t CRYPTO_KEY_TYPE_ELGAMAL = 0;
const uint16_t SIGNING_KEY_TYPE_DSA_SHA1 = 0;
const uint16_t SIGNING_KEY_TYPE_ECDSA_SHA256_P256 = 1;
const uint16_t SIGNING_KEY_TYPE_ECDSA_SHA384_P384 = 2;
const uint16_t SIGNING_KEY_TYPE_ECDSA_SHA512_P521 = 3;
const uint16_t SIGNING_KEY_TYPE_RSA_SHA256_2048 = 4;
const uint16_t SIGNING_KEY_TYPE_RSA_SHA384_3072 = 5;
const uint16_t SIGNING_KEY_TYPE_RSA_SHA512_4096 = 6;
const uint16_t SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519 = 7;
typedef uint16_t SigningKeyType;
typedef uint16_t CryptoKeyType;
class IdentityEx
{
public:
Keys CreateRandomKeys ();
const size_t DEFAULT_IDENTITY_SIZE = sizeof (Identity); // 387 bytes
const uint16_t CRYPTO_KEY_TYPE_ELGAMAL = 0;
const uint16_t SIGNING_KEY_TYPE_DSA_SHA1 = 0;
const uint16_t SIGNING_KEY_TYPE_ECDSA_SHA256_P256 = 1;
const uint16_t SIGNING_KEY_TYPE_ECDSA_SHA384_P384 = 2;
const uint16_t SIGNING_KEY_TYPE_ECDSA_SHA512_P521 = 3;
const uint16_t SIGNING_KEY_TYPE_RSA_SHA256_2048 = 4;
const uint16_t SIGNING_KEY_TYPE_RSA_SHA384_3072 = 5;
const uint16_t SIGNING_KEY_TYPE_RSA_SHA512_4096 = 6;
const uint16_t SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519 = 7;
typedef uint16_t SigningKeyType;
typedef uint16_t CryptoKeyType;
class IdentityEx
{
public:
IdentityEx ();
IdentityEx (const uint8_t * publicKey, const uint8_t * signingKey,
SigningKeyType type = SIGNING_KEY_TYPE_DSA_SHA1);
IdentityEx (const uint8_t * buf, size_t len);
IdentityEx (const IdentityEx& other);
~IdentityEx ();
IdentityEx& operator=(const IdentityEx& other);
IdentityEx& operator=(const Identity& standard);
IdentityEx ();
IdentityEx (const uint8_t * publicKey, const uint8_t * signingKey,
SigningKeyType type = SIGNING_KEY_TYPE_DSA_SHA1);
IdentityEx (const uint8_t * buf, size_t len);
IdentityEx (const IdentityEx& other);
~IdentityEx ();
IdentityEx& operator=(const IdentityEx& other);
IdentityEx& operator=(const Identity& standard);
size_t FromBuffer (const uint8_t * buf, size_t len);
size_t ToBuffer (uint8_t * buf, size_t len) const;
size_t FromBase64(const std::string& s);
std::string ToBase64 () const;
const Identity& GetStandardIdentity () const { return m_StandardIdentity; };
const IdentHash& GetIdentHash () const { return m_IdentHash; };
size_t GetFullLen () const { return m_ExtendedLen + DEFAULT_IDENTITY_SIZE; };
size_t GetSigningPublicKeyLen () const;
size_t GetSigningPrivateKeyLen () const;
size_t GetSignatureLen () const;
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const;
SigningKeyType GetSigningKeyType () const;
CryptoKeyType GetCryptoKeyType () const;
void DropVerifier (); // to save memory
size_t FromBuffer (const uint8_t * buf, size_t len);
size_t ToBuffer (uint8_t * buf, size_t len) const;
size_t FromBase64(const std::string& s);
std::string ToBase64 () const;
const Identity& GetStandardIdentity () const { return m_StandardIdentity; };
const IdentHash& GetIdentHash () const { return m_IdentHash; };
size_t GetFullLen () const { return m_ExtendedLen + DEFAULT_IDENTITY_SIZE; };
size_t GetSigningPublicKeyLen () const;
size_t GetSigningPrivateKeyLen () const;
size_t GetSignatureLen () const;
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const;
SigningKeyType GetSigningKeyType () const;
CryptoKeyType GetCryptoKeyType () const;
void DropVerifier (); // to save memory
private:
private:
void CreateVerifier () const;
private:
void CreateVerifier () const;
private:
Identity m_StandardIdentity;
IdentHash m_IdentHash;
mutable i2p::crypto::Verifier * m_Verifier;
size_t m_ExtendedLen;
uint8_t * m_ExtendedBuffer;
};
class PrivateKeys // for eepsites
{
public:
PrivateKeys (): m_Signer (nullptr) {};
PrivateKeys (const PrivateKeys& other): m_Signer (nullptr) { *this = other; };
PrivateKeys (const Keys& keys): m_Signer (nullptr) { *this = keys; };
PrivateKeys& operator=(const Keys& keys);
PrivateKeys& operator=(const PrivateKeys& other);
~PrivateKeys () { delete m_Signer; };
const IdentityEx& GetPublic () const { return m_Public; };
const uint8_t * GetPrivateKey () const { return m_PrivateKey; };
const uint8_t * GetSigningPrivateKey () const { return m_SigningPrivateKey; };
void Sign (const uint8_t * buf, int len, uint8_t * signature) const;
Identity m_StandardIdentity;
IdentHash m_IdentHash;
mutable i2p::crypto::Verifier * m_Verifier;
size_t m_ExtendedLen;
uint8_t * m_ExtendedBuffer;
};
class PrivateKeys // for eepsites
{
public:
PrivateKeys (): m_Signer (nullptr) {};
PrivateKeys (const PrivateKeys& other): m_Signer (nullptr) { *this = other; };
PrivateKeys (const Keys& keys): m_Signer (nullptr) { *this = keys; };
PrivateKeys& operator=(const Keys& keys);
PrivateKeys& operator=(const PrivateKeys& other);
~PrivateKeys () { delete m_Signer; };
const IdentityEx& GetPublic () const { return m_Public; };
const uint8_t * GetPrivateKey () const { return m_PrivateKey; };
const uint8_t * GetSigningPrivateKey () const { return m_SigningPrivateKey; };
void Sign (const uint8_t * buf, int len, uint8_t * signature) const;
size_t GetFullLen () const { return m_Public.GetFullLen () + 256 + m_Public.GetSigningPrivateKeyLen (); };
size_t FromBuffer (const uint8_t * buf, size_t len);
size_t ToBuffer (uint8_t * buf, size_t len) const;
size_t GetFullLen () const { return m_Public.GetFullLen () + 256 + m_Public.GetSigningPrivateKeyLen (); };
size_t FromBuffer (const uint8_t * buf, size_t len);
size_t ToBuffer (uint8_t * buf, size_t len) const;
size_t FromBase64(const std::string& s);
std::string ToBase64 () const;
size_t FromBase64(const std::string& s);
std::string ToBase64 () const;
static PrivateKeys CreateRandomKeys (SigningKeyType type = SIGNING_KEY_TYPE_DSA_SHA1);
private:
static PrivateKeys CreateRandomKeys (SigningKeyType type = SIGNING_KEY_TYPE_DSA_SHA1);
private:
void CreateSigner ();
private:
void CreateSigner ();
private:
IdentityEx m_Public;
uint8_t m_PrivateKey[256];
uint8_t m_SigningPrivateKey[1024]; // assume private key doesn't exceed 1024 bytes
i2p::crypto::Signer * m_Signer;
};
IdentityEx m_Public;
uint8_t m_PrivateKey[256];
uint8_t m_SigningPrivateKey[1024]; // assume private key doesn't exceed 1024 bytes
i2p::crypto::Signer * m_Signer;
};
// kademlia
struct XORMetric
{
union
{
uint8_t metric[32];
uint64_t metric_ll[4];
};
// kademlia
struct XORMetric
{
union
{
uint8_t metric[32];
uint64_t metric_ll[4];
};
void SetMin () { memset (metric, 0, 32); };
void SetMax () { memset (metric, 0xFF, 32); };
bool operator< (const XORMetric& other) const { return memcmp (metric, other.metric, 32) < 0; };
};
void SetMin () { memset (metric, 0, 32); };
void SetMax () { memset (metric, 0xFF, 32); };
bool operator< (const XORMetric& other) const { return memcmp (metric, other.metric, 32) < 0; };
};
IdentHash CreateRoutingKey (const IdentHash& ident);
XORMetric operator^(const IdentHash& key1, const IdentHash& key2);
// destination for delivery instuctions
class RoutingDestination
{
public:
IdentHash CreateRoutingKey (const IdentHash& ident);
XORMetric operator^(const IdentHash& key1, const IdentHash& key2);
// destination for delivery instuctions
class RoutingDestination
{
public:
RoutingDestination () {};
virtual ~RoutingDestination () {};
virtual const IdentHash& GetIdentHash () const = 0;
virtual const uint8_t * GetEncryptionPublicKey () const = 0;
virtual bool IsDestination () const = 0; // for garlic
RoutingDestination () {};
virtual ~RoutingDestination () {};
virtual const IdentHash& GetIdentHash () const = 0;
virtual const uint8_t * GetEncryptionPublicKey () const = 0;
virtual bool IsDestination () const = 0; // for garlic
std::unique_ptr<const i2p::crypto::ElGamalEncryption>& GetElGamalEncryption () const
{
if (!m_ElGamalEncryption)
m_ElGamalEncryption.reset (new i2p::crypto::ElGamalEncryption (GetEncryptionPublicKey ()));
return m_ElGamalEncryption;
}
private:
std::unique_ptr<const i2p::crypto::ElGamalEncryption>& GetElGamalEncryption () const
{
if (!m_ElGamalEncryption)
m_ElGamalEncryption.reset (new i2p::crypto::ElGamalEncryption (GetEncryptionPublicKey ()));
return m_ElGamalEncryption;
}
private:
mutable std::unique_ptr<const i2p::crypto::ElGamalEncryption> m_ElGamalEncryption; // use lazy initialization
};
mutable std::unique_ptr<const i2p::crypto::ElGamalEncryption> m_ElGamalEncryption; // use lazy initialization
};
class LocalDestination
{
public:
class LocalDestination
{
public:
virtual ~LocalDestination() {};
virtual const PrivateKeys& GetPrivateKeys () const = 0;
virtual const uint8_t * GetEncryptionPrivateKey () const = 0;
virtual const uint8_t * GetEncryptionPublicKey () const = 0;
virtual ~LocalDestination() {};
virtual const PrivateKeys& GetPrivateKeys () const = 0;
virtual const uint8_t * GetEncryptionPrivateKey () const = 0;
virtual const uint8_t * GetEncryptionPublicKey () const = 0;
const IdentityEx& GetIdentity () const { return GetPrivateKeys ().GetPublic (); };
const IdentHash& GetIdentHash () const { return GetIdentity ().GetIdentHash (); };
void Sign (const uint8_t * buf, int len, uint8_t * signature) const
{
GetPrivateKeys ().Sign (buf, len, signature);
};
};
const IdentityEx& GetIdentity () const { return GetPrivateKeys ().GetPublic (); };
const IdentHash& GetIdentHash () const { return GetIdentity ().GetIdentHash (); };
void Sign (const uint8_t * buf, int len, uint8_t * signature) const
{
GetPrivateKeys ().Sign (buf, len, signature);
};
};
}
}

View file

@ -13,145 +13,145 @@ namespace i2p
{
namespace data
{
LeaseSet::LeaseSet (const uint8_t * buf, size_t len):
m_IsValid (true)
{
m_Buffer = new uint8_t[len];
memcpy (m_Buffer, buf, len);
m_BufferLen = len;
ReadFromBuffer ();
}
LeaseSet::LeaseSet (const uint8_t * buf, size_t len):
m_IsValid (true)
{
m_Buffer = new uint8_t[len];
memcpy (m_Buffer, buf, len);
m_BufferLen = len;
ReadFromBuffer ();
}
LeaseSet::LeaseSet (const i2p::tunnel::TunnelPool& pool):
m_IsValid (true)
{
// header
const i2p::data::LocalDestination * localDestination = pool.GetLocalDestination ();
if (!localDestination)
{
m_Buffer = nullptr;
m_BufferLen = 0;
m_IsValid = false;
LogPrint (eLogError, "Destination for local LeaseSet doesn't exist");
return;
}
m_Buffer = new uint8_t[MAX_LS_BUFFER_SIZE];
m_BufferLen = localDestination->GetIdentity ().ToBuffer (m_Buffer, MAX_LS_BUFFER_SIZE);
memcpy (m_Buffer + m_BufferLen, localDestination->GetEncryptionPublicKey (), 256);
m_BufferLen += 256;
auto signingKeyLen = localDestination->GetIdentity ().GetSigningPublicKeyLen ();
memset (m_Buffer + m_BufferLen, 0, signingKeyLen);
m_BufferLen += signingKeyLen;
auto tunnels = pool.GetInboundTunnels (5); // 5 tunnels maximum
m_Buffer[m_BufferLen] = tunnels.size (); // num leases
m_BufferLen++;
// leases
CryptoPP::AutoSeededRandomPool rnd;
for (auto it: tunnels)
{
memcpy (m_Buffer + m_BufferLen, it->GetNextIdentHash (), 32);
m_BufferLen += 32; // gateway id
htobe32buf (m_Buffer + m_BufferLen, it->GetNextTunnelID ());
m_BufferLen += 4; // tunnel id
uint64_t ts = it->GetCreationTime () + i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT - i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD; // 1 minute before expiration
ts *= 1000; // in milliseconds
ts += rnd.GenerateWord32 (0, 5); // + random milliseconds
htobe64buf (m_Buffer + m_BufferLen, ts);
m_BufferLen += 8; // end date
}
// signature
localDestination->Sign (m_Buffer, m_BufferLen, m_Buffer + m_BufferLen);
m_BufferLen += localDestination->GetIdentity ().GetSignatureLen ();
LogPrint ("Local LeaseSet of ", tunnels.size (), " leases created");
LeaseSet::LeaseSet (const i2p::tunnel::TunnelPool& pool):
m_IsValid (true)
{
// header
const i2p::data::LocalDestination * localDestination = pool.GetLocalDestination ();
if (!localDestination)
{
m_Buffer = nullptr;
m_BufferLen = 0;
m_IsValid = false;
LogPrint (eLogError, "Destination for local LeaseSet doesn't exist");
return;
}
m_Buffer = new uint8_t[MAX_LS_BUFFER_SIZE];
m_BufferLen = localDestination->GetIdentity ().ToBuffer (m_Buffer, MAX_LS_BUFFER_SIZE);
memcpy (m_Buffer + m_BufferLen, localDestination->GetEncryptionPublicKey (), 256);
m_BufferLen += 256;
auto signingKeyLen = localDestination->GetIdentity ().GetSigningPublicKeyLen ();
memset (m_Buffer + m_BufferLen, 0, signingKeyLen);
m_BufferLen += signingKeyLen;
auto tunnels = pool.GetInboundTunnels (5); // 5 tunnels maximum
m_Buffer[m_BufferLen] = tunnels.size (); // num leases
m_BufferLen++;
// leases
CryptoPP::AutoSeededRandomPool rnd;
for (auto it: tunnels)
{
memcpy (m_Buffer + m_BufferLen, it->GetNextIdentHash (), 32);
m_BufferLen += 32; // gateway id
htobe32buf (m_Buffer + m_BufferLen, it->GetNextTunnelID ());
m_BufferLen += 4; // tunnel id
uint64_t ts = it->GetCreationTime () + i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT - i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD; // 1 minute before expiration
ts *= 1000; // in milliseconds
ts += rnd.GenerateWord32 (0, 5); // + random milliseconds
htobe64buf (m_Buffer + m_BufferLen, ts);
m_BufferLen += 8; // end date
}
// signature
localDestination->Sign (m_Buffer, m_BufferLen, m_Buffer + m_BufferLen);
m_BufferLen += localDestination->GetIdentity ().GetSignatureLen ();
LogPrint ("Local LeaseSet of ", tunnels.size (), " leases created");
ReadFromBuffer ();
}
ReadFromBuffer ();
}
void LeaseSet::Update (const uint8_t * buf, size_t len)
{
m_Leases.clear ();
if (len > m_BufferLen)
{
auto oldBuffer = m_Buffer;
m_Buffer = new uint8_t[len];
delete[] oldBuffer;
}
memcpy (m_Buffer, buf, len);
m_BufferLen = len;
ReadFromBuffer ();
}
void LeaseSet::ReadFromBuffer ()
{
size_t size = m_Identity.FromBuffer (m_Buffer, m_BufferLen);
memcpy (m_EncryptionKey, m_Buffer + size, 256);
size += 256; // encryption key
size += m_Identity.GetSigningPublicKeyLen (); // unused signing key
uint8_t num = m_Buffer[size];
size++; // num
LogPrint ("LeaseSet num=", (int)num);
if (!num) m_IsValid = false;
void LeaseSet::Update (const uint8_t * buf, size_t len)
{
m_Leases.clear ();
if (len > m_BufferLen)
{
auto oldBuffer = m_Buffer;
m_Buffer = new uint8_t[len];
delete[] oldBuffer;
}
memcpy (m_Buffer, buf, len);
m_BufferLen = len;
ReadFromBuffer ();
}
void LeaseSet::ReadFromBuffer ()
{
size_t size = m_Identity.FromBuffer (m_Buffer, m_BufferLen);
memcpy (m_EncryptionKey, m_Buffer + size, 256);
size += 256; // encryption key
size += m_Identity.GetSigningPublicKeyLen (); // unused signing key
uint8_t num = m_Buffer[size];
size++; // num
LogPrint ("LeaseSet num=", (int)num);
if (!num) m_IsValid = false;
// process leases
const uint8_t * leases = m_Buffer + size;
for (int i = 0; i < num; i++)
{
Lease lease;
lease.tunnelGateway = leases;
leases += 32; // gateway
lease.tunnelID = bufbe32toh (leases);
leases += 4; // tunnel ID
lease.endDate = bufbe64toh (leases);
leases += 8; // end date
m_Leases.push_back (lease);
// process leases
const uint8_t * leases = m_Buffer + size;
for (int i = 0; i < num; i++)
{
Lease lease;
lease.tunnelGateway = leases;
leases += 32; // gateway
lease.tunnelID = bufbe32toh (leases);
leases += 4; // tunnel ID
lease.endDate = bufbe64toh (leases);
leases += 8; // end date
m_Leases.push_back (lease);
// check if lease's gateway is in our netDb
if (!netdb.FindRouter (lease.tunnelGateway))
{
// if not found request it
LogPrint (eLogInfo, "Lease's tunnel gateway not found. Requested");
netdb.RequestDestination (lease.tunnelGateway);
}
}
// verify
if (!m_Identity.Verify (m_Buffer, leases - m_Buffer, leases))
{
LogPrint (eLogWarning, "LeaseSet verification failed");
m_IsValid = false;
}
}
const std::vector<Lease> LeaseSet::GetNonExpiredLeases (bool withThreshold) const
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
std::vector<Lease> leases;
for (auto& it: m_Leases)
{
auto endDate = it.endDate;
if (!withThreshold)
endDate -= i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD*1000;
if (ts < endDate)
leases.push_back (it);
}
return leases;
}
// check if lease's gateway is in our netDb
if (!netdb.FindRouter (lease.tunnelGateway))
{
// if not found request it
LogPrint (eLogInfo, "Lease's tunnel gateway not found. Requested");
netdb.RequestDestination (lease.tunnelGateway);
}
}
// verify
if (!m_Identity.Verify (m_Buffer, leases - m_Buffer, leases))
{
LogPrint (eLogWarning, "LeaseSet verification failed");
m_IsValid = false;
}
}
const std::vector<Lease> LeaseSet::GetNonExpiredLeases (bool withThreshold) const
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
std::vector<Lease> leases;
for (auto& it: m_Leases)
{
auto endDate = it.endDate;
if (!withThreshold)
endDate -= i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD*1000;
if (ts < endDate)
leases.push_back (it);
}
return leases;
}
bool LeaseSet::HasExpiredLeases () const
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
for (auto& it: m_Leases)
if (ts >= it.endDate) return true;
return false;
}
bool LeaseSet::HasExpiredLeases () const
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
for (auto& it: m_Leases)
if (ts >= it.endDate) return true;
return false;
}
bool LeaseSet::HasNonExpiredLeases () const
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
for (auto& it: m_Leases)
if (ts < it.endDate) return true;
return false;
}
}
}
bool LeaseSet::HasNonExpiredLeases () const
{
auto ts = i2p::util::GetMillisecondsSinceEpoch ();
for (auto& it: m_Leases)
if (ts < it.endDate) return true;
return false;
}
}
}

View file

@ -11,64 +11,64 @@ namespace i2p
namespace tunnel
{
class TunnelPool;
class TunnelPool;
}
namespace data
{
struct Lease
{
IdentHash tunnelGateway;
uint32_t tunnelID;
uint64_t endDate;
{
struct Lease
{
IdentHash tunnelGateway;
uint32_t tunnelID;
uint64_t endDate;
bool operator< (const Lease& other) const
{
if (endDate != other.endDate)
return endDate > other.endDate;
else
return tunnelID < other.tunnelID;
}
};
bool operator< (const Lease& other) const
{
if (endDate != other.endDate)
return endDate > other.endDate;
else
return tunnelID < other.tunnelID;
}
};
const int MAX_LS_BUFFER_SIZE = 3072;
class LeaseSet: public RoutingDestination
{
public:
const int MAX_LS_BUFFER_SIZE = 3072;
class LeaseSet: public RoutingDestination
{
public:
LeaseSet (const uint8_t * buf, size_t len);
LeaseSet (const i2p::tunnel::TunnelPool& pool);
~LeaseSet () { delete[] m_Buffer; };
void Update (const uint8_t * buf, size_t len);
const IdentityEx& GetIdentity () const { return m_Identity; };
LeaseSet (const uint8_t * buf, size_t len);
LeaseSet (const i2p::tunnel::TunnelPool& pool);
~LeaseSet () { delete[] m_Buffer; };
void Update (const uint8_t * buf, size_t len);
const IdentityEx& GetIdentity () const { return m_Identity; };
const uint8_t * GetBuffer () const { return m_Buffer; };
size_t GetBufferLen () const { return m_BufferLen; };
bool IsValid () const { return m_IsValid; };
const uint8_t * GetBuffer () const { return m_Buffer; };
size_t GetBufferLen () const { return m_BufferLen; };
bool IsValid () const { return m_IsValid; };
// implements RoutingDestination
const IdentHash& GetIdentHash () const { return m_Identity.GetIdentHash (); };
const std::vector<Lease>& GetLeases () const { return m_Leases; };
const std::vector<Lease> GetNonExpiredLeases (bool withThreshold = true) const;
bool HasExpiredLeases () const;
bool HasNonExpiredLeases () const;
const uint8_t * GetEncryptionPublicKey () const { return m_EncryptionKey; };
bool IsDestination () const { return true; };
// implements RoutingDestination
const IdentHash& GetIdentHash () const { return m_Identity.GetIdentHash (); };
const std::vector<Lease>& GetLeases () const { return m_Leases; };
const std::vector<Lease> GetNonExpiredLeases (bool withThreshold = true) const;
bool HasExpiredLeases () const;
bool HasNonExpiredLeases () const;
const uint8_t * GetEncryptionPublicKey () const { return m_EncryptionKey; };
bool IsDestination () const { return true; };
private:
private:
void ReadFromBuffer ();
private:
void ReadFromBuffer ();
private:
bool m_IsValid;
std::vector<Lease> m_Leases;
IdentityEx m_Identity;
uint8_t m_EncryptionKey[256];
uint8_t * m_Buffer;
size_t m_BufferLen;
};
}
}
bool m_IsValid;
std::vector<Lease> m_Leases;
IdentityEx m_Identity;
uint8_t m_EncryptionKey[256];
uint8_t * m_Buffer;
size_t m_BufferLen;
};
}
}
#endif

View file

@ -59,12 +59,12 @@ struct LittleEndian
return t;
}
const T operator = (const T t)
{
for (unsigned i = 0; i < sizeof(T); i++)
bytes[sizeof(T)-1 - i] = static_cast<unsigned char>(t >> (i << 3));
return t;
}
const T operator = (const T t)
{
for (unsigned i = 0; i < sizeof(T); i++)
bytes[sizeof(T)-1 - i] = static_cast<unsigned char>(t >> (i << 3));
return t;
}
// operators

View file

@ -43,8 +43,8 @@ const std::string& Log::GetTimestamp ()
void Log::Flush ()
{
if (m_LogStream)
m_LogStream->flush();
if (m_LogStream)
m_LogStream->flush();
}
void Log::SetLogFile (const std::string& fullFilePath)

16
Log.h
View file

@ -32,19 +32,19 @@ struct LogMsg
class Log: public i2p::util::MsgQueue<LogMsg>
{
public:
public:
Log (): m_LogStream (nullptr) { SetOnEmpty (std::bind (&Log::Flush, this)); };
~Log () { delete m_LogStream; };
Log (): m_LogStream (nullptr) { SetOnEmpty (std::bind (&Log::Flush, this)); };
~Log () { delete m_LogStream; };
void SetLogFile (const std::string& fullFilePath);
void SetLogStream (std::ostream * logStream);
std::ostream * GetLogStream () const { return m_LogStream; };
const std::string& GetTimestamp ();
private:
private:
void Flush ();
void Flush ();
private:
@ -99,14 +99,14 @@ inline void StopLog ()
template<typename TValue>
void LogPrint (std::stringstream& s, TValue arg)
{
s << arg;
s << arg;
}
template<typename TValue, typename... TArgs>
void LogPrint (std::stringstream& s, TValue arg, TArgs... args)
{
LogPrint (s, arg);
LogPrint (s, args...);
LogPrint (s, arg);
LogPrint (s, args...);
}
template<typename... TArgs>

View file

@ -1,6 +1,7 @@
UNAME := $(shell uname -s)
SHLIB := libi2pd.so
I2PD := i2p
TESTS := tests/tests
GREP := fgrep
DEPS := obj/make.dep
@ -22,10 +23,11 @@ else # win32
DAEMON_SRC += DaemonWin32.cpp
endif
all: mk_build_dir $(SHLIB) $(I2PD)
all: mk_build_dir $(SHLIB) $(I2PD) $(TESTS)
mk_build_dir:
mkdir -p obj
mkdir -p obj/tests
api: $(SHLIB)
@ -38,11 +40,13 @@ api: $(SHLIB)
deps:
@mkdir -p obj
@mkdir -p obj/tests
$(CXX) $(CXXFLAGS) $(NEEDED_CXXFLAGS) -MM *.cpp > $(DEPS)
@sed -i -e '/\.o:/ s/^/obj\//' $(DEPS)
obj/%.o : %.cpp
@mkdir -p obj
@mkdir -p obj/tests
$(CXX) $(CXXFLAGS) $(NEEDED_CXXFLAGS) $(INCFLAGS) $(CPU_FLAGS) -c -o $@ $<
# '-' is 'ignore if missing' on first run
@ -56,9 +60,13 @@ ifneq ($(USE_STATIC),yes)
$(CXX) $(LDFLAGS) $(LDLIBS) -shared -o $@ $^
endif
$(TESTS): $(patsubst %.cpp,obj/%.o,$(TESTS_SRC))
$(CXX) -o $@ $^ $(LDLIBS) $(LDTESTLIBS) $(LDFLAGS)
clean:
rm -rf obj
$(RM) $(I2PD) $(SHLIB)
$(RM) $(I2PD) $(SHLIB) $(TESTS)
LATEST_TAG=$(shell git describe --tags --abbrev=0 master)
dist:

View file

@ -10,3 +10,4 @@ NEEDED_CXXFLAGS = -std=c++11
INCFLAGS = -I/usr/include/ -I/usr/local/include/
LDFLAGS = -Wl,-rpath,/usr/local/lib -L/usr/local/lib
LDLIBS = -lcryptopp -lboost_system -lboost_date_time -lboost_filesystem -lboost_regex -lboost_program_options -lpthread
LDTESTLIBS = -lboost_unit_test_framework

View file

@ -40,6 +40,9 @@ else
LDLIBS = -lcryptopp -lboost_system -lboost_date_time -lboost_filesystem -lboost_regex -lboost_program_options -lpthread
endif
# Always link with test framework dynamically
LDTESTLIBS = -lboost_unit_test_framework
# UPNP Support (miniupnpc 1.5 or 1.6)
ifeq ($(USE_UPNP),1)
LDFLAGS += -ldl

View file

@ -4,6 +4,7 @@ CXXFLAGS = -g -Wall -std=c++11 -DCRYPTOPP_DISABLE_ASM -DMAC_OSX
INCFLAGS = -I/usr/local/include
LDFLAGS = -Wl,-rpath,/usr/local/lib -L/usr/local/lib
LDLIBS = -lcryptopp -lboost_system -lboost_date_time -lboost_filesystem -lboost_regex -lboost_program_options -lpthread
LDTESTLIBS = -lboost_unit_test_framework
ifeq ($(USE_UPNP),1)
LDFLAGS += -ldl

File diff suppressed because it is too large Load diff

View file

@ -21,163 +21,163 @@ namespace transport
{
#pragma pack(1)
struct NTCPPhase1
{
uint8_t pubKey[256];
uint8_t HXxorHI[32];
};
struct NTCPPhase2
{
uint8_t pubKey[256];
struct
{
uint8_t hxy[32];
uint32_t timestamp;
uint8_t filler[12];
} encrypted;
};
#pragma pack()
struct NTCPPhase1
{
uint8_t pubKey[256];
uint8_t HXxorHI[32];
};
struct NTCPPhase2
{
uint8_t pubKey[256];
struct
{
uint8_t hxy[32];
uint32_t timestamp;
uint8_t filler[12];
} encrypted;
};
#pragma pack()
const size_t NTCP_MAX_MESSAGE_SIZE = 16384;
const size_t NTCP_BUFFER_SIZE = 4160; // fits 4 tunnel messages (4*1028)
const int NTCP_TERMINATION_TIMEOUT = 120; // 2 minutes
const size_t NTCP_DEFAULT_PHASE3_SIZE = 2/*size*/ + i2p::data::DEFAULT_IDENTITY_SIZE/*387*/ + 4/*ts*/ + 15/*padding*/ + 40/*signature*/; // 448
const int NTCP_BAN_EXPIRATION_TIMEOUT = 70; // in second
const size_t NTCP_MAX_MESSAGE_SIZE = 16384;
const size_t NTCP_BUFFER_SIZE = 4160; // fits 4 tunnel messages (4*1028)
const int NTCP_TERMINATION_TIMEOUT = 120; // 2 minutes
const size_t NTCP_DEFAULT_PHASE3_SIZE = 2/*size*/ + i2p::data::DEFAULT_IDENTITY_SIZE/*387*/ + 4/*ts*/ + 15/*padding*/ + 40/*signature*/; // 448
const int NTCP_BAN_EXPIRATION_TIMEOUT = 70; // in second
class NTCPServer;
class NTCPSession: public TransportSession, public std::enable_shared_from_this<NTCPSession>
{
public:
class NTCPServer;
class NTCPSession: public TransportSession, public std::enable_shared_from_this<NTCPSession>
{
public:
NTCPSession (NTCPServer& server, std::shared_ptr<const i2p::data::RouterInfo> in_RemoteRouter = nullptr);
~NTCPSession ();
void Terminate ();
void Done ();
NTCPSession (NTCPServer& server, std::shared_ptr<const i2p::data::RouterInfo> in_RemoteRouter = nullptr);
~NTCPSession ();
void Terminate ();
void Done ();
boost::asio::ip::tcp::socket& GetSocket () { return m_Socket; };
bool IsEstablished () const { return m_IsEstablished; };
void ClientLogin ();
void ServerLogin ();
void SendI2NPMessages (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
private:
boost::asio::ip::tcp::socket& GetSocket () { return m_Socket; };
bool IsEstablished () const { return m_IsEstablished; };
void ClientLogin ();
void ServerLogin ();
void SendI2NPMessages (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
private:
void PostI2NPMessages (std::vector<std::shared_ptr<I2NPMessage> > msgs);
void Connected ();
void SendTimeSyncMessage ();
void SetIsEstablished (bool isEstablished) { m_IsEstablished = isEstablished; }
void PostI2NPMessages (std::vector<std::shared_ptr<I2NPMessage> > msgs);
void Connected ();
void SendTimeSyncMessage ();
void SetIsEstablished (bool isEstablished) { m_IsEstablished = isEstablished; }
void CreateAESKey (uint8_t * pubKey, i2p::crypto::AESKey& key);
// client
void SendPhase3 ();
void HandlePhase1Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandlePhase2Received (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandlePhase3Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsA);
void HandlePhase4Received (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsA);
void CreateAESKey (uint8_t * pubKey, i2p::crypto::AESKey& key);
// client
void SendPhase3 ();
void HandlePhase1Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandlePhase2Received (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandlePhase3Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsA);
void HandlePhase4Received (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsA);
//server
void SendPhase2 ();
void SendPhase4 (uint32_t tsA, uint32_t tsB);
void HandlePhase1Received (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandlePhase2Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsB);
void HandlePhase3Received (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsB);
void HandlePhase3ExtraReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsB, size_t paddingLen);
void HandlePhase3 (uint32_t tsB, size_t paddingLen);
void HandlePhase4Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
// common
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
bool DecryptNextBlock (const uint8_t * encrypted);
void Send (std::shared_ptr<i2p::I2NPMessage> msg);
boost::asio::const_buffers_1 CreateMsgBuffer (std::shared_ptr<I2NPMessage> msg);
void Send (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
void HandleSent (const boost::system::error_code& ecode, std::size_t bytes_transferred, std::vector<std::shared_ptr<I2NPMessage> > msgs);
// timer
void ScheduleTermination ();
void HandleTerminationTimer (const boost::system::error_code& ecode);
private:
//server
void SendPhase2 ();
void SendPhase4 (uint32_t tsA, uint32_t tsB);
void HandlePhase1Received (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandlePhase2Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsB);
void HandlePhase3Received (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsB);
void HandlePhase3ExtraReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred, uint32_t tsB, size_t paddingLen);
void HandlePhase3 (uint32_t tsB, size_t paddingLen);
void HandlePhase4Sent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
// common
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
bool DecryptNextBlock (const uint8_t * encrypted);
void Send (std::shared_ptr<i2p::I2NPMessage> msg);
boost::asio::const_buffers_1 CreateMsgBuffer (std::shared_ptr<I2NPMessage> msg);
void Send (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
void HandleSent (const boost::system::error_code& ecode, std::size_t bytes_transferred, std::vector<std::shared_ptr<I2NPMessage> > msgs);
// timer
void ScheduleTermination ();
void HandleTerminationTimer (const boost::system::error_code& ecode);
private:
NTCPServer& m_Server;
boost::asio::ip::tcp::socket m_Socket;
boost::asio::deadline_timer m_TerminationTimer;
bool m_IsEstablished, m_IsTerminated;
i2p::crypto::CBCDecryption m_Decryption;
i2p::crypto::CBCEncryption m_Encryption;
NTCPServer& m_Server;
boost::asio::ip::tcp::socket m_Socket;
boost::asio::deadline_timer m_TerminationTimer;
bool m_IsEstablished, m_IsTerminated;
i2p::crypto::CBCDecryption m_Decryption;
i2p::crypto::CBCEncryption m_Encryption;
struct Establisher
{
NTCPPhase1 phase1;
NTCPPhase2 phase2;
} * m_Establisher;
i2p::crypto::AESAlignedBuffer<NTCP_BUFFER_SIZE + 16> m_ReceiveBuffer;
i2p::crypto::AESAlignedBuffer<16> m_TimeSyncBuffer;
int m_ReceiveBufferOffset;
struct Establisher
{
NTCPPhase1 phase1;
NTCPPhase2 phase2;
} * m_Establisher;
i2p::crypto::AESAlignedBuffer<NTCP_BUFFER_SIZE + 16> m_ReceiveBuffer;
i2p::crypto::AESAlignedBuffer<16> m_TimeSyncBuffer;
int m_ReceiveBufferOffset;
std::shared_ptr<I2NPMessage> m_NextMessage;
size_t m_NextMessageOffset;
i2p::I2NPMessagesHandler m_Handler;
std::shared_ptr<I2NPMessage> m_NextMessage;
size_t m_NextMessageOffset;
i2p::I2NPMessagesHandler m_Handler;
bool m_IsSending;
std::vector<std::shared_ptr<I2NPMessage> > m_SendQueue;
boost::asio::ip::address m_ConnectedFrom; // for ban
};
bool m_IsSending;
std::vector<std::shared_ptr<I2NPMessage> > m_SendQueue;
boost::asio::ip::address m_ConnectedFrom; // for ban
};
// TODO: move to NTCP.h/.cpp
class NTCPServer
{
public:
// TODO: move to NTCP.h/.cpp
class NTCPServer
{
public:
NTCPServer (int port);
~NTCPServer ();
NTCPServer (int port);
~NTCPServer ();
void Start ();
void Stop ();
void Start ();
void Stop ();
void AddNTCPSession (std::shared_ptr<NTCPSession> session);
void RemoveNTCPSession (std::shared_ptr<NTCPSession> session);
std::shared_ptr<NTCPSession> FindNTCPSession (const i2p::data::IdentHash& ident);
void Connect (const boost::asio::ip::address& address, int port, std::shared_ptr<NTCPSession> conn);
boost::asio::io_service& GetService () { return m_Service; };
void Ban (const boost::asio::ip::address& addr);
void AddNTCPSession (std::shared_ptr<NTCPSession> session);
void RemoveNTCPSession (std::shared_ptr<NTCPSession> session);
std::shared_ptr<NTCPSession> FindNTCPSession (const i2p::data::IdentHash& ident);
void Connect (const boost::asio::ip::address& address, int port, std::shared_ptr<NTCPSession> conn);
boost::asio::io_service& GetService () { return m_Service; };
void Ban (const boost::asio::ip::address& addr);
private:
private:
void Run ();
void HandleAccept (std::shared_ptr<NTCPSession> conn, const boost::system::error_code& error);
void HandleAcceptV6 (std::shared_ptr<NTCPSession> conn, const boost::system::error_code& error);
void Run ();
void HandleAccept (std::shared_ptr<NTCPSession> conn, const boost::system::error_code& error);
void HandleAcceptV6 (std::shared_ptr<NTCPSession> conn, const boost::system::error_code& error);
void HandleConnect (const boost::system::error_code& ecode, std::shared_ptr<NTCPSession> conn);
private:
void HandleConnect (const boost::system::error_code& ecode, std::shared_ptr<NTCPSession> conn);
private:
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
boost::asio::ip::tcp::acceptor * m_NTCPAcceptor, * m_NTCPV6Acceptor;
std::mutex m_NTCPSessionsMutex;
std::map<i2p::data::IdentHash, std::shared_ptr<NTCPSession> > m_NTCPSessions;
std::map<boost::asio::ip::address, uint32_t> m_BanList; // IP -> ban expiration time in seconds
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
boost::asio::ip::tcp::acceptor * m_NTCPAcceptor, * m_NTCPV6Acceptor;
std::mutex m_NTCPSessionsMutex;
std::map<i2p::data::IdentHash, std::shared_ptr<NTCPSession> > m_NTCPSessions;
std::map<boost::asio::ip::address, uint32_t> m_BanList; // IP -> ban expiration time in seconds
public:
public:
// for HTTP/I2PControl
const decltype(m_NTCPSessions)& GetNTCPSessions () const { return m_NTCPSessions; };
};
}
}
// for HTTP/I2PControl
const decltype(m_NTCPSessions)& GetNTCPSessions () const { return m_NTCPSessions; };
};
}
}
#endif

1886
NetDb.cpp

File diff suppressed because it is too large Load diff

130
NetDb.h
View file

@ -21,85 +21,85 @@
namespace i2p
{
namespace data
{
class NetDb
{
public:
{
class NetDb
{
public:
NetDb ();
~NetDb ();
NetDb ();
~NetDb ();
void Start ();
void Stop ();
void AddRouterInfo (const uint8_t * buf, int len);
void AddRouterInfo (const IdentHash& ident, const uint8_t * buf, int len);
void AddLeaseSet (const IdentHash& ident, const uint8_t * buf, int len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
std::shared_ptr<RouterInfo> FindRouter (const IdentHash& ident) const;
std::shared_ptr<LeaseSet> FindLeaseSet (const IdentHash& destination) const;
void Start ();
void Stop ();
void AddRouterInfo (const uint8_t * buf, int len);
void AddRouterInfo (const IdentHash& ident, const uint8_t * buf, int len);
void AddLeaseSet (const IdentHash& ident, const uint8_t * buf, int len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
std::shared_ptr<RouterInfo> FindRouter (const IdentHash& ident) const;
std::shared_ptr<LeaseSet> FindLeaseSet (const IdentHash& destination) const;
void RequestDestination (const IdentHash& destination, RequestedDestination::RequestComplete requestComplete = nullptr);
void HandleDatabaseStoreMsg (std::shared_ptr<const I2NPMessage> msg);
void HandleDatabaseSearchReplyMsg (std::shared_ptr<const I2NPMessage> msg);
void HandleDatabaseLookupMsg (std::shared_ptr<const I2NPMessage> msg);
void RequestDestination (const IdentHash& destination, RequestedDestination::RequestComplete requestComplete = nullptr);
void HandleDatabaseStoreMsg (std::shared_ptr<const I2NPMessage> msg);
void HandleDatabaseSearchReplyMsg (std::shared_ptr<const I2NPMessage> msg);
void HandleDatabaseLookupMsg (std::shared_ptr<const I2NPMessage> msg);
std::shared_ptr<const RouterInfo> GetRandomRouter () const;
std::shared_ptr<const RouterInfo> GetRandomRouter (std::shared_ptr<const RouterInfo> compatibleWith) const;
std::shared_ptr<const RouterInfo> GetHighBandwidthRandomRouter (std::shared_ptr<const RouterInfo> compatibleWith) const;
std::shared_ptr<const RouterInfo> GetRandomPeerTestRouter () const;
std::shared_ptr<const RouterInfo> GetRandomIntroducer () const;
std::shared_ptr<const RouterInfo> GetClosestFloodfill (const IdentHash& destination, const std::set<IdentHash>& excluded) const;
std::vector<IdentHash> GetClosestFloodfills (const IdentHash& destination, size_t num,
std::set<IdentHash>& excluded) const;
std::shared_ptr<const RouterInfo> GetClosestNonFloodfill (const IdentHash& destination, const std::set<IdentHash>& excluded) const;
void SetUnreachable (const IdentHash& ident, bool unreachable);
std::shared_ptr<const RouterInfo> GetRandomRouter () const;
std::shared_ptr<const RouterInfo> GetRandomRouter (std::shared_ptr<const RouterInfo> compatibleWith) const;
std::shared_ptr<const RouterInfo> GetHighBandwidthRandomRouter (std::shared_ptr<const RouterInfo> compatibleWith) const;
std::shared_ptr<const RouterInfo> GetRandomPeerTestRouter () const;
std::shared_ptr<const RouterInfo> GetRandomIntroducer () const;
std::shared_ptr<const RouterInfo> GetClosestFloodfill (const IdentHash& destination, const std::set<IdentHash>& excluded) const;
std::vector<IdentHash> GetClosestFloodfills (const IdentHash& destination, size_t num,
std::set<IdentHash>& excluded) const;
std::shared_ptr<const RouterInfo> GetClosestNonFloodfill (const IdentHash& destination, const std::set<IdentHash>& excluded) const;
void SetUnreachable (const IdentHash& ident, bool unreachable);
void PostI2NPMsg (std::shared_ptr<const I2NPMessage> msg);
void PostI2NPMsg (std::shared_ptr<const I2NPMessage> msg);
void Reseed ();
void Reseed ();
// for web interface
int GetNumRouters () const { return m_RouterInfos.size (); };
int GetNumFloodfills () const { return m_Floodfills.size (); };
int GetNumLeaseSets () const { return m_LeaseSets.size (); };
private:
// for web interface
int GetNumRouters () const { return m_RouterInfos.size (); };
int GetNumFloodfills () const { return m_Floodfills.size (); };
int GetNumLeaseSets () const { return m_LeaseSets.size (); };
private:
bool CreateNetDb(boost::filesystem::path directory);
void Load ();
void SaveUpdated ();
void Run (); // exploratory thread
void Explore (int numDestinations);
void Publish ();
void ManageLeaseSets ();
void ManageRequests ();
bool CreateNetDb(boost::filesystem::path directory);
void Load ();
void SaveUpdated ();
void Run (); // exploratory thread
void Explore (int numDestinations);
void Publish ();
void ManageLeaseSets ();
void ManageRequests ();
template<typename Filter>
std::shared_ptr<const RouterInfo> GetRandomRouter (Filter filter) const;
private:
template<typename Filter>
std::shared_ptr<const RouterInfo> GetRandomRouter (Filter filter) const;
private:
std::map<IdentHash, std::shared_ptr<LeaseSet> > m_LeaseSets;
mutable std::mutex m_RouterInfosMutex;
std::map<IdentHash, std::shared_ptr<RouterInfo> > m_RouterInfos;
mutable std::mutex m_FloodfillsMutex;
std::list<std::shared_ptr<RouterInfo> > m_Floodfills;
bool m_IsRunning;
std::thread * m_Thread;
i2p::util::Queue<std::shared_ptr<const I2NPMessage> > m_Queue; // of I2NPDatabaseStoreMsg
std::map<IdentHash, std::shared_ptr<LeaseSet> > m_LeaseSets;
mutable std::mutex m_RouterInfosMutex;
std::map<IdentHash, std::shared_ptr<RouterInfo> > m_RouterInfos;
mutable std::mutex m_FloodfillsMutex;
std::list<std::shared_ptr<RouterInfo> > m_Floodfills;
bool m_IsRunning;
std::thread * m_Thread;
i2p::util::Queue<std::shared_ptr<const I2NPMessage> > m_Queue; // of I2NPDatabaseStoreMsg
Reseeder * m_Reseeder;
Reseeder * m_Reseeder;
friend class NetDbRequests;
NetDbRequests m_Requests;
friend class NetDbRequests;
NetDbRequests m_Requests;
static const char m_NetDbPath[];
};
static const char m_NetDbPath[];
};
extern NetDb netdb;
extern NetDb netdb;
}
}

View file

@ -8,142 +8,142 @@ namespace i2p
{
namespace data
{
std::shared_ptr<I2NPMessage> RequestedDestination::CreateRequestMessage (std::shared_ptr<const RouterInfo> router,
std::shared_ptr<const i2p::tunnel::InboundTunnel> replyTunnel)
{
auto msg = i2p::CreateRouterInfoDatabaseLookupMsg (m_Destination,
replyTunnel->GetNextIdentHash (), replyTunnel->GetNextTunnelID (), m_IsExploratory,
&m_ExcludedPeers);
m_ExcludedPeers.insert (router->GetIdentHash ());
m_CreationTime = i2p::util::GetSecondsSinceEpoch ();
return msg;
}
std::shared_ptr<I2NPMessage> RequestedDestination::CreateRequestMessage (std::shared_ptr<const RouterInfo> router,
std::shared_ptr<const i2p::tunnel::InboundTunnel> replyTunnel)
{
auto msg = i2p::CreateRouterInfoDatabaseLookupMsg (m_Destination,
replyTunnel->GetNextIdentHash (), replyTunnel->GetNextTunnelID (), m_IsExploratory,
&m_ExcludedPeers);
m_ExcludedPeers.insert (router->GetIdentHash ());
m_CreationTime = i2p::util::GetSecondsSinceEpoch ();
return msg;
}
std::shared_ptr<I2NPMessage> RequestedDestination::CreateRequestMessage (const IdentHash& floodfill)
{
auto msg = i2p::CreateRouterInfoDatabaseLookupMsg (m_Destination,
i2p::context.GetRouterInfo ().GetIdentHash () , 0, false, &m_ExcludedPeers);
m_ExcludedPeers.insert (floodfill);
m_CreationTime = i2p::util::GetSecondsSinceEpoch ();
return msg;
}
std::shared_ptr<I2NPMessage> RequestedDestination::CreateRequestMessage (const IdentHash& floodfill)
{
auto msg = i2p::CreateRouterInfoDatabaseLookupMsg (m_Destination,
i2p::context.GetRouterInfo ().GetIdentHash () , 0, false, &m_ExcludedPeers);
m_ExcludedPeers.insert (floodfill);
m_CreationTime = i2p::util::GetSecondsSinceEpoch ();
return msg;
}
void RequestedDestination::ClearExcludedPeers ()
{
m_ExcludedPeers.clear ();
}
void RequestedDestination::Success (std::shared_ptr<RouterInfo> r)
{
if (m_RequestComplete)
{
m_RequestComplete (r);
m_RequestComplete = nullptr;
}
}
void RequestedDestination::ClearExcludedPeers ()
{
m_ExcludedPeers.clear ();
}
void RequestedDestination::Success (std::shared_ptr<RouterInfo> r)
{
if (m_RequestComplete)
{
m_RequestComplete (r);
m_RequestComplete = nullptr;
}
}
void RequestedDestination::Fail ()
{
if (m_RequestComplete)
{
m_RequestComplete (nullptr);
m_RequestComplete = nullptr;
}
}
void RequestedDestination::Fail ()
{
if (m_RequestComplete)
{
m_RequestComplete (nullptr);
m_RequestComplete = nullptr;
}
}
void NetDbRequests::Start ()
{
}
void NetDbRequests::Start ()
{
}
void NetDbRequests::Stop ()
{
m_RequestedDestinations.clear ();
}
void NetDbRequests::Stop ()
{
m_RequestedDestinations.clear ();
}
std::shared_ptr<RequestedDestination> NetDbRequests::CreateRequest (const IdentHash& destination, bool isExploratory, RequestedDestination::RequestComplete requestComplete)
{
// request RouterInfo directly
auto dest = std::make_shared<RequestedDestination> (destination, isExploratory);
dest->SetRequestComplete (requestComplete);
{
std::unique_lock<std::mutex> l(m_RequestedDestinationsMutex);
if (!m_RequestedDestinations.insert (std::make_pair (destination,
std::shared_ptr<RequestedDestination> (dest))).second) // not inserted
return nullptr;
}
return dest;
}
std::shared_ptr<RequestedDestination> NetDbRequests::CreateRequest (const IdentHash& destination, bool isExploratory, RequestedDestination::RequestComplete requestComplete)
{
// request RouterInfo directly
auto dest = std::make_shared<RequestedDestination> (destination, isExploratory);
dest->SetRequestComplete (requestComplete);
{
std::unique_lock<std::mutex> l(m_RequestedDestinationsMutex);
if (!m_RequestedDestinations.insert (std::make_pair (destination,
std::shared_ptr<RequestedDestination> (dest))).second) // not inserted
return nullptr;
}
return dest;
}
void NetDbRequests::RequestComplete (const IdentHash& ident, std::shared_ptr<RouterInfo> r)
{
auto it = m_RequestedDestinations.find (ident);
if (it != m_RequestedDestinations.end ())
{
if (r)
it->second->Success (r);
else
it->second->Fail ();
std::unique_lock<std::mutex> l(m_RequestedDestinationsMutex);
m_RequestedDestinations.erase (it);
}
}
void NetDbRequests::RequestComplete (const IdentHash& ident, std::shared_ptr<RouterInfo> r)
{
auto it = m_RequestedDestinations.find (ident);
if (it != m_RequestedDestinations.end ())
{
if (r)
it->second->Success (r);
else
it->second->Fail ();
std::unique_lock<std::mutex> l(m_RequestedDestinationsMutex);
m_RequestedDestinations.erase (it);
}
}
std::shared_ptr<RequestedDestination> NetDbRequests::FindRequest (const IdentHash& ident) const
{
auto it = m_RequestedDestinations.find (ident);
if (it != m_RequestedDestinations.end ())
return it->second;
return nullptr;
}
std::shared_ptr<RequestedDestination> NetDbRequests::FindRequest (const IdentHash& ident) const
{
auto it = m_RequestedDestinations.find (ident);
if (it != m_RequestedDestinations.end ())
return it->second;
return nullptr;
}
void NetDbRequests::ManageRequests ()
{
uint64_t ts = i2p::util::GetSecondsSinceEpoch ();
std::unique_lock<std::mutex> l(m_RequestedDestinationsMutex);
for (auto it = m_RequestedDestinations.begin (); it != m_RequestedDestinations.end ();)
{
auto& dest = it->second;
bool done = false;
if (ts < dest->GetCreationTime () + 60) // request is worthless after 1 minute
{
if (ts > dest->GetCreationTime () + 5) // no response for 5 seconds
{
auto count = dest->GetExcludedPeers ().size ();
if (!dest->IsExploratory () && count < 7)
{
auto pool = i2p::tunnel::tunnels.GetExploratoryPool ();
auto outbound = pool->GetNextOutboundTunnel ();
auto inbound = pool->GetNextInboundTunnel ();
auto nextFloodfill = netdb.GetClosestFloodfill (dest->GetDestination (), dest->GetExcludedPeers ());
if (nextFloodfill && outbound && inbound)
outbound->SendTunnelDataMsg (nextFloodfill->GetIdentHash (), 0,
dest->CreateRequestMessage (nextFloodfill, inbound));
else
{
done = true;
if (!inbound) LogPrint (eLogWarning, "No inbound tunnels");
if (!outbound) LogPrint (eLogWarning, "No outbound tunnels");
if (!nextFloodfill) LogPrint (eLogWarning, "No more floodfills");
}
}
else
{
if (!dest->IsExploratory ())
LogPrint (eLogWarning, dest->GetDestination ().ToBase64 (), " not found after 7 attempts");
done = true;
}
}
}
else // delete obsolete request
done = true;
void NetDbRequests::ManageRequests ()
{
uint64_t ts = i2p::util::GetSecondsSinceEpoch ();
std::unique_lock<std::mutex> l(m_RequestedDestinationsMutex);
for (auto it = m_RequestedDestinations.begin (); it != m_RequestedDestinations.end ();)
{
auto& dest = it->second;
bool done = false;
if (ts < dest->GetCreationTime () + 60) // request is worthless after 1 minute
{
if (ts > dest->GetCreationTime () + 5) // no response for 5 seconds
{
auto count = dest->GetExcludedPeers ().size ();
if (!dest->IsExploratory () && count < 7)
{
auto pool = i2p::tunnel::tunnels.GetExploratoryPool ();
auto outbound = pool->GetNextOutboundTunnel ();
auto inbound = pool->GetNextInboundTunnel ();
auto nextFloodfill = netdb.GetClosestFloodfill (dest->GetDestination (), dest->GetExcludedPeers ());
if (nextFloodfill && outbound && inbound)
outbound->SendTunnelDataMsg (nextFloodfill->GetIdentHash (), 0,
dest->CreateRequestMessage (nextFloodfill, inbound));
else
{
done = true;
if (!inbound) LogPrint (eLogWarning, "No inbound tunnels");
if (!outbound) LogPrint (eLogWarning, "No outbound tunnels");
if (!nextFloodfill) LogPrint (eLogWarning, "No more floodfills");
}
}
else
{
if (!dest->IsExploratory ())
LogPrint (eLogWarning, dest->GetDestination ().ToBase64 (), " not found after 7 attempts");
done = true;
}
}
}
else // delete obsolete request
done = true;
if (done)
it = m_RequestedDestinations.erase (it);
else
it++;
}
}
if (done)
it = m_RequestedDestinations.erase (it);
else
it++;
}
}
}
}

View file

@ -11,57 +11,57 @@ namespace i2p
{
namespace data
{
class RequestedDestination
{
public:
class RequestedDestination
{
public:
typedef std::function<void (std::shared_ptr<RouterInfo>)> RequestComplete;
typedef std::function<void (std::shared_ptr<RouterInfo>)> RequestComplete;
RequestedDestination (const IdentHash& destination, bool isExploratory = false):
m_Destination (destination), m_IsExploratory (isExploratory), m_CreationTime (0) {};
~RequestedDestination () { if (m_RequestComplete) m_RequestComplete (nullptr); };
RequestedDestination (const IdentHash& destination, bool isExploratory = false):
m_Destination (destination), m_IsExploratory (isExploratory), m_CreationTime (0) {};
~RequestedDestination () { if (m_RequestComplete) m_RequestComplete (nullptr); };
const IdentHash& GetDestination () const { return m_Destination; };
int GetNumExcludedPeers () const { return m_ExcludedPeers.size (); };
const std::set<IdentHash>& GetExcludedPeers () { return m_ExcludedPeers; };
void ClearExcludedPeers ();
bool IsExploratory () const { return m_IsExploratory; };
bool IsExcluded (const IdentHash& ident) const { return m_ExcludedPeers.count (ident); };
uint64_t GetCreationTime () const { return m_CreationTime; };
std::shared_ptr<I2NPMessage> CreateRequestMessage (std::shared_ptr<const RouterInfo>, std::shared_ptr<const i2p::tunnel::InboundTunnel> replyTunnel);
std::shared_ptr<I2NPMessage> CreateRequestMessage (const IdentHash& floodfill);
void SetRequestComplete (const RequestComplete& requestComplete) { m_RequestComplete = requestComplete; };
bool IsRequestComplete () const { return m_RequestComplete != nullptr; };
void Success (std::shared_ptr<RouterInfo> r);
void Fail ();
private:
const IdentHash& GetDestination () const { return m_Destination; };
int GetNumExcludedPeers () const { return m_ExcludedPeers.size (); };
const std::set<IdentHash>& GetExcludedPeers () { return m_ExcludedPeers; };
void ClearExcludedPeers ();
bool IsExploratory () const { return m_IsExploratory; };
bool IsExcluded (const IdentHash& ident) const { return m_ExcludedPeers.count (ident); };
uint64_t GetCreationTime () const { return m_CreationTime; };
std::shared_ptr<I2NPMessage> CreateRequestMessage (std::shared_ptr<const RouterInfo>, std::shared_ptr<const i2p::tunnel::InboundTunnel> replyTunnel);
std::shared_ptr<I2NPMessage> CreateRequestMessage (const IdentHash& floodfill);
void SetRequestComplete (const RequestComplete& requestComplete) { m_RequestComplete = requestComplete; };
bool IsRequestComplete () const { return m_RequestComplete != nullptr; };
void Success (std::shared_ptr<RouterInfo> r);
void Fail ();
private:
IdentHash m_Destination;
bool m_IsExploratory;
std::set<IdentHash> m_ExcludedPeers;
uint64_t m_CreationTime;
RequestComplete m_RequestComplete;
};
IdentHash m_Destination;
bool m_IsExploratory;
std::set<IdentHash> m_ExcludedPeers;
uint64_t m_CreationTime;
RequestComplete m_RequestComplete;
};
class NetDbRequests
{
public:
class NetDbRequests
{
public:
void Start ();
void Stop ();
void Start ();
void Stop ();
std::shared_ptr<RequestedDestination> CreateRequest (const IdentHash& destination, bool isExploratory, RequestedDestination::RequestComplete requestComplete = nullptr);
void RequestComplete (const IdentHash& ident, std::shared_ptr<RouterInfo> r);
std::shared_ptr<RequestedDestination> FindRequest (const IdentHash& ident) const;
void ManageRequests ();
std::shared_ptr<RequestedDestination> CreateRequest (const IdentHash& destination, bool isExploratory, RequestedDestination::RequestComplete requestComplete = nullptr);
void RequestComplete (const IdentHash& ident, std::shared_ptr<RouterInfo> r);
std::shared_ptr<RequestedDestination> FindRequest (const IdentHash& ident) const;
void ManageRequests ();
private:
private:
std::mutex m_RequestedDestinationsMutex;
std::map<IdentHash, std::shared_ptr<RequestedDestination> > m_RequestedDestinations;
};
std::mutex m_RequestedDestinationsMutex;
std::map<IdentHash, std::shared_ptr<RequestedDestination> > m_RequestedDestinations;
};
}
}

View file

@ -9,205 +9,205 @@ namespace i2p
{
namespace data
{
RouterProfile::RouterProfile (const IdentHash& identHash):
m_IdentHash (identHash), m_LastUpdateTime (boost::posix_time::second_clock::local_time()),
m_NumTunnelsAgreed (0), m_NumTunnelsDeclined (0), m_NumTunnelsNonReplied (0),
m_NumTimesTaken (0), m_NumTimesRejected (0)
{
}
RouterProfile::RouterProfile (const IdentHash& identHash):
m_IdentHash (identHash), m_LastUpdateTime (boost::posix_time::second_clock::local_time()),
m_NumTunnelsAgreed (0), m_NumTunnelsDeclined (0), m_NumTunnelsNonReplied (0),
m_NumTimesTaken (0), m_NumTimesRejected (0)
{
}
boost::posix_time::ptime RouterProfile::GetTime () const
{
return boost::posix_time::second_clock::local_time();
}
void RouterProfile::UpdateTime ()
{
m_LastUpdateTime = GetTime ();
}
void RouterProfile::Save ()
{
// fill sections
boost::property_tree::ptree participation;
participation.put (PEER_PROFILE_PARTICIPATION_AGREED, m_NumTunnelsAgreed);
participation.put (PEER_PROFILE_PARTICIPATION_DECLINED, m_NumTunnelsDeclined);
participation.put (PEER_PROFILE_PARTICIPATION_NON_REPLIED, m_NumTunnelsNonReplied);
boost::property_tree::ptree usage;
usage.put (PEER_PROFILE_USAGE_TAKEN, m_NumTimesTaken);
usage.put (PEER_PROFILE_USAGE_REJECTED, m_NumTimesRejected);
// fill property tree
boost::property_tree::ptree pt;
pt.put (PEER_PROFILE_LAST_UPDATE_TIME, boost::posix_time::to_simple_string (m_LastUpdateTime));
pt.put_child (PEER_PROFILE_SECTION_PARTICIPATION, participation);
pt.put_child (PEER_PROFILE_SECTION_USAGE, usage);
boost::posix_time::ptime RouterProfile::GetTime () const
{
return boost::posix_time::second_clock::local_time();
}
void RouterProfile::UpdateTime ()
{
m_LastUpdateTime = GetTime ();
}
void RouterProfile::Save ()
{
// fill sections
boost::property_tree::ptree participation;
participation.put (PEER_PROFILE_PARTICIPATION_AGREED, m_NumTunnelsAgreed);
participation.put (PEER_PROFILE_PARTICIPATION_DECLINED, m_NumTunnelsDeclined);
participation.put (PEER_PROFILE_PARTICIPATION_NON_REPLIED, m_NumTunnelsNonReplied);
boost::property_tree::ptree usage;
usage.put (PEER_PROFILE_USAGE_TAKEN, m_NumTimesTaken);
usage.put (PEER_PROFILE_USAGE_REJECTED, m_NumTimesRejected);
// fill property tree
boost::property_tree::ptree pt;
pt.put (PEER_PROFILE_LAST_UPDATE_TIME, boost::posix_time::to_simple_string (m_LastUpdateTime));
pt.put_child (PEER_PROFILE_SECTION_PARTICIPATION, participation);
pt.put_child (PEER_PROFILE_SECTION_USAGE, usage);
// save to file
auto path = i2p::util::filesystem::GetDefaultDataDir() / PEER_PROFILES_DIRECTORY;
if (!boost::filesystem::exists (path))
{
// Create directory is necessary
if (!boost::filesystem::create_directory (path))
{
LogPrint (eLogError, "Failed to create directory ", path);
return;
}
const char * chars = GetBase64SubstitutionTable (); // 64 bytes
for (int i = 0; i < 64; i++)
{
auto path1 = path / (std::string ("p") + chars[i]);
if (!boost::filesystem::create_directory (path1))
{
LogPrint (eLogError, "Failed to create directory ", path1);
return;
}
}
}
std::string base64 = m_IdentHash.ToBase64 ();
path = path / (std::string ("p") + base64[0]);
auto filename = path / (std::string (PEER_PROFILE_PREFIX) + base64 + ".txt");
try
{
boost::property_tree::write_ini (filename.string (), pt);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't write ", filename, ": ", ex.what ());
}
}
// save to file
auto path = i2p::util::filesystem::GetDefaultDataDir() / PEER_PROFILES_DIRECTORY;
if (!boost::filesystem::exists (path))
{
// Create directory is necessary
if (!boost::filesystem::create_directory (path))
{
LogPrint (eLogError, "Failed to create directory ", path);
return;
}
const char * chars = GetBase64SubstitutionTable (); // 64 bytes
for (int i = 0; i < 64; i++)
{
auto path1 = path / (std::string ("p") + chars[i]);
if (!boost::filesystem::create_directory (path1))
{
LogPrint (eLogError, "Failed to create directory ", path1);
return;
}
}
}
std::string base64 = m_IdentHash.ToBase64 ();
path = path / (std::string ("p") + base64[0]);
auto filename = path / (std::string (PEER_PROFILE_PREFIX) + base64 + ".txt");
try
{
boost::property_tree::write_ini (filename.string (), pt);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't write ", filename, ": ", ex.what ());
}
}
void RouterProfile::Load ()
{
std::string base64 = m_IdentHash.ToBase64 ();
auto path = i2p::util::filesystem::GetDefaultDataDir() / PEER_PROFILES_DIRECTORY;
path /= std::string ("p") + base64[0];
auto filename = path / (std::string (PEER_PROFILE_PREFIX) + base64 + ".txt");
if (boost::filesystem::exists (filename))
{
boost::property_tree::ptree pt;
try
{
boost::property_tree::read_ini (filename.string (), pt);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't read ", filename, ": ", ex.what ());
return;
}
try
{
auto t = pt.get (PEER_PROFILE_LAST_UPDATE_TIME, "");
if (t.length () > 0)
m_LastUpdateTime = boost::posix_time::time_from_string (t);
if ((GetTime () - m_LastUpdateTime).hours () < PEER_PROFILE_EXPIRATION_TIMEOUT)
{
try
{
// read participations
auto participations = pt.get_child (PEER_PROFILE_SECTION_PARTICIPATION);
m_NumTunnelsAgreed = participations.get (PEER_PROFILE_PARTICIPATION_AGREED, 0);
m_NumTunnelsDeclined = participations.get (PEER_PROFILE_PARTICIPATION_DECLINED, 0);
m_NumTunnelsNonReplied = participations.get (PEER_PROFILE_PARTICIPATION_NON_REPLIED, 0);
}
catch (boost::property_tree::ptree_bad_path& ex)
{
LogPrint (eLogWarning, "Missing section ", PEER_PROFILE_SECTION_PARTICIPATION);
}
try
{
// read usage
auto usage = pt.get_child (PEER_PROFILE_SECTION_USAGE);
m_NumTimesTaken = usage.get (PEER_PROFILE_USAGE_TAKEN, 0);
m_NumTimesRejected = usage.get (PEER_PROFILE_USAGE_REJECTED, 0);
}
catch (boost::property_tree::ptree_bad_path& ex)
{
LogPrint (eLogWarning, "Missing section ", PEER_PROFILE_SECTION_USAGE);
}
}
else
*this = RouterProfile (m_IdentHash);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't read profile ", base64, " :", ex.what ());
}
}
}
void RouterProfile::TunnelBuildResponse (uint8_t ret)
{
UpdateTime ();
if (ret > 0)
m_NumTunnelsDeclined++;
else
m_NumTunnelsAgreed++;
}
void RouterProfile::Load ()
{
std::string base64 = m_IdentHash.ToBase64 ();
auto path = i2p::util::filesystem::GetDefaultDataDir() / PEER_PROFILES_DIRECTORY;
path /= std::string ("p") + base64[0];
auto filename = path / (std::string (PEER_PROFILE_PREFIX) + base64 + ".txt");
if (boost::filesystem::exists (filename))
{
boost::property_tree::ptree pt;
try
{
boost::property_tree::read_ini (filename.string (), pt);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't read ", filename, ": ", ex.what ());
return;
}
try
{
auto t = pt.get (PEER_PROFILE_LAST_UPDATE_TIME, "");
if (t.length () > 0)
m_LastUpdateTime = boost::posix_time::time_from_string (t);
if ((GetTime () - m_LastUpdateTime).hours () < PEER_PROFILE_EXPIRATION_TIMEOUT)
{
try
{
// read participations
auto participations = pt.get_child (PEER_PROFILE_SECTION_PARTICIPATION);
m_NumTunnelsAgreed = participations.get (PEER_PROFILE_PARTICIPATION_AGREED, 0);
m_NumTunnelsDeclined = participations.get (PEER_PROFILE_PARTICIPATION_DECLINED, 0);
m_NumTunnelsNonReplied = participations.get (PEER_PROFILE_PARTICIPATION_NON_REPLIED, 0);
}
catch (boost::property_tree::ptree_bad_path& ex)
{
LogPrint (eLogWarning, "Missing section ", PEER_PROFILE_SECTION_PARTICIPATION);
}
try
{
// read usage
auto usage = pt.get_child (PEER_PROFILE_SECTION_USAGE);
m_NumTimesTaken = usage.get (PEER_PROFILE_USAGE_TAKEN, 0);
m_NumTimesRejected = usage.get (PEER_PROFILE_USAGE_REJECTED, 0);
}
catch (boost::property_tree::ptree_bad_path& ex)
{
LogPrint (eLogWarning, "Missing section ", PEER_PROFILE_SECTION_USAGE);
}
}
else
*this = RouterProfile (m_IdentHash);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Can't read profile ", base64, " :", ex.what ());
}
}
}
void RouterProfile::TunnelBuildResponse (uint8_t ret)
{
UpdateTime ();
if (ret > 0)
m_NumTunnelsDeclined++;
else
m_NumTunnelsAgreed++;
}
void RouterProfile::TunnelNonReplied ()
{
m_NumTunnelsNonReplied++;
UpdateTime ();
}
void RouterProfile::TunnelNonReplied ()
{
m_NumTunnelsNonReplied++;
UpdateTime ();
}
bool RouterProfile::IsLowPartcipationRate () const
{
return 4*m_NumTunnelsAgreed < m_NumTunnelsDeclined; // < 20% rate
}
bool RouterProfile::IsLowPartcipationRate () const
{
return 4*m_NumTunnelsAgreed < m_NumTunnelsDeclined; // < 20% rate
}
bool RouterProfile::IsLowReplyRate () const
{
auto total = m_NumTunnelsAgreed + m_NumTunnelsDeclined;
return m_NumTunnelsNonReplied > 10*(total + 1);
}
bool RouterProfile::IsBad ()
{
auto isBad = IsAlwaysDeclining () || IsLowPartcipationRate () /*|| IsLowReplyRate ()*/;
if (isBad && m_NumTimesRejected > 10*(m_NumTimesTaken + 1))
{
// reset profile
m_NumTunnelsAgreed = 0;
m_NumTunnelsDeclined = 0;
m_NumTunnelsNonReplied = 0;
isBad = false;
}
if (isBad) m_NumTimesRejected++; else m_NumTimesTaken++;
return isBad;
}
std::shared_ptr<RouterProfile> GetRouterProfile (const IdentHash& identHash)
{
auto profile = std::make_shared<RouterProfile> (identHash);
profile->Load (); // if possible
return profile;
}
bool RouterProfile::IsLowReplyRate () const
{
auto total = m_NumTunnelsAgreed + m_NumTunnelsDeclined;
return m_NumTunnelsNonReplied > 10*(total + 1);
}
bool RouterProfile::IsBad ()
{
auto isBad = IsAlwaysDeclining () || IsLowPartcipationRate () /*|| IsLowReplyRate ()*/;
if (isBad && m_NumTimesRejected > 10*(m_NumTimesTaken + 1))
{
// reset profile
m_NumTunnelsAgreed = 0;
m_NumTunnelsDeclined = 0;
m_NumTunnelsNonReplied = 0;
isBad = false;
}
if (isBad) m_NumTimesRejected++; else m_NumTimesTaken++;
return isBad;
}
std::shared_ptr<RouterProfile> GetRouterProfile (const IdentHash& identHash)
{
auto profile = std::make_shared<RouterProfile> (identHash);
profile->Load (); // if possible
return profile;
}
void DeleteObsoleteProfiles ()
{
int num = 0;
auto ts = boost::posix_time::second_clock::local_time();
boost::filesystem::path p (i2p::util::filesystem::GetDataDir()/PEER_PROFILES_DIRECTORY);
if (boost::filesystem::exists (p))
{
boost::filesystem::directory_iterator end;
for (boost::filesystem::directory_iterator it (p); it != end; ++it)
{
if (boost::filesystem::is_directory (it->status()))
{
for (boost::filesystem::directory_iterator it1 (it->path ()); it1 != end; ++it1)
{
auto lastModified = boost::posix_time::from_time_t (boost::filesystem::last_write_time (it1->path ()));
if ((ts - lastModified).hours () >= PEER_PROFILE_EXPIRATION_TIMEOUT)
{
boost::filesystem::remove (it1->path ());
num++;
}
}
}
}
}
LogPrint (eLogInfo, num, " obsolete profiles deleted");
}
}
}
void DeleteObsoleteProfiles ()
{
int num = 0;
auto ts = boost::posix_time::second_clock::local_time();
boost::filesystem::path p (i2p::util::filesystem::GetDataDir()/PEER_PROFILES_DIRECTORY);
if (boost::filesystem::exists (p))
{
boost::filesystem::directory_iterator end;
for (boost::filesystem::directory_iterator it (p); it != end; ++it)
{
if (boost::filesystem::is_directory (it->status()))
{
for (boost::filesystem::directory_iterator it1 (it->path ()); it1 != end; ++it1)
{
auto lastModified = boost::posix_time::from_time_t (boost::filesystem::last_write_time (it1->path ()));
if ((ts - lastModified).hours () >= PEER_PROFILE_EXPIRATION_TIMEOUT)
{
boost::filesystem::remove (it1->path ());
num++;
}
}
}
}
}
LogPrint (eLogInfo, num, " obsolete profiles deleted");
}
}
}

View file

@ -8,62 +8,62 @@
namespace i2p
{
namespace data
{
const char PEER_PROFILES_DIRECTORY[] = "peerProfiles";
const char PEER_PROFILE_PREFIX[] = "profile-";
// sections
const char PEER_PROFILE_SECTION_PARTICIPATION[] = "participation";
const char PEER_PROFILE_SECTION_USAGE[] = "usage";
// params
const char PEER_PROFILE_LAST_UPDATE_TIME[] = "lastupdatetime";
const char PEER_PROFILE_PARTICIPATION_AGREED[] = "agreed";
const char PEER_PROFILE_PARTICIPATION_DECLINED[] = "declined";
const char PEER_PROFILE_PARTICIPATION_NON_REPLIED[] = "nonreplied";
const char PEER_PROFILE_USAGE_TAKEN[] = "taken";
const char PEER_PROFILE_USAGE_REJECTED[] = "rejected";
{
const char PEER_PROFILES_DIRECTORY[] = "peerProfiles";
const char PEER_PROFILE_PREFIX[] = "profile-";
// sections
const char PEER_PROFILE_SECTION_PARTICIPATION[] = "participation";
const char PEER_PROFILE_SECTION_USAGE[] = "usage";
// params
const char PEER_PROFILE_LAST_UPDATE_TIME[] = "lastupdatetime";
const char PEER_PROFILE_PARTICIPATION_AGREED[] = "agreed";
const char PEER_PROFILE_PARTICIPATION_DECLINED[] = "declined";
const char PEER_PROFILE_PARTICIPATION_NON_REPLIED[] = "nonreplied";
const char PEER_PROFILE_USAGE_TAKEN[] = "taken";
const char PEER_PROFILE_USAGE_REJECTED[] = "rejected";
const int PEER_PROFILE_EXPIRATION_TIMEOUT = 72; // in hours (3 days)
class RouterProfile
{
public:
const int PEER_PROFILE_EXPIRATION_TIMEOUT = 72; // in hours (3 days)
class RouterProfile
{
public:
RouterProfile (const IdentHash& identHash);
RouterProfile& operator= (const RouterProfile& ) = default;
void Save ();
void Load ();
RouterProfile (const IdentHash& identHash);
RouterProfile& operator= (const RouterProfile& ) = default;
void Save ();
void Load ();
bool IsBad ();
void TunnelBuildResponse (uint8_t ret);
void TunnelNonReplied ();
bool IsBad ();
void TunnelBuildResponse (uint8_t ret);
void TunnelNonReplied ();
private:
private:
boost::posix_time::ptime GetTime () const;
void UpdateTime ();
boost::posix_time::ptime GetTime () const;
void UpdateTime ();
bool IsAlwaysDeclining () const { return !m_NumTunnelsAgreed && m_NumTunnelsDeclined >= 5; };
bool IsLowPartcipationRate () const;
bool IsLowReplyRate () const;
private:
bool IsAlwaysDeclining () const { return !m_NumTunnelsAgreed && m_NumTunnelsDeclined >= 5; };
bool IsLowPartcipationRate () const;
bool IsLowReplyRate () const;
private:
IdentHash m_IdentHash;
boost::posix_time::ptime m_LastUpdateTime;
// participation
uint32_t m_NumTunnelsAgreed;
uint32_t m_NumTunnelsDeclined;
uint32_t m_NumTunnelsNonReplied;
// usage
uint32_t m_NumTimesTaken;
uint32_t m_NumTimesRejected;
};
IdentHash m_IdentHash;
boost::posix_time::ptime m_LastUpdateTime;
// participation
uint32_t m_NumTunnelsAgreed;
uint32_t m_NumTunnelsDeclined;
uint32_t m_NumTunnelsNonReplied;
// usage
uint32_t m_NumTimesTaken;
uint32_t m_NumTimesRejected;
};
std::shared_ptr<RouterProfile> GetRouterProfile (const IdentHash& identHash);
void DeleteObsoleteProfiles ();
}
}
std::shared_ptr<RouterProfile> GetRouterProfile (const IdentHash& identHash);
void DeleteObsoleteProfiles ();
}
}
#endif

270
Queue.h
View file

@ -12,158 +12,158 @@ namespace i2p
{
namespace util
{
template<typename Element>
class Queue
{
public:
template<typename Element>
class Queue
{
public:
void Put (Element e)
{
std::unique_lock<std::mutex> l(m_QueueMutex);
m_Queue.push (e);
m_NonEmpty.notify_one ();
}
void Put (Element e)
{
std::unique_lock<std::mutex> l(m_QueueMutex);
m_Queue.push (e);
m_NonEmpty.notify_one ();
}
void Put (const std::vector<Element>& vec)
{
if (!vec.empty ())
{
std::unique_lock<std::mutex> l(m_QueueMutex);
for (auto it: vec)
m_Queue.push (it);
m_NonEmpty.notify_one ();
}
}
Element GetNext ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
auto el = GetNonThreadSafe ();
if (!el)
{
m_NonEmpty.wait (l);
el = GetNonThreadSafe ();
}
return el;
}
void Put (const std::vector<Element>& vec)
{
if (!vec.empty ())
{
std::unique_lock<std::mutex> l(m_QueueMutex);
for (auto it: vec)
m_Queue.push (it);
m_NonEmpty.notify_one ();
}
}
Element GetNext ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
auto el = GetNonThreadSafe ();
if (!el)
{
m_NonEmpty.wait (l);
el = GetNonThreadSafe ();
}
return el;
}
Element GetNextWithTimeout (int usec)
{
std::unique_lock<std::mutex> l(m_QueueMutex);
auto el = GetNonThreadSafe ();
if (!el)
{
m_NonEmpty.wait_for (l, std::chrono::milliseconds (usec));
el = GetNonThreadSafe ();
}
return el;
}
Element GetNextWithTimeout (int usec)
{
std::unique_lock<std::mutex> l(m_QueueMutex);
auto el = GetNonThreadSafe ();
if (!el)
{
m_NonEmpty.wait_for (l, std::chrono::milliseconds (usec));
el = GetNonThreadSafe ();
}
return el;
}
void Wait ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
m_NonEmpty.wait (l);
}
void Wait ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
m_NonEmpty.wait (l);
}
bool Wait (int sec, int usec)
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return m_NonEmpty.wait_for (l, std::chrono::seconds (sec) + std::chrono::milliseconds (usec)) != std::cv_status::timeout;
}
bool Wait (int sec, int usec)
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return m_NonEmpty.wait_for (l, std::chrono::seconds (sec) + std::chrono::milliseconds (usec)) != std::cv_status::timeout;
}
bool IsEmpty ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return m_Queue.empty ();
}
bool IsEmpty ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return m_Queue.empty ();
}
int GetSize ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return m_Queue.size ();
}
int GetSize ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return m_Queue.size ();
}
void WakeUp () { m_NonEmpty.notify_all (); };
void WakeUp () { m_NonEmpty.notify_all (); };
Element Get ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return GetNonThreadSafe ();
}
Element Get ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return GetNonThreadSafe ();
}
Element Peek ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return GetNonThreadSafe (true);
}
private:
Element Peek ()
{
std::unique_lock<std::mutex> l(m_QueueMutex);
return GetNonThreadSafe (true);
}
private:
Element GetNonThreadSafe (bool peek = false)
{
if (!m_Queue.empty ())
{
auto el = m_Queue.front ();
if (!peek)
m_Queue.pop ();
return el;
}
return nullptr;
}
private:
Element GetNonThreadSafe (bool peek = false)
{
if (!m_Queue.empty ())
{
auto el = m_Queue.front ();
if (!peek)
m_Queue.pop ();
return el;
}
return nullptr;
}
private:
std::queue<Element> m_Queue;
std::mutex m_QueueMutex;
std::condition_variable m_NonEmpty;
};
std::queue<Element> m_Queue;
std::mutex m_QueueMutex;
std::condition_variable m_NonEmpty;
};
template<class Msg>
class MsgQueue: public Queue<Msg *>
{
public:
template<class Msg>
class MsgQueue: public Queue<Msg *>
{
public:
typedef std::function<void()> OnEmpty;
typedef std::function<void()> OnEmpty;
MsgQueue (): m_IsRunning (true), m_Thread (std::bind (&MsgQueue<Msg>::Run, this)) {};
~MsgQueue () { Stop (); };
void Stop()
{
if (m_IsRunning)
{
m_IsRunning = false;
Queue<Msg *>::WakeUp ();
m_Thread.join();
}
}
MsgQueue (): m_IsRunning (true), m_Thread (std::bind (&MsgQueue<Msg>::Run, this)) {};
~MsgQueue () { Stop (); };
void Stop()
{
if (m_IsRunning)
{
m_IsRunning = false;
Queue<Msg *>::WakeUp ();
m_Thread.join();
}
}
void SetOnEmpty (OnEmpty const & e) { m_OnEmpty = e; };
void SetOnEmpty (OnEmpty const & e) { m_OnEmpty = e; };
private:
private:
void Run ()
{
while (m_IsRunning)
{
while (auto msg = Queue<Msg *>::Get ())
{
msg->Process ();
delete msg;
}
if (m_OnEmpty != nullptr)
m_OnEmpty ();
if (m_IsRunning)
Queue<Msg *>::Wait ();
}
}
private:
volatile bool m_IsRunning;
OnEmpty m_OnEmpty;
std::thread m_Thread;
};
}
}
void Run ()
{
while (m_IsRunning)
{
while (auto msg = Queue<Msg *>::Get ())
{
msg->Process ();
delete msg;
}
if (m_OnEmpty != nullptr)
m_OnEmpty ();
if (m_IsRunning)
Queue<Msg *>::Wait ();
}
}
private:
volatile bool m_IsRunning;
OnEmpty m_OnEmpty;
std::thread m_Thread;
};
}
}
#endif

1702
Reseed.cpp

File diff suppressed because it is too large Load diff

114
Reseed.h
View file

@ -16,79 +16,79 @@ namespace i2p
namespace data
{
class Reseeder
{
typedef Tag<512> PublicKey;
public:
Reseeder();
~Reseeder();
bool reseedNow(); // depreacted
int ReseedNowSU3 ();
class Reseeder
{
typedef Tag<512> PublicKey;
public:
Reseeder();
~Reseeder();
bool reseedNow(); // depreacted
int ReseedNowSU3 ();
void LoadCertificates ();
private:
void LoadCertificates ();
private:
void LoadCertificate (const std::string& filename);
std::string LoadCertificate (CryptoPP::ByteQueue& queue); // returns issuer's name
int ReseedFromSU3 (const std::string& host, bool https = false);
int ProcessSU3File (const char * filename);
int ProcessSU3Stream (std::istream& s);
void LoadCertificate (const std::string& filename);
std::string LoadCertificate (CryptoPP::ByteQueue& queue); // returns issuer's name
int ReseedFromSU3 (const std::string& host, bool https = false);
int ProcessSU3File (const char * filename);
int ProcessSU3Stream (std::istream& s);
bool FindZipDataDescriptor (std::istream& s);
std::string HttpsRequest (const std::string& address);
bool FindZipDataDescriptor (std::istream& s);
std::string HttpsRequest (const std::string& address);
private:
private:
std::map<std::string, PublicKey> m_SigningKeys;
};
std::map<std::string, PublicKey> m_SigningKeys;
};
class TlsCipher
{
public:
class TlsCipher
{
public:
virtual ~TlsCipher () {};
virtual ~TlsCipher () {};
virtual void CalculateMAC (uint8_t type, const uint8_t * buf, size_t len, uint8_t * mac) = 0;
virtual size_t Encrypt (const uint8_t * in, size_t len, const uint8_t * mac, uint8_t * out) = 0;
virtual size_t Decrypt (uint8_t * buf, size_t len) = 0;
virtual size_t GetIVSize () const { return 0; }; // override for AES
};
virtual void CalculateMAC (uint8_t type, const uint8_t * buf, size_t len, uint8_t * mac) = 0;
virtual size_t Encrypt (const uint8_t * in, size_t len, const uint8_t * mac, uint8_t * out) = 0;
virtual size_t Decrypt (uint8_t * buf, size_t len) = 0;
virtual size_t GetIVSize () const { return 0; }; // override for AES
};
class TlsSession
{
public:
class TlsSession
{
public:
TlsSession (const std::string& host, int port);
~TlsSession ();
void Send (const uint8_t * buf, size_t len);
bool Receive (std::ostream& rs);
bool IsEstablished () const { return m_IsEstablished; };
private:
TlsSession (const std::string& host, int port);
~TlsSession ();
void Send (const uint8_t * buf, size_t len);
bool Receive (std::ostream& rs);
bool IsEstablished () const { return m_IsEstablished; };
private:
void Handshake ();
void SendHandshakeMsg (uint8_t handshakeType, uint8_t * data, size_t len);
void SendFinishedMsg ();
CryptoPP::RSA::PublicKey ExtractPublicKey (const uint8_t * certificate, size_t len);
void Handshake ();
void SendHandshakeMsg (uint8_t handshakeType, uint8_t * data, size_t len);
void SendFinishedMsg ();
CryptoPP::RSA::PublicKey ExtractPublicKey (const uint8_t * certificate, size_t len);
void PRF (const uint8_t * secret, const char * label, const uint8_t * random, size_t randomLen,
size_t len, uint8_t * buf);
void PRF (const uint8_t * secret, const char * label, const uint8_t * random, size_t randomLen,
size_t len, uint8_t * buf);
private:
private:
bool m_IsEstablished;
boost::asio::ip::tcp::iostream m_Site;
CryptoPP::SHA256 m_FinishedHash;
uint8_t m_MasterSecret[64]; // actual size is 48, but must be multiple of 32
TlsCipher * m_Cipher;
};
bool m_IsEstablished;
boost::asio::ip::tcp::iostream m_Site;
CryptoPP::SHA256 m_FinishedHash;
uint8_t m_MasterSecret[64]; // actual size is 48, but must be multiple of 32
TlsCipher * m_Cipher;
};
}
}

View file

@ -12,307 +12,307 @@
namespace i2p
{
RouterContext context;
RouterContext context;
RouterContext::RouterContext ():
m_LastUpdateTime (0), m_AcceptsTunnels (true), m_IsFloodfill (false),
m_StartupTime (0), m_Status (eRouterStatusOK )
{
}
RouterContext::RouterContext ():
m_LastUpdateTime (0), m_AcceptsTunnels (true), m_IsFloodfill (false),
m_StartupTime (0), m_Status (eRouterStatusOK )
{
}
void RouterContext::Init ()
{
m_StartupTime = i2p::util::GetSecondsSinceEpoch ();
if (!Load ())
CreateNewRouter ();
UpdateRouterInfo ();
}
void RouterContext::Init ()
{
m_StartupTime = i2p::util::GetSecondsSinceEpoch ();
if (!Load ())
CreateNewRouter ();
UpdateRouterInfo ();
}
void RouterContext::CreateNewRouter ()
{
m_Keys = i2p::data::CreateRandomKeys ();
SaveKeys ();
NewRouterInfo ();
}
void RouterContext::CreateNewRouter ()
{
m_Keys = i2p::data::CreateRandomKeys ();
SaveKeys ();
NewRouterInfo ();
}
void RouterContext::NewRouterInfo ()
{
i2p::data::RouterInfo routerInfo;
routerInfo.SetRouterIdentity (GetIdentity ());
int port = i2p::util::config::GetArg("-port", 0);
if (!port)
port = m_Rnd.GenerateWord32 (9111, 30777); // I2P network ports range
routerInfo.AddSSUAddress (i2p::util::config::GetCharArg("-host", "127.0.0.1"), port, routerInfo.GetIdentHash ());
routerInfo.AddNTCPAddress (i2p::util::config::GetCharArg("-host", "127.0.0.1"), port);
routerInfo.SetCaps (i2p::data::RouterInfo::eReachable |
i2p::data::RouterInfo::eSSUTesting | i2p::data::RouterInfo::eSSUIntroducer); // LR, BC
routerInfo.SetProperty ("coreVersion", I2P_VERSION);
routerInfo.SetProperty ("netId", "2");
routerInfo.SetProperty ("router.version", I2P_VERSION);
routerInfo.SetProperty ("stat_uptime", "90m");
routerInfo.CreateBuffer (m_Keys);
m_RouterInfo.Update (routerInfo.GetBuffer (), routerInfo.GetBufferLen ());
}
void RouterContext::NewRouterInfo ()
{
i2p::data::RouterInfo routerInfo;
routerInfo.SetRouterIdentity (GetIdentity ());
int port = i2p::util::config::GetArg("-port", 0);
if (!port)
port = m_Rnd.GenerateWord32 (9111, 30777); // I2P network ports range
routerInfo.AddSSUAddress (i2p::util::config::GetCharArg("-host", "127.0.0.1"), port, routerInfo.GetIdentHash ());
routerInfo.AddNTCPAddress (i2p::util::config::GetCharArg("-host", "127.0.0.1"), port);
routerInfo.SetCaps (i2p::data::RouterInfo::eReachable |
i2p::data::RouterInfo::eSSUTesting | i2p::data::RouterInfo::eSSUIntroducer); // LR, BC
routerInfo.SetProperty ("coreVersion", I2P_VERSION);
routerInfo.SetProperty ("netId", "2");
routerInfo.SetProperty ("router.version", I2P_VERSION);
routerInfo.SetProperty ("stat_uptime", "90m");
routerInfo.CreateBuffer (m_Keys);
m_RouterInfo.Update (routerInfo.GetBuffer (), routerInfo.GetBufferLen ());
}
void RouterContext::UpdateRouterInfo ()
{
m_RouterInfo.CreateBuffer (m_Keys);
m_RouterInfo.SaveToFile (i2p::util::filesystem::GetFullPath (ROUTER_INFO));
m_LastUpdateTime = i2p::util::GetSecondsSinceEpoch ();
}
void RouterContext::UpdateRouterInfo ()
{
m_RouterInfo.CreateBuffer (m_Keys);
m_RouterInfo.SaveToFile (i2p::util::filesystem::GetFullPath (ROUTER_INFO));
m_LastUpdateTime = i2p::util::GetSecondsSinceEpoch ();
}
void RouterContext::UpdatePort (int port)
{
bool updated = false;
for (auto& address : m_RouterInfo.GetAddresses ())
{
if (address.port != port)
{
address.port = port;
updated = true;
}
}
if (updated)
UpdateRouterInfo ();
}
void RouterContext::UpdatePort (int port)
{
bool updated = false;
for (auto& address : m_RouterInfo.GetAddresses ())
{
if (address.port != port)
{
address.port = port;
updated = true;
}
}
if (updated)
UpdateRouterInfo ();
}
void RouterContext::UpdateAddress (const boost::asio::ip::address& host)
{
bool updated = false;
for (auto& address : m_RouterInfo.GetAddresses ())
{
if (address.host != host && address.IsCompatible (host))
{
address.host = host;
updated = true;
}
}
auto ts = i2p::util::GetSecondsSinceEpoch ();
if (updated || ts > m_LastUpdateTime + ROUTER_INFO_UPDATE_INTERVAL)
UpdateRouterInfo ();
}
void RouterContext::UpdateAddress (const boost::asio::ip::address& host)
{
bool updated = false;
for (auto& address : m_RouterInfo.GetAddresses ())
{
if (address.host != host && address.IsCompatible (host))
{
address.host = host;
updated = true;
}
}
auto ts = i2p::util::GetSecondsSinceEpoch ();
if (updated || ts > m_LastUpdateTime + ROUTER_INFO_UPDATE_INTERVAL)
UpdateRouterInfo ();
}
bool RouterContext::AddIntroducer (const i2p::data::RouterInfo& routerInfo, uint32_t tag)
{
bool ret = false;
auto address = routerInfo.GetSSUAddress ();
if (address)
{
ret = m_RouterInfo.AddIntroducer (address, tag);
if (ret)
UpdateRouterInfo ();
}
return ret;
}
bool RouterContext::AddIntroducer (const i2p::data::RouterInfo& routerInfo, uint32_t tag)
{
bool ret = false;
auto address = routerInfo.GetSSUAddress ();
if (address)
{
ret = m_RouterInfo.AddIntroducer (address, tag);
if (ret)
UpdateRouterInfo ();
}
return ret;
}
void RouterContext::RemoveIntroducer (const boost::asio::ip::udp::endpoint& e)
{
if (m_RouterInfo.RemoveIntroducer (e))
UpdateRouterInfo ();
}
void RouterContext::SetFloodfill (bool floodfill)
{
m_IsFloodfill = floodfill;
if (floodfill)
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () | i2p::data::RouterInfo::eFloodfill);
else
{
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () & ~i2p::data::RouterInfo::eFloodfill);
// we don't publish number of routers and leaseset for non-floodfill
m_RouterInfo.DeleteProperty (ROUTER_INFO_PROPERTY_LEASESETS);
m_RouterInfo.DeleteProperty (ROUTER_INFO_PROPERTY_ROUTERS);
}
UpdateRouterInfo ();
}
void RouterContext::RemoveIntroducer (const boost::asio::ip::udp::endpoint& e)
{
if (m_RouterInfo.RemoveIntroducer (e))
UpdateRouterInfo ();
}
void RouterContext::SetFloodfill (bool floodfill)
{
m_IsFloodfill = floodfill;
if (floodfill)
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () | i2p::data::RouterInfo::eFloodfill);
else
{
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () & ~i2p::data::RouterInfo::eFloodfill);
// we don't publish number of routers and leaseset for non-floodfill
m_RouterInfo.DeleteProperty (ROUTER_INFO_PROPERTY_LEASESETS);
m_RouterInfo.DeleteProperty (ROUTER_INFO_PROPERTY_ROUTERS);
}
UpdateRouterInfo ();
}
void RouterContext::SetHighBandwidth ()
{
if (!m_RouterInfo.IsHighBandwidth ())
{
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () | i2p::data::RouterInfo::eHighBandwidth);
UpdateRouterInfo ();
}
}
void RouterContext::SetHighBandwidth ()
{
if (!m_RouterInfo.IsHighBandwidth ())
{
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () | i2p::data::RouterInfo::eHighBandwidth);
UpdateRouterInfo ();
}
}
void RouterContext::SetLowBandwidth ()
{
if (m_RouterInfo.IsHighBandwidth ())
{
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () & ~i2p::data::RouterInfo::eHighBandwidth);
UpdateRouterInfo ();
}
}
void RouterContext::SetLowBandwidth ()
{
if (m_RouterInfo.IsHighBandwidth ())
{
m_RouterInfo.SetCaps (m_RouterInfo.GetCaps () & ~i2p::data::RouterInfo::eHighBandwidth);
UpdateRouterInfo ();
}
}
bool RouterContext::IsUnreachable () const
{
return m_RouterInfo.GetCaps () & i2p::data::RouterInfo::eUnreachable;
}
void RouterContext::SetUnreachable ()
{
// set caps
m_RouterInfo.SetCaps (i2p::data::RouterInfo::eUnreachable | i2p::data::RouterInfo::eSSUTesting); // LU, B
// remove NTCP address
auto& addresses = m_RouterInfo.GetAddresses ();
for (size_t i = 0; i < addresses.size (); i++)
{
if (addresses[i].transportStyle == i2p::data::RouterInfo::eTransportNTCP)
{
addresses.erase (addresses.begin () + i);
break;
}
}
// delete previous introducers
for (auto& addr : addresses)
addr.introducers.clear ();
// update
UpdateRouterInfo ();
}
bool RouterContext::IsUnreachable () const
{
return m_RouterInfo.GetCaps () & i2p::data::RouterInfo::eUnreachable;
}
void RouterContext::SetUnreachable ()
{
// set caps
m_RouterInfo.SetCaps (i2p::data::RouterInfo::eUnreachable | i2p::data::RouterInfo::eSSUTesting); // LU, B
// remove NTCP address
auto& addresses = m_RouterInfo.GetAddresses ();
for (size_t i = 0; i < addresses.size (); i++)
{
if (addresses[i].transportStyle == i2p::data::RouterInfo::eTransportNTCP)
{
addresses.erase (addresses.begin () + i);
break;
}
}
// delete previous introducers
for (auto& addr : addresses)
addr.introducers.clear ();
// update
UpdateRouterInfo ();
}
void RouterContext::SetReachable ()
{
// update caps
uint8_t caps = m_RouterInfo.GetCaps ();
caps &= ~i2p::data::RouterInfo::eUnreachable;
caps |= i2p::data::RouterInfo::eReachable;
caps |= i2p::data::RouterInfo::eSSUIntroducer;
if (m_IsFloodfill)
caps |= i2p::data::RouterInfo::eFloodfill;
m_RouterInfo.SetCaps (caps);
// insert NTCP back
auto& addresses = m_RouterInfo.GetAddresses ();
for (size_t i = 0; i < addresses.size (); i++)
{
if (addresses[i].transportStyle == i2p::data::RouterInfo::eTransportSSU)
{
// insert NTCP address with host/port form SSU
m_RouterInfo.AddNTCPAddress (addresses[i].host.to_string ().c_str (), addresses[i].port);
break;
}
}
// delete previous introducers
for (auto& addr : addresses)
addr.introducers.clear ();
// update
UpdateRouterInfo ();
}
void RouterContext::SetSupportsV6 (bool supportsV6)
{
if (supportsV6)
m_RouterInfo.EnableV6 ();
else
m_RouterInfo.DisableV6 ();
UpdateRouterInfo ();
}
void RouterContext::SetReachable ()
{
// update caps
uint8_t caps = m_RouterInfo.GetCaps ();
caps &= ~i2p::data::RouterInfo::eUnreachable;
caps |= i2p::data::RouterInfo::eReachable;
caps |= i2p::data::RouterInfo::eSSUIntroducer;
if (m_IsFloodfill)
caps |= i2p::data::RouterInfo::eFloodfill;
m_RouterInfo.SetCaps (caps);
// insert NTCP back
auto& addresses = m_RouterInfo.GetAddresses ();
for (size_t i = 0; i < addresses.size (); i++)
{
if (addresses[i].transportStyle == i2p::data::RouterInfo::eTransportSSU)
{
// insert NTCP address with host/port form SSU
m_RouterInfo.AddNTCPAddress (addresses[i].host.to_string ().c_str (), addresses[i].port);
break;
}
}
// delete previous introducers
for (auto& addr : addresses)
addr.introducers.clear ();
// update
UpdateRouterInfo ();
}
void RouterContext::SetSupportsV6 (bool supportsV6)
{
if (supportsV6)
m_RouterInfo.EnableV6 ();
else
m_RouterInfo.DisableV6 ();
UpdateRouterInfo ();
}
void RouterContext::UpdateNTCPV6Address (const boost::asio::ip::address& host)
{
bool updated = false, found = false;
int port = 0;
auto& addresses = m_RouterInfo.GetAddresses ();
for (auto& addr : addresses)
{
if (addr.host.is_v6 () && addr.transportStyle == i2p::data::RouterInfo::eTransportNTCP)
{
if (addr.host != host)
{
addr.host = host;
updated = true;
}
found = true;
}
else
port = addr.port;
}
if (!found)
{
// create new address
m_RouterInfo.AddNTCPAddress (host.to_string ().c_str (), port);
auto mtu = i2p::util::net::GetMTU (host);
if (mtu)
{
LogPrint ("Our v6 MTU=", mtu);
if (mtu > 1472) mtu = 1472;
}
m_RouterInfo.AddSSUAddress (host.to_string ().c_str (), port, GetIdentHash (), mtu ? mtu : 1472); // TODO
updated = true;
}
if (updated)
UpdateRouterInfo ();
}
void RouterContext::UpdateNTCPV6Address (const boost::asio::ip::address& host)
{
bool updated = false, found = false;
int port = 0;
auto& addresses = m_RouterInfo.GetAddresses ();
for (auto& addr : addresses)
{
if (addr.host.is_v6 () && addr.transportStyle == i2p::data::RouterInfo::eTransportNTCP)
{
if (addr.host != host)
{
addr.host = host;
updated = true;
}
found = true;
}
else
port = addr.port;
}
if (!found)
{
// create new address
m_RouterInfo.AddNTCPAddress (host.to_string ().c_str (), port);
auto mtu = i2p::util::net::GetMTU (host);
if (mtu)
{
LogPrint ("Our v6 MTU=", mtu);
if (mtu > 1472) mtu = 1472;
}
m_RouterInfo.AddSSUAddress (host.to_string ().c_str (), port, GetIdentHash (), mtu ? mtu : 1472); // TODO
updated = true;
}
if (updated)
UpdateRouterInfo ();
}
void RouterContext::UpdateStats ()
{
if (m_IsFloodfill)
{
// update routers and leasesets
m_RouterInfo.SetProperty (ROUTER_INFO_PROPERTY_LEASESETS, boost::lexical_cast<std::string>(i2p::data::netdb.GetNumLeaseSets ()));
m_RouterInfo.SetProperty (ROUTER_INFO_PROPERTY_ROUTERS, boost::lexical_cast<std::string>(i2p::data::netdb.GetNumRouters ()));
UpdateRouterInfo ();
}
}
bool RouterContext::Load ()
{
std::ifstream fk (i2p::util::filesystem::GetFullPath (ROUTER_KEYS).c_str (), std::ifstream::binary | std::ofstream::in);
if (!fk.is_open ()) return false;
i2p::data::Keys keys;
fk.read ((char *)&keys, sizeof (keys));
m_Keys = keys;
void RouterContext::UpdateStats ()
{
if (m_IsFloodfill)
{
// update routers and leasesets
m_RouterInfo.SetProperty (ROUTER_INFO_PROPERTY_LEASESETS, boost::lexical_cast<std::string>(i2p::data::netdb.GetNumLeaseSets ()));
m_RouterInfo.SetProperty (ROUTER_INFO_PROPERTY_ROUTERS, boost::lexical_cast<std::string>(i2p::data::netdb.GetNumRouters ()));
UpdateRouterInfo ();
}
}
bool RouterContext::Load ()
{
std::ifstream fk (i2p::util::filesystem::GetFullPath (ROUTER_KEYS).c_str (), std::ifstream::binary | std::ofstream::in);
if (!fk.is_open ()) return false;
i2p::data::Keys keys;
fk.read ((char *)&keys, sizeof (keys));
m_Keys = keys;
i2p::data::RouterInfo routerInfo(i2p::util::filesystem::GetFullPath (ROUTER_INFO)); // TODO
m_RouterInfo.Update (routerInfo.GetBuffer (), routerInfo.GetBufferLen ());
m_RouterInfo.SetProperty ("coreVersion", I2P_VERSION);
m_RouterInfo.SetProperty ("router.version", I2P_VERSION);
i2p::data::RouterInfo routerInfo(i2p::util::filesystem::GetFullPath (ROUTER_INFO)); // TODO
m_RouterInfo.Update (routerInfo.GetBuffer (), routerInfo.GetBufferLen ());
m_RouterInfo.SetProperty ("coreVersion", I2P_VERSION);
m_RouterInfo.SetProperty ("router.version", I2P_VERSION);
if (IsUnreachable ())
SetReachable (); // we assume reachable until we discover firewall through peer tests
return true;
}
if (IsUnreachable ())
SetReachable (); // we assume reachable until we discover firewall through peer tests
return true;
}
void RouterContext::SaveKeys ()
{
std::ofstream fk (i2p::util::filesystem::GetFullPath (ROUTER_KEYS).c_str (), std::ofstream::binary | std::ofstream::out);
i2p::data::Keys keys;
memcpy (keys.privateKey, m_Keys.GetPrivateKey (), sizeof (keys.privateKey));
memcpy (keys.signingPrivateKey, m_Keys.GetSigningPrivateKey (), sizeof (keys.signingPrivateKey));
auto& ident = GetIdentity ().GetStandardIdentity ();
memcpy (keys.publicKey, ident.publicKey, sizeof (keys.publicKey));
memcpy (keys.signingKey, ident.signingKey, sizeof (keys.signingKey));
fk.write ((char *)&keys, sizeof (keys));
}
void RouterContext::SaveKeys ()
{
std::ofstream fk (i2p::util::filesystem::GetFullPath (ROUTER_KEYS).c_str (), std::ofstream::binary | std::ofstream::out);
i2p::data::Keys keys;
memcpy (keys.privateKey, m_Keys.GetPrivateKey (), sizeof (keys.privateKey));
memcpy (keys.signingPrivateKey, m_Keys.GetSigningPrivateKey (), sizeof (keys.signingPrivateKey));
auto& ident = GetIdentity ().GetStandardIdentity ();
memcpy (keys.publicKey, ident.publicKey, sizeof (keys.publicKey));
memcpy (keys.signingKey, ident.signingKey, sizeof (keys.signingKey));
fk.write ((char *)&keys, sizeof (keys));
}
std::shared_ptr<i2p::tunnel::TunnelPool> RouterContext::GetTunnelPool () const
{
return i2p::tunnel::tunnels.GetExploratoryPool ();
}
void RouterContext::HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from)
{
i2p::HandleI2NPMessage (CreateI2NPMessage (buf, GetI2NPMessageLength (buf), from));
}
std::shared_ptr<i2p::tunnel::TunnelPool> RouterContext::GetTunnelPool () const
{
return i2p::tunnel::tunnels.GetExploratoryPool ();
}
void RouterContext::HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from)
{
i2p::HandleI2NPMessage (CreateI2NPMessage (buf, GetI2NPMessageLength (buf), from));
}
void RouterContext::ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg)
{
std::unique_lock<std::mutex> l(m_GarlicMutex);
i2p::garlic::GarlicDestination::ProcessGarlicMessage (msg);
}
void RouterContext::ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg)
{
std::unique_lock<std::mutex> l(m_GarlicMutex);
i2p::garlic::GarlicDestination::ProcessDeliveryStatusMessage (msg);
}
uint32_t RouterContext::GetUptime () const
{
return i2p::util::GetSecondsSinceEpoch () - m_StartupTime;
}
void RouterContext::ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg)
{
std::unique_lock<std::mutex> l(m_GarlicMutex);
i2p::garlic::GarlicDestination::ProcessGarlicMessage (msg);
}
void RouterContext::ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg)
{
std::unique_lock<std::mutex> l(m_GarlicMutex);
i2p::garlic::GarlicDestination::ProcessDeliveryStatusMessage (msg);
}
uint32_t RouterContext::GetUptime () const
{
return i2p::util::GetSecondsSinceEpoch () - m_StartupTime;
}
}

View file

@ -14,94 +14,94 @@
namespace i2p
{
const char ROUTER_INFO[] = "router.info";
const char ROUTER_KEYS[] = "router.keys";
const int ROUTER_INFO_UPDATE_INTERVAL = 1800; // 30 minutes
const char ROUTER_INFO_PROPERTY_LEASESETS[] = "netdb.knownLeaseSets";
const char ROUTER_INFO_PROPERTY_ROUTERS[] = "netdb.knownRouters";
const char ROUTER_INFO[] = "router.info";
const char ROUTER_KEYS[] = "router.keys";
const int ROUTER_INFO_UPDATE_INTERVAL = 1800; // 30 minutes
const char ROUTER_INFO_PROPERTY_LEASESETS[] = "netdb.knownLeaseSets";
const char ROUTER_INFO_PROPERTY_ROUTERS[] = "netdb.knownRouters";
enum RouterStatus
{
eRouterStatusOK = 0,
eRouterStatusTesting = 1,
eRouterStatusFirewalled = 2
};
enum RouterStatus
{
eRouterStatusOK = 0,
eRouterStatusTesting = 1,
eRouterStatusFirewalled = 2
};
class RouterContext: public i2p::garlic::GarlicDestination
{
public:
class RouterContext: public i2p::garlic::GarlicDestination
{
public:
RouterContext ();
void Init ();
RouterContext ();
void Init ();
i2p::data::RouterInfo& GetRouterInfo () { return m_RouterInfo; };
std::shared_ptr<const i2p::data::RouterInfo> GetSharedRouterInfo () const
{
return std::shared_ptr<const i2p::data::RouterInfo> (&m_RouterInfo,
[](const i2p::data::RouterInfo *) {});
}
CryptoPP::RandomNumberGenerator& GetRandomNumberGenerator () { return m_Rnd; };
uint32_t GetUptime () const;
uint32_t GetStartupTime () const { return m_StartupTime; };
uint64_t GetLastUpdateTime () const { return m_LastUpdateTime; };
RouterStatus GetStatus () const { return m_Status; };
void SetStatus (RouterStatus status) { m_Status = status; };
i2p::data::RouterInfo& GetRouterInfo () { return m_RouterInfo; };
std::shared_ptr<const i2p::data::RouterInfo> GetSharedRouterInfo () const
{
return std::shared_ptr<const i2p::data::RouterInfo> (&m_RouterInfo,
[](const i2p::data::RouterInfo *) {});
}
CryptoPP::RandomNumberGenerator& GetRandomNumberGenerator () { return m_Rnd; };
uint32_t GetUptime () const;
uint32_t GetStartupTime () const { return m_StartupTime; };
uint64_t GetLastUpdateTime () const { return m_LastUpdateTime; };
RouterStatus GetStatus () const { return m_Status; };
void SetStatus (RouterStatus status) { m_Status = status; };
void UpdatePort (int port); // called from Daemon
void UpdateAddress (const boost::asio::ip::address& host); // called from SSU or Daemon
bool AddIntroducer (const i2p::data::RouterInfo& routerInfo, uint32_t tag);
void RemoveIntroducer (const boost::asio::ip::udp::endpoint& e);
bool IsUnreachable () const;
void SetUnreachable ();
void SetReachable ();
bool IsFloodfill () const { return m_IsFloodfill; };
void SetFloodfill (bool floodfill);
void SetHighBandwidth ();
void SetLowBandwidth ();
bool AcceptsTunnels () const { return m_AcceptsTunnels; };
void SetAcceptsTunnels (bool acceptsTunnels) { m_AcceptsTunnels = acceptsTunnels; };
bool SupportsV6 () const { return m_RouterInfo.IsV6 (); };
void SetSupportsV6 (bool supportsV6);
void UpdateNTCPV6Address (const boost::asio::ip::address& host); // called from NTCP session
void UpdateStats ();
void UpdatePort (int port); // called from Daemon
void UpdateAddress (const boost::asio::ip::address& host); // called from SSU or Daemon
bool AddIntroducer (const i2p::data::RouterInfo& routerInfo, uint32_t tag);
void RemoveIntroducer (const boost::asio::ip::udp::endpoint& e);
bool IsUnreachable () const;
void SetUnreachable ();
void SetReachable ();
bool IsFloodfill () const { return m_IsFloodfill; };
void SetFloodfill (bool floodfill);
void SetHighBandwidth ();
void SetLowBandwidth ();
bool AcceptsTunnels () const { return m_AcceptsTunnels; };
void SetAcceptsTunnels (bool acceptsTunnels) { m_AcceptsTunnels = acceptsTunnels; };
bool SupportsV6 () const { return m_RouterInfo.IsV6 (); };
void SetSupportsV6 (bool supportsV6);
void UpdateNTCPV6Address (const boost::asio::ip::address& host); // called from NTCP session
void UpdateStats ();
// implements LocalDestination
const i2p::data::PrivateKeys& GetPrivateKeys () const { return m_Keys; };
const uint8_t * GetEncryptionPrivateKey () const { return m_Keys.GetPrivateKey (); };
const uint8_t * GetEncryptionPublicKey () const { return GetIdentity ().GetStandardIdentity ().publicKey; };
void SetLeaseSetUpdated () {};
// implements LocalDestination
const i2p::data::PrivateKeys& GetPrivateKeys () const { return m_Keys; };
const uint8_t * GetEncryptionPrivateKey () const { return m_Keys.GetPrivateKey (); };
const uint8_t * GetEncryptionPublicKey () const { return GetIdentity ().GetStandardIdentity ().publicKey; };
void SetLeaseSetUpdated () {};
// implements GarlicDestination
std::shared_ptr<const i2p::data::LeaseSet> GetLeaseSet () { return nullptr; };
std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () const;
void HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
// implements GarlicDestination
std::shared_ptr<const i2p::data::LeaseSet> GetLeaseSet () { return nullptr; };
std::shared_ptr<i2p::tunnel::TunnelPool> GetTunnelPool () const;
void HandleI2NPMessage (const uint8_t * buf, size_t len, std::shared_ptr<i2p::tunnel::InboundTunnel> from);
// override GarlicDestination
void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
private:
// override GarlicDestination
void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void ProcessDeliveryStatusMessage (std::shared_ptr<I2NPMessage> msg);
private:
void CreateNewRouter ();
void NewRouterInfo ();
void UpdateRouterInfo ();
bool Load ();
void SaveKeys ();
private:
void CreateNewRouter ();
void NewRouterInfo ();
void UpdateRouterInfo ();
bool Load ();
void SaveKeys ();
private:
i2p::data::RouterInfo m_RouterInfo;
i2p::data::PrivateKeys m_Keys;
CryptoPP::AutoSeededRandomPool m_Rnd;
uint64_t m_LastUpdateTime;
bool m_AcceptsTunnels, m_IsFloodfill;
uint64_t m_StartupTime; // in seconds since epoch
RouterStatus m_Status;
std::mutex m_GarlicMutex;
};
i2p::data::RouterInfo m_RouterInfo;
i2p::data::PrivateKeys m_Keys;
CryptoPP::AutoSeededRandomPool m_Rnd;
uint64_t m_LastUpdateTime;
bool m_AcceptsTunnels, m_IsFloodfill;
uint64_t m_StartupTime; // in seconds since epoch
RouterStatus m_Status;
std::mutex m_GarlicMutex;
};
extern RouterContext context;
}
extern RouterContext context;
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -14,169 +14,170 @@ namespace i2p
{
namespace data
{
const char CAPS_FLAG_FLOODFILL = 'f';
const char CAPS_FLAG_HIDDEN = 'H';
const char CAPS_FLAG_REACHABLE = 'R';
const char CAPS_FLAG_UNREACHABLE = 'U';
const char CAPS_FLAG_LOW_BANDWIDTH1 = 'K';
const char CAPS_FLAG_LOW_BANDWIDTH2 = 'L';
const char CAPS_FLAG_HIGH_BANDWIDTH1 = 'M';
const char CAPS_FLAG_HIGH_BANDWIDTH2 = 'N';
const char CAPS_FLAG_HIGH_BANDWIDTH3 = 'O';
const char CAPS_FLAG_FLOODFILL = 'f';
const char CAPS_FLAG_HIDDEN = 'H';
const char CAPS_FLAG_REACHABLE = 'R';
const char CAPS_FLAG_UNREACHABLE = 'U';
const char CAPS_FLAG_LOW_BANDWIDTH1 = 'K';
const char CAPS_FLAG_LOW_BANDWIDTH2 = 'L';
const char CAPS_FLAG_HIGH_BANDWIDTH1 = 'M';
const char CAPS_FLAG_HIGH_BANDWIDTH2 = 'N';
const char CAPS_FLAG_HIGH_BANDWIDTH3 = 'O';
const char CAPS_FLAG_SSU_TESTING = 'B';
const char CAPS_FLAG_SSU_INTRODUCER = 'C';
const char CAPS_FLAG_SSU_TESTING = 'B';
const char CAPS_FLAG_SSU_INTRODUCER = 'C';
const int MAX_RI_BUFFER_SIZE = 2048;
class RouterInfo: public RoutingDestination
{
public:
const int MAX_RI_BUFFER_SIZE = 2048;
class RouterInfo: public RoutingDestination
{
public:
enum SupportedTranports
{
eNTCPV4 = 0x01,
eNTCPV6 = 0x02,
eSSUV4 = 0x04,
eSSUV6 = 0x08
};
enum Caps
{
eFloodfill = 0x01,
eHighBandwidth = 0x02,
eReachable = 0x04,
eSSUTesting = 0x08,
eSSUIntroducer = 0x10,
eHidden = 0x20,
eUnreachable = 0x40
};
enum SupportedTranports
{
eNTCPV4 = 0x01,
eNTCPV6 = 0x02,
eSSUV4 = 0x04,
eSSUV6 = 0x08
};
enum Caps
{
eFloodfill = 0x01,
eHighBandwidth = 0x02,
eReachable = 0x04,
eSSUTesting = 0x08,
eSSUIntroducer = 0x10,
eHidden = 0x20,
eUnreachable = 0x40
};
enum TransportStyle
{
eTransportUnknown = 0,
eTransportNTCP,
eTransportSSU
};
enum TransportStyle
{
eTransportUnknown = 0,
eTransportNTCP,
eTransportSSU
};
struct Introducer
{
boost::asio::ip::address iHost;
int iPort;
Tag<32> iKey;
uint32_t iTag;
};
struct Introducer
{
boost::asio::ip::address iHost;
int iPort;
Tag<32> iKey;
uint32_t iTag;
};
struct Address
{
TransportStyle transportStyle;
boost::asio::ip::address host;
std::string addressString;
int port, mtu;
uint64_t date;
uint8_t cost;
// SSU only
Tag<32> key; // intro key for SSU
std::vector<Introducer> introducers;
struct Address
{
TransportStyle transportStyle;
boost::asio::ip::address host;
std::string addressString;
int port, mtu;
uint64_t date;
uint8_t cost;
// SSU only
Tag<32> key; // intro key for SSU
std::vector<Introducer> introducers;
bool IsCompatible (const boost::asio::ip::address& other) const
{
return (host.is_v4 () && other.is_v4 ()) ||
(host.is_v6 () && other.is_v6 ());
}
};
RouterInfo (const std::string& fullPath);
RouterInfo (): m_Buffer (nullptr) { };
RouterInfo (const RouterInfo& ) = default;
RouterInfo& operator=(const RouterInfo& ) = default;
RouterInfo (const uint8_t * buf, int len);
~RouterInfo ();
const IdentityEx& GetRouterIdentity () const { return m_RouterIdentity; };
void SetRouterIdentity (const IdentityEx& identity);
std::string GetIdentHashBase64 () const { return GetIdentHash ().ToBase64 (); };
std::string GetIdentHashAbbreviation () const { return GetIdentHash ().ToBase64 ().substr (0, 4); };
uint64_t GetTimestamp () const { return m_Timestamp; };
std::vector<Address>& GetAddresses () { return m_Addresses; };
const Address * GetNTCPAddress (bool v4only = true) const;
const Address * GetSSUAddress (bool v4only = true) const;
const Address * GetSSUV6Address () const;
void AddNTCPAddress (const char * host, int port);
void AddSSUAddress (const char * host, int port, const uint8_t * key, int mtu = 0);
bool AddIntroducer (const Address * address, uint32_t tag);
bool RemoveIntroducer (const boost::asio::ip::udp::endpoint& e);
void SetProperty (const std::string& key, const std::string& value); // called from RouterContext only
void DeleteProperty (const std::string& key); // called from RouterContext only
void ClearProperties () { m_Properties.clear (); };
bool IsFloodfill () const;
bool IsNTCP (bool v4only = true) const;
bool IsSSU (bool v4only = true) const;
bool IsV6 () const;
void EnableV6 ();
void DisableV6 ();
bool IsCompatible (const RouterInfo& other) const { return m_SupportedTransports & other.m_SupportedTransports; };
bool UsesIntroducer () const;
bool IsIntroducer () const { return m_Caps & eSSUIntroducer; };
bool IsPeerTesting () const { return m_Caps & eSSUTesting; };
bool IsHidden () const { return m_Caps & eHidden; };
bool IsHighBandwidth () const { return m_Caps & RouterInfo::eHighBandwidth; };
bool IsCompatible (const boost::asio::ip::address& other) const
{
return (host.is_v4 () && other.is_v4 ()) ||
(host.is_v6 () && other.is_v6 ());
}
};
RouterInfo (const std::string& fullPath);
RouterInfo (): m_Buffer (nullptr) { };
uint8_t GetCaps () const { return m_Caps; };
void SetCaps (uint8_t caps);
void SetCaps (const char * caps);
RouterInfo (const RouterInfo& ) = default;
RouterInfo& operator=(const RouterInfo& ) = default;
RouterInfo (const uint8_t * buf, int len);
~RouterInfo ();
const IdentityEx& GetRouterIdentity () const { return m_RouterIdentity; };
void SetRouterIdentity (const IdentityEx& identity);
std::string GetIdentHashBase64 () const { return GetIdentHash ().ToBase64 (); };
std::string GetIdentHashAbbreviation () const { return GetIdentHash ().ToBase64 ().substr (0, 4); };
uint64_t GetTimestamp () const { return m_Timestamp; };
std::vector<Address>& GetAddresses () { return m_Addresses; };
const Address * GetNTCPAddress (bool v4only = true) const;
const Address * GetSSUAddress (bool v4only = true) const;
const Address * GetSSUV6Address () const;
void AddNTCPAddress (const char * host, int port);
void AddSSUAddress (const char * host, int port, const uint8_t * key, int mtu = 0);
bool AddIntroducer (const Address * address, uint32_t tag);
bool RemoveIntroducer (const boost::asio::ip::udp::endpoint& e);
void SetProperty (const std::string& key, const std::string& value); // called from RouterContext only
void DeleteProperty (const std::string& key); // called from RouterContext only
void ClearProperties () { m_Properties.clear (); };
bool IsFloodfill () const;
bool IsNTCP (bool v4only = true) const;
bool IsSSU (bool v4only = true) const;
bool IsV6 () const;
void EnableV6 ();
void DisableV6 ();
bool IsCompatible (const RouterInfo& other) const { return m_SupportedTransports & other.m_SupportedTransports; };
bool UsesIntroducer () const;
bool IsIntroducer () const { return m_Caps & eSSUIntroducer; };
bool IsPeerTesting () const { return m_Caps & eSSUTesting; };
bool IsHidden () const { return m_Caps & eHidden; };
bool IsHighBandwidth () const { return m_Caps & RouterInfo::eHighBandwidth; };
void SetUnreachable (bool unreachable) { m_IsUnreachable = unreachable; };
bool IsUnreachable () const { return m_IsUnreachable; };
uint8_t GetCaps () const { return m_Caps; };
void SetCaps (uint8_t caps);
void SetCaps (const char * caps);
const uint8_t * GetBuffer () const { return m_Buffer; };
const uint8_t * LoadBuffer (); // load if necessary
int GetBufferLen () const { return m_BufferLen; };
void CreateBuffer (const PrivateKeys& privateKeys);
void SetUnreachable (bool unreachable) { m_IsUnreachable = unreachable; };
bool IsUnreachable () const { return m_IsUnreachable; };
bool IsUpdated () const { return m_IsUpdated; };
void SetUpdated (bool updated) { m_IsUpdated = updated; };
void SaveToFile (const std::string& fullPath);
const uint8_t * GetBuffer () const { return m_Buffer; };
const uint8_t * LoadBuffer (); // load if necessary
int GetBufferLen () const { return m_BufferLen; };
void CreateBuffer (const PrivateKeys& privateKeys);
std::shared_ptr<RouterProfile> GetProfile () const;
void SaveProfile () { if (m_Profile) m_Profile->Save (); };
void Update (const uint8_t * buf, int len);
void DeleteBuffer () { delete[] m_Buffer; m_Buffer = nullptr; };
// implements RoutingDestination
const IdentHash& GetIdentHash () const { return m_RouterIdentity.GetIdentHash (); };
const uint8_t * GetEncryptionPublicKey () const { return m_RouterIdentity.GetStandardIdentity ().publicKey; };
bool IsDestination () const { return false; };
bool IsUpdated () const { return m_IsUpdated; };
void SetUpdated (bool updated) { m_IsUpdated = updated; };
void SaveToFile (const std::string& fullPath);
private:
std::shared_ptr<RouterProfile> GetProfile () const;
void SaveProfile () { if (m_Profile) m_Profile->Save (); };
void Update (const uint8_t * buf, int len);
void DeleteBuffer () { delete[] m_Buffer; m_Buffer = nullptr; };
// implements RoutingDestination
const IdentHash& GetIdentHash () const { return m_RouterIdentity.GetIdentHash (); };
const uint8_t * GetEncryptionPublicKey () const { return m_RouterIdentity.GetStandardIdentity ().publicKey; };
bool IsDestination () const { return false; };
bool LoadFile ();
void ReadFromFile ();
void ReadFromStream (std::istream& s);
void ReadFromBuffer (bool verifySignature);
void WriteToStream (std::ostream& s);
size_t ReadString (char * str, std::istream& s);
void WriteString (const std::string& str, std::ostream& s);
void ExtractCaps (const char * value);
const Address * GetAddress (TransportStyle s, bool v4only, bool v6only = false) const;
void UpdateCapsProperty ();
private:
private:
bool LoadFile ();
void ReadFromFile ();
void ReadFromStream (std::istream& s);
void ReadFromBuffer (bool verifySignature);
void WriteToStream (std::ostream& s);
size_t ReadString (char * str, std::istream& s);
void WriteString (const std::string& str, std::ostream& s);
void ExtractCaps (const char * value);
const Address * GetAddress (TransportStyle s, bool v4only, bool v6only = false) const;
void UpdateCapsProperty ();
std::string m_FullPath;
IdentityEx m_RouterIdentity;
uint8_t * m_Buffer;
int m_BufferLen;
uint64_t m_Timestamp;
std::vector<Address> m_Addresses;
std::map<std::string, std::string> m_Properties;
bool m_IsUpdated, m_IsUnreachable;
uint8_t m_SupportedTransports, m_Caps;
mutable std::shared_ptr<RouterProfile> m_Profile;
};
}
private:
std::string m_FullPath;
IdentityEx m_RouterIdentity;
uint8_t * m_Buffer;
int m_BufferLen;
uint64_t m_Timestamp;
std::vector<Address> m_Addresses;
std::map<std::string, std::string> m_Properties;
bool m_IsUpdated, m_IsUnreachable;
uint8_t m_SupportedTransports, m_Caps;
mutable std::shared_ptr<RouterProfile> m_Profile;
};
}
}
#endif

1636
SAM.cpp

File diff suppressed because it is too large Load diff

286
SAM.h
View file

@ -18,173 +18,173 @@ namespace i2p
{
namespace client
{
const size_t SAM_SOCKET_BUFFER_SIZE = 8192;
const int SAM_SOCKET_CONNECTION_MAX_IDLE = 3600; // in seconds
const int SAM_SESSION_READINESS_CHECK_INTERVAL = 20; // in seconds
const char SAM_HANDSHAKE[] = "HELLO VERSION";
const char SAM_HANDSHAKE_REPLY[] = "HELLO REPLY RESULT=OK VERSION=%s\n";
const char SAM_HANDSHAKE_I2P_ERROR[] = "HELLO REPLY RESULT=I2P_ERROR\n";
const char SAM_SESSION_CREATE[] = "SESSION CREATE";
const char SAM_SESSION_CREATE_REPLY_OK[] = "SESSION STATUS RESULT=OK DESTINATION=%s\n";
const char SAM_SESSION_CREATE_DUPLICATED_ID[] = "SESSION STATUS RESULT=DUPLICATED_ID\n";
const char SAM_SESSION_CREATE_DUPLICATED_DEST[] = "SESSION STATUS RESULT=DUPLICATED_DEST\n";
const char SAM_SESSION_STATUS_INVALID_KEY[] = "SESSION STATUS RESULT=INVALID_KEY\n";
const char SAM_STREAM_CONNECT[] = "STREAM CONNECT";
const char SAM_STREAM_STATUS_OK[] = "STREAM STATUS RESULT=OK\n";
const char SAM_STREAM_STATUS_INVALID_ID[] = "STREAM STATUS RESULT=INVALID_ID\n";
const char SAM_STREAM_STATUS_CANT_REACH_PEER[] = "STREAM STATUS RESULT=CANT_REACH_PEER\n";
const char SAM_STREAM_STATUS_I2P_ERROR[] = "STREAM STATUS RESULT=I2P_ERROR\n";
const char SAM_STREAM_ACCEPT[] = "STREAM ACCEPT";
const char SAM_DATAGRAM_SEND[] = "DATAGRAM SEND";
const char SAM_DEST_GENERATE[] = "DEST GENERATE";
const char SAM_DEST_REPLY[] = "DEST REPLY PUB=%s PRIV=%s\n";
const char SAM_DEST_REPLY_I2P_ERROR[] = "DEST REPLY RESULT=I2P_ERROR\n";
const char SAM_NAMING_LOOKUP[] = "NAMING LOOKUP";
const char SAM_NAMING_REPLY[] = "NAMING REPLY RESULT=OK NAME=ME VALUE=%s\n";
const char SAM_DATAGRAM_RECEIVED[] = "DATAGRAM RECEIVED DESTINATION=%s SIZE=%lu\n";
const char SAM_NAMING_REPLY_INVALID_KEY[] = "NAMING REPLY RESULT=INVALID_KEY NAME=%s\n";
const char SAM_NAMING_REPLY_KEY_NOT_FOUND[] = "NAMING REPLY RESULT=INVALID_KEY_NOT_FOUND NAME=%s\n";
const char SAM_PARAM_MIN[] = "MIN";
const char SAM_PARAM_MAX[] = "MAX";
const char SAM_PARAM_STYLE[] = "STYLE";
const char SAM_PARAM_ID[] = "ID";
const char SAM_PARAM_SILENT[] = "SILENT";
const char SAM_PARAM_DESTINATION[] = "DESTINATION";
const char SAM_PARAM_NAME[] = "NAME";
const char SAM_PARAM_SIGNATURE_TYPE[] = "SIGNATURE_TYPE";
const char SAM_PARAM_SIZE[] = "SIZE";
const char SAM_VALUE_TRANSIENT[] = "TRANSIENT";
const char SAM_VALUE_STREAM[] = "STREAM";
const char SAM_VALUE_DATAGRAM[] = "DATAGRAM";
const char SAM_VALUE_RAW[] = "RAW";
const char SAM_VALUE_TRUE[] = "true";
const char SAM_VALUE_FALSE[] = "false";
const size_t SAM_SOCKET_BUFFER_SIZE = 8192;
const int SAM_SOCKET_CONNECTION_MAX_IDLE = 3600; // in seconds
const int SAM_SESSION_READINESS_CHECK_INTERVAL = 20; // in seconds
const char SAM_HANDSHAKE[] = "HELLO VERSION";
const char SAM_HANDSHAKE_REPLY[] = "HELLO REPLY RESULT=OK VERSION=%s\n";
const char SAM_HANDSHAKE_I2P_ERROR[] = "HELLO REPLY RESULT=I2P_ERROR\n";
const char SAM_SESSION_CREATE[] = "SESSION CREATE";
const char SAM_SESSION_CREATE_REPLY_OK[] = "SESSION STATUS RESULT=OK DESTINATION=%s\n";
const char SAM_SESSION_CREATE_DUPLICATED_ID[] = "SESSION STATUS RESULT=DUPLICATED_ID\n";
const char SAM_SESSION_CREATE_DUPLICATED_DEST[] = "SESSION STATUS RESULT=DUPLICATED_DEST\n";
const char SAM_SESSION_STATUS_INVALID_KEY[] = "SESSION STATUS RESULT=INVALID_KEY\n";
const char SAM_STREAM_CONNECT[] = "STREAM CONNECT";
const char SAM_STREAM_STATUS_OK[] = "STREAM STATUS RESULT=OK\n";
const char SAM_STREAM_STATUS_INVALID_ID[] = "STREAM STATUS RESULT=INVALID_ID\n";
const char SAM_STREAM_STATUS_CANT_REACH_PEER[] = "STREAM STATUS RESULT=CANT_REACH_PEER\n";
const char SAM_STREAM_STATUS_I2P_ERROR[] = "STREAM STATUS RESULT=I2P_ERROR\n";
const char SAM_STREAM_ACCEPT[] = "STREAM ACCEPT";
const char SAM_DATAGRAM_SEND[] = "DATAGRAM SEND";
const char SAM_DEST_GENERATE[] = "DEST GENERATE";
const char SAM_DEST_REPLY[] = "DEST REPLY PUB=%s PRIV=%s\n";
const char SAM_DEST_REPLY_I2P_ERROR[] = "DEST REPLY RESULT=I2P_ERROR\n";
const char SAM_NAMING_LOOKUP[] = "NAMING LOOKUP";
const char SAM_NAMING_REPLY[] = "NAMING REPLY RESULT=OK NAME=ME VALUE=%s\n";
const char SAM_DATAGRAM_RECEIVED[] = "DATAGRAM RECEIVED DESTINATION=%s SIZE=%lu\n";
const char SAM_NAMING_REPLY_INVALID_KEY[] = "NAMING REPLY RESULT=INVALID_KEY NAME=%s\n";
const char SAM_NAMING_REPLY_KEY_NOT_FOUND[] = "NAMING REPLY RESULT=INVALID_KEY_NOT_FOUND NAME=%s\n";
const char SAM_PARAM_MIN[] = "MIN";
const char SAM_PARAM_MAX[] = "MAX";
const char SAM_PARAM_STYLE[] = "STYLE";
const char SAM_PARAM_ID[] = "ID";
const char SAM_PARAM_SILENT[] = "SILENT";
const char SAM_PARAM_DESTINATION[] = "DESTINATION";
const char SAM_PARAM_NAME[] = "NAME";
const char SAM_PARAM_SIGNATURE_TYPE[] = "SIGNATURE_TYPE";
const char SAM_PARAM_SIZE[] = "SIZE";
const char SAM_VALUE_TRANSIENT[] = "TRANSIENT";
const char SAM_VALUE_STREAM[] = "STREAM";
const char SAM_VALUE_DATAGRAM[] = "DATAGRAM";
const char SAM_VALUE_RAW[] = "RAW";
const char SAM_VALUE_TRUE[] = "true";
const char SAM_VALUE_FALSE[] = "false";
enum SAMSocketType
{
eSAMSocketTypeUnknown,
eSAMSocketTypeSession,
eSAMSocketTypeStream,
eSAMSocketTypeAcceptor,
eSAMSocketTypeTerminated
};
enum SAMSocketType
{
eSAMSocketTypeUnknown,
eSAMSocketTypeSession,
eSAMSocketTypeStream,
eSAMSocketTypeAcceptor,
eSAMSocketTypeTerminated
};
class SAMBridge;
struct SAMSession;
class SAMSocket: public std::enable_shared_from_this<SAMSocket>
{
public:
class SAMBridge;
struct SAMSession;
class SAMSocket: public std::enable_shared_from_this<SAMSocket>
{
public:
SAMSocket (SAMBridge& owner);
~SAMSocket ();
void CloseStream (); // TODO: implement it better
SAMSocket (SAMBridge& owner);
~SAMSocket ();
void CloseStream (); // TODO: implement it better
boost::asio::ip::tcp::socket& GetSocket () { return m_Socket; };
void ReceiveHandshake ();
void SetSocketType (SAMSocketType socketType) { m_SocketType = socketType; };
SAMSocketType GetSocketType () const { return m_SocketType; };
boost::asio::ip::tcp::socket& GetSocket () { return m_Socket; };
void ReceiveHandshake ();
void SetSocketType (SAMSocketType socketType) { m_SocketType = socketType; };
SAMSocketType GetSocketType () const { return m_SocketType; };
private:
private:
void Terminate ();
void HandleHandshakeReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleHandshakeReplySent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleMessage (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void SendMessageReply (const char * msg, size_t len, bool close);
void HandleMessageReplySent (const boost::system::error_code& ecode, std::size_t bytes_transferred, bool close);
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void Terminate ();
void HandleHandshakeReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleHandshakeReplySent (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleMessage (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void SendMessageReply (const char * msg, size_t len, bool close);
void HandleMessageReplySent (const boost::system::error_code& ecode, std::size_t bytes_transferred, bool close);
void Receive ();
void HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void I2PReceive ();
void HandleI2PReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleI2PAccept (std::shared_ptr<i2p::stream::Stream> stream);
void HandleWriteI2PData (const boost::system::error_code& ecode);
void HandleI2PDatagramReceive (const i2p::data::IdentityEx& from, uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len);
void I2PReceive ();
void HandleI2PReceive (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void HandleI2PAccept (std::shared_ptr<i2p::stream::Stream> stream);
void HandleWriteI2PData (const boost::system::error_code& ecode);
void HandleI2PDatagramReceive (const i2p::data::IdentityEx& from, uint16_t fromPort, uint16_t toPort, const uint8_t * buf, size_t len);
void ProcessSessionCreate (char * buf, size_t len);
void ProcessStreamConnect (char * buf, size_t len);
void ProcessStreamAccept (char * buf, size_t len);
void ProcessDestGenerate ();
void ProcessNamingLookup (char * buf, size_t len);
size_t ProcessDatagramSend (char * buf, size_t len, const char * data); // from SAM 1.0
void ExtractParams (char * buf, std::map<std::string, std::string>& params);
void ProcessSessionCreate (char * buf, size_t len);
void ProcessStreamConnect (char * buf, size_t len);
void ProcessStreamAccept (char * buf, size_t len);
void ProcessDestGenerate ();
void ProcessNamingLookup (char * buf, size_t len);
size_t ProcessDatagramSend (char * buf, size_t len, const char * data); // from SAM 1.0
void ExtractParams (char * buf, std::map<std::string, std::string>& params);
void Connect (std::shared_ptr<const i2p::data::LeaseSet> remote);
void HandleConnectLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet);
void SendNamingLookupReply (const i2p::data::IdentityEx& identity);
void HandleNamingLookupLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet, i2p::data::IdentHash ident);
void HandleSessionReadinessCheckTimer (const boost::system::error_code& ecode);
void SendSessionCreateReplyOk ();
void Connect (std::shared_ptr<const i2p::data::LeaseSet> remote);
void HandleConnectLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet);
void SendNamingLookupReply (const i2p::data::IdentityEx& identity);
void HandleNamingLookupLeaseSetRequestComplete (std::shared_ptr<i2p::data::LeaseSet> leaseSet, i2p::data::IdentHash ident);
void HandleSessionReadinessCheckTimer (const boost::system::error_code& ecode);
void SendSessionCreateReplyOk ();
private:
private:
SAMBridge& m_Owner;
boost::asio::ip::tcp::socket m_Socket;
boost::asio::deadline_timer m_Timer;
char m_Buffer[SAM_SOCKET_BUFFER_SIZE + 1];
size_t m_BufferOffset;
uint8_t m_StreamBuffer[SAM_SOCKET_BUFFER_SIZE];
SAMSocketType m_SocketType;
std::string m_ID; // nickname
bool m_IsSilent;
std::shared_ptr<i2p::stream::Stream> m_Stream;
SAMSession * m_Session;
};
SAMBridge& m_Owner;
boost::asio::ip::tcp::socket m_Socket;
boost::asio::deadline_timer m_Timer;
char m_Buffer[SAM_SOCKET_BUFFER_SIZE + 1];
size_t m_BufferOffset;
uint8_t m_StreamBuffer[SAM_SOCKET_BUFFER_SIZE];
SAMSocketType m_SocketType;
std::string m_ID; // nickname
bool m_IsSilent;
std::shared_ptr<i2p::stream::Stream> m_Stream;
SAMSession * m_Session;
};
struct SAMSession
{
std::shared_ptr<ClientDestination> localDestination;
std::list<std::shared_ptr<SAMSocket> > sockets;
SAMSession (std::shared_ptr<ClientDestination> dest);
~SAMSession ();
struct SAMSession
{
std::shared_ptr<ClientDestination> localDestination;
std::list<std::shared_ptr<SAMSocket> > sockets;
SAMSession (std::shared_ptr<ClientDestination> dest);
~SAMSession ();
void CloseStreams ();
};
void CloseStreams ();
};
class SAMBridge
{
public:
class SAMBridge
{
public:
SAMBridge (int port);
~SAMBridge ();
SAMBridge (int port);
~SAMBridge ();
void Start ();
void Stop ();
boost::asio::io_service& GetService () { return m_Service; };
SAMSession * CreateSession (const std::string& id, const std::string& destination, // empty string means transient
const std::map<std::string, std::string> * params);
void CloseSession (const std::string& id);
SAMSession * FindSession (const std::string& id) const;
void Start ();
void Stop ();
boost::asio::io_service& GetService () { return m_Service; };
SAMSession * CreateSession (const std::string& id, const std::string& destination, // empty string means transient
const std::map<std::string, std::string> * params);
void CloseSession (const std::string& id);
SAMSession * FindSession (const std::string& id) const;
private:
private:
void Run ();
void Run ();
void Accept ();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<SAMSocket> socket);
void Accept ();
void HandleAccept(const boost::system::error_code& ecode, std::shared_ptr<SAMSocket> socket);
void ReceiveDatagram ();
void HandleReceivedDatagram (const boost::system::error_code& ecode, std::size_t bytes_transferred);
void ReceiveDatagram ();
void HandleReceivedDatagram (const boost::system::error_code& ecode, std::size_t bytes_transferred);
private:
private:
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::ip::udp::endpoint m_DatagramEndpoint, m_SenderEndpoint;
boost::asio::ip::udp::socket m_DatagramSocket;
mutable std::mutex m_SessionsMutex;
std::map<std::string, SAMSession *> m_Sessions;
uint8_t m_DatagramReceiveBuffer[i2p::datagram::MAX_DATAGRAM_SIZE+1];
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::ip::tcp::acceptor m_Acceptor;
boost::asio::ip::udp::endpoint m_DatagramEndpoint, m_SenderEndpoint;
boost::asio::ip::udp::socket m_DatagramSocket;
mutable std::mutex m_SessionsMutex;
std::map<std::string, SAMSession *> m_Sessions;
uint8_t m_DatagramReceiveBuffer[i2p::datagram::MAX_DATAGRAM_SIZE+1];
public:
public:
// for HTTP
const decltype(m_Sessions)& GetSessions () const { return m_Sessions; };
};
// for HTTP
const decltype(m_Sessions)& GetSessions () const { return m_Sessions; };
};
}
}

1064
SOCKS.cpp

File diff suppressed because it is too large Load diff

22
SOCKS.h
View file

@ -11,20 +11,20 @@ namespace i2p
{
namespace proxy
{
class SOCKSServer: public i2p::client::TCPIPAcceptor
{
public:
class SOCKSServer: public i2p::client::TCPIPAcceptor
{
public:
SOCKSServer(int port, std::shared_ptr<i2p::client::ClientDestination> localDestination = nullptr);
~SOCKSServer() {};
SOCKSServer(int port, std::shared_ptr<i2p::client::ClientDestination> localDestination = nullptr);
~SOCKSServer() {};
protected:
// Implements TCPIPAcceptor
std::shared_ptr<i2p::client::I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket);
const char* GetName() { return "SOCKS"; }
};
protected:
// Implements TCPIPAcceptor
std::shared_ptr<i2p::client::I2PServiceHandler> CreateHandler(std::shared_ptr<boost::asio::ip::tcp::socket> socket);
const char* GetName() { return "SOCKS"; }
};
typedef SOCKSServer SOCKSProxy;
typedef SOCKSServer SOCKSProxy;
}
}

1016
SSU.cpp

File diff suppressed because it is too large Load diff

152
SSU.h
View file

@ -20,93 +20,93 @@ namespace i2p
{
namespace transport
{
const int SSU_KEEP_ALIVE_INTERVAL = 30; // 30 seconds
const int SSU_PEER_TEST_TIMEOUT = 60; // 60 seconds
const int SSU_TO_INTRODUCER_SESSION_DURATION = 3600; // 1 hour
const size_t SSU_MAX_NUM_INTRODUCERS = 3;
const int SSU_KEEP_ALIVE_INTERVAL = 30; // 30 seconds
const int SSU_PEER_TEST_TIMEOUT = 60; // 60 seconds
const int SSU_TO_INTRODUCER_SESSION_DURATION = 3600; // 1 hour
const size_t SSU_MAX_NUM_INTRODUCERS = 3;
struct SSUPacket
{
i2p::crypto::AESAlignedBuffer<1500> buf;
boost::asio::ip::udp::endpoint from;
size_t len;
};
class SSUServer
{
public:
struct SSUPacket
{
i2p::crypto::AESAlignedBuffer<1500> buf;
boost::asio::ip::udp::endpoint from;
size_t len;
};
class SSUServer
{
public:
SSUServer (int port);
~SSUServer ();
void Start ();
void Stop ();
std::shared_ptr<SSUSession> GetSession (std::shared_ptr<const i2p::data::RouterInfo> router, bool peerTest = false);
std::shared_ptr<SSUSession> FindSession (std::shared_ptr<const i2p::data::RouterInfo> router) const;
std::shared_ptr<SSUSession> FindSession (const boost::asio::ip::udp::endpoint& e) const;
std::shared_ptr<SSUSession> GetRandomEstablishedSession (std::shared_ptr<const SSUSession> excluded);
void DeleteSession (std::shared_ptr<SSUSession> session);
void DeleteAllSessions ();
SSUServer (int port);
~SSUServer ();
void Start ();
void Stop ();
std::shared_ptr<SSUSession> GetSession (std::shared_ptr<const i2p::data::RouterInfo> router, bool peerTest = false);
std::shared_ptr<SSUSession> FindSession (std::shared_ptr<const i2p::data::RouterInfo> router) const;
std::shared_ptr<SSUSession> FindSession (const boost::asio::ip::udp::endpoint& e) const;
std::shared_ptr<SSUSession> GetRandomEstablishedSession (std::shared_ptr<const SSUSession> excluded);
void DeleteSession (std::shared_ptr<SSUSession> session);
void DeleteAllSessions ();
boost::asio::io_service& GetService () { return m_Service; };
boost::asio::io_service& GetServiceV6 () { return m_ServiceV6; };
const boost::asio::ip::udp::endpoint& GetEndpoint () const { return m_Endpoint; };
void Send (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& to);
void AddRelay (uint32_t tag, const boost::asio::ip::udp::endpoint& relay);
std::shared_ptr<SSUSession> FindRelaySession (uint32_t tag);
boost::asio::io_service& GetService () { return m_Service; };
boost::asio::io_service& GetServiceV6 () { return m_ServiceV6; };
const boost::asio::ip::udp::endpoint& GetEndpoint () const { return m_Endpoint; };
void Send (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& to);
void AddRelay (uint32_t tag, const boost::asio::ip::udp::endpoint& relay);
std::shared_ptr<SSUSession> FindRelaySession (uint32_t tag);
void NewPeerTest (uint32_t nonce, PeerTestParticipant role, std::shared_ptr<SSUSession> session = nullptr);
PeerTestParticipant GetPeerTestParticipant (uint32_t nonce);
std::shared_ptr<SSUSession> GetPeerTestSession (uint32_t nonce);
void UpdatePeerTest (uint32_t nonce, PeerTestParticipant role);
void RemovePeerTest (uint32_t nonce);
void NewPeerTest (uint32_t nonce, PeerTestParticipant role, std::shared_ptr<SSUSession> session = nullptr);
PeerTestParticipant GetPeerTestParticipant (uint32_t nonce);
std::shared_ptr<SSUSession> GetPeerTestSession (uint32_t nonce);
void UpdatePeerTest (uint32_t nonce, PeerTestParticipant role);
void RemovePeerTest (uint32_t nonce);
private:
private:
void Run ();
void RunV6 ();
void RunReceivers ();
void Receive ();
void ReceiveV6 ();
void HandleReceivedFrom (const boost::system::error_code& ecode, std::size_t bytes_transferred, SSUPacket * packet);
void HandleReceivedFromV6 (const boost::system::error_code& ecode, std::size_t bytes_transferred, SSUPacket * packet);
void HandleReceivedPackets (std::vector<SSUPacket *> packets);
void Run ();
void RunV6 ();
void RunReceivers ();
void Receive ();
void ReceiveV6 ();
void HandleReceivedFrom (const boost::system::error_code& ecode, std::size_t bytes_transferred, SSUPacket * packet);
void HandleReceivedFromV6 (const boost::system::error_code& ecode, std::size_t bytes_transferred, SSUPacket * packet);
void HandleReceivedPackets (std::vector<SSUPacket *> packets);
template<typename Filter>
std::shared_ptr<SSUSession> GetRandomSession (Filter filter);
std::set<SSUSession *> FindIntroducers (int maxNumIntroducers);
void ScheduleIntroducersUpdateTimer ();
void HandleIntroducersUpdateTimer (const boost::system::error_code& ecode);
template<typename Filter>
std::shared_ptr<SSUSession> GetRandomSession (Filter filter);
std::set<SSUSession *> FindIntroducers (int maxNumIntroducers);
void ScheduleIntroducersUpdateTimer ();
void HandleIntroducersUpdateTimer (const boost::system::error_code& ecode);
void SchedulePeerTestsCleanupTimer ();
void HandlePeerTestsCleanupTimer (const boost::system::error_code& ecode);
void SchedulePeerTestsCleanupTimer ();
void HandlePeerTestsCleanupTimer (const boost::system::error_code& ecode);
private:
private:
struct PeerTest
{
uint64_t creationTime;
PeerTestParticipant role;
std::shared_ptr<SSUSession> session; // for Bob to Alice
};
bool m_IsRunning;
std::thread * m_Thread, * m_ThreadV6, * m_ReceiversThread;
boost::asio::io_service m_Service, m_ServiceV6, m_ReceiversService;
boost::asio::io_service::work m_Work, m_WorkV6, m_ReceiversWork;
boost::asio::ip::udp::endpoint m_Endpoint, m_EndpointV6;
boost::asio::ip::udp::socket m_Socket, m_SocketV6;
boost::asio::deadline_timer m_IntroducersUpdateTimer, m_PeerTestsCleanupTimer;
std::list<boost::asio::ip::udp::endpoint> m_Introducers; // introducers we are connected to
mutable std::mutex m_SessionsMutex;
std::map<boost::asio::ip::udp::endpoint, std::shared_ptr<SSUSession> > m_Sessions;
std::map<uint32_t, boost::asio::ip::udp::endpoint> m_Relays; // we are introducer
std::map<uint32_t, PeerTest> m_PeerTests; // nonce -> creation time in milliseconds
struct PeerTest
{
uint64_t creationTime;
PeerTestParticipant role;
std::shared_ptr<SSUSession> session; // for Bob to Alice
};
bool m_IsRunning;
std::thread * m_Thread, * m_ThreadV6, * m_ReceiversThread;
boost::asio::io_service m_Service, m_ServiceV6, m_ReceiversService;
boost::asio::io_service::work m_Work, m_WorkV6, m_ReceiversWork;
boost::asio::ip::udp::endpoint m_Endpoint, m_EndpointV6;
boost::asio::ip::udp::socket m_Socket, m_SocketV6;
boost::asio::deadline_timer m_IntroducersUpdateTimer, m_PeerTestsCleanupTimer;
std::list<boost::asio::ip::udp::endpoint> m_Introducers; // introducers we are connected to
mutable std::mutex m_SessionsMutex;
std::map<boost::asio::ip::udp::endpoint, std::shared_ptr<SSUSession> > m_Sessions;
std::map<uint32_t, boost::asio::ip::udp::endpoint> m_Relays; // we are introducer
std::map<uint32_t, PeerTest> m_PeerTests; // nonce -> creation time in milliseconds
public:
// for HTTP only
const decltype(m_Sessions)& GetSessions () const { return m_Sessions; };
};
public:
// for HTTP only
const decltype(m_Sessions)& GetSessions () const { return m_Sessions; };
};
}
}

View file

@ -10,498 +10,498 @@ namespace i2p
{
namespace transport
{
void IncompleteMessage::AttachNextFragment (const uint8_t * fragment, size_t fragmentSize)
{
if (msg->len + fragmentSize > msg->maxLen)
{
LogPrint (eLogInfo, "SSU I2NP message size ", msg->maxLen, " is not enough");
auto newMsg = ToSharedI2NPMessage(NewI2NPMessage ());
*newMsg = *msg;
msg = newMsg;
}
memcpy (msg->buf + msg->len, fragment, fragmentSize);
msg->len += fragmentSize;
nextFragmentNum++;
}
void IncompleteMessage::AttachNextFragment (const uint8_t * fragment, size_t fragmentSize)
{
if (msg->len + fragmentSize > msg->maxLen)
{
LogPrint (eLogInfo, "SSU I2NP message size ", msg->maxLen, " is not enough");
auto newMsg = ToSharedI2NPMessage(NewI2NPMessage ());
*newMsg = *msg;
msg = newMsg;
}
memcpy (msg->buf + msg->len, fragment, fragmentSize);
msg->len += fragmentSize;
nextFragmentNum++;
}
SSUData::SSUData (SSUSession& session):
m_Session (session), m_ResendTimer (session.GetService ()), m_DecayTimer (session.GetService ()),
m_IncompleteMessagesCleanupTimer (session.GetService ())
{
m_MaxPacketSize = session.IsV6 () ? SSU_V6_MAX_PACKET_SIZE : SSU_V4_MAX_PACKET_SIZE;
m_PacketSize = m_MaxPacketSize;
auto remoteRouter = session.GetRemoteRouter ();
if (remoteRouter)
AdjustPacketSize (*remoteRouter);
}
SSUData::SSUData (SSUSession& session):
m_Session (session), m_ResendTimer (session.GetService ()), m_DecayTimer (session.GetService ()),
m_IncompleteMessagesCleanupTimer (session.GetService ())
{
m_MaxPacketSize = session.IsV6 () ? SSU_V6_MAX_PACKET_SIZE : SSU_V4_MAX_PACKET_SIZE;
m_PacketSize = m_MaxPacketSize;
auto remoteRouter = session.GetRemoteRouter ();
if (remoteRouter)
AdjustPacketSize (*remoteRouter);
}
SSUData::~SSUData ()
{
}
SSUData::~SSUData ()
{
}
void SSUData::Start ()
{
ScheduleIncompleteMessagesCleanup ();
}
void SSUData::Stop ()
{
m_ResendTimer.cancel ();
m_DecayTimer.cancel ();
m_IncompleteMessagesCleanupTimer.cancel ();
}
void SSUData::AdjustPacketSize (const i2p::data::RouterInfo& remoteRouter)
{
auto ssuAddress = remoteRouter.GetSSUAddress ();
if (ssuAddress && ssuAddress->mtu)
{
if (m_Session.IsV6 ())
m_PacketSize = ssuAddress->mtu - IPV6_HEADER_SIZE - UDP_HEADER_SIZE;
else
m_PacketSize = ssuAddress->mtu - IPV4_HEADER_SIZE - UDP_HEADER_SIZE;
if (m_PacketSize > 0)
{
// make sure packet size multiple of 16
m_PacketSize >>= 4;
m_PacketSize <<= 4;
if (m_PacketSize > m_MaxPacketSize) m_PacketSize = m_MaxPacketSize;
LogPrint ("MTU=", ssuAddress->mtu, " packet size=", m_PacketSize);
}
else
{
LogPrint (eLogWarning, "Unexpected MTU ", ssuAddress->mtu);
m_PacketSize = m_MaxPacketSize;
}
}
}
void SSUData::Start ()
{
ScheduleIncompleteMessagesCleanup ();
}
void SSUData::Stop ()
{
m_ResendTimer.cancel ();
m_DecayTimer.cancel ();
m_IncompleteMessagesCleanupTimer.cancel ();
}
void SSUData::AdjustPacketSize (const i2p::data::RouterInfo& remoteRouter)
{
auto ssuAddress = remoteRouter.GetSSUAddress ();
if (ssuAddress && ssuAddress->mtu)
{
if (m_Session.IsV6 ())
m_PacketSize = ssuAddress->mtu - IPV6_HEADER_SIZE - UDP_HEADER_SIZE;
else
m_PacketSize = ssuAddress->mtu - IPV4_HEADER_SIZE - UDP_HEADER_SIZE;
if (m_PacketSize > 0)
{
// make sure packet size multiple of 16
m_PacketSize >>= 4;
m_PacketSize <<= 4;
if (m_PacketSize > m_MaxPacketSize) m_PacketSize = m_MaxPacketSize;
LogPrint ("MTU=", ssuAddress->mtu, " packet size=", m_PacketSize);
}
else
{
LogPrint (eLogWarning, "Unexpected MTU ", ssuAddress->mtu);
m_PacketSize = m_MaxPacketSize;
}
}
}
void SSUData::UpdatePacketSize (const i2p::data::IdentHash& remoteIdent)
{
auto routerInfo = i2p::data::netdb.FindRouter (remoteIdent);
if (routerInfo)
AdjustPacketSize (*routerInfo);
}
void SSUData::UpdatePacketSize (const i2p::data::IdentHash& remoteIdent)
{
auto routerInfo = i2p::data::netdb.FindRouter (remoteIdent);
if (routerInfo)
AdjustPacketSize (*routerInfo);
}
void SSUData::ProcessSentMessageAck (uint32_t msgID)
{
auto it = m_SentMessages.find (msgID);
if (it != m_SentMessages.end ())
{
m_SentMessages.erase (it);
if (m_SentMessages.empty ())
m_ResendTimer.cancel ();
}
}
void SSUData::ProcessSentMessageAck (uint32_t msgID)
{
auto it = m_SentMessages.find (msgID);
if (it != m_SentMessages.end ())
{
m_SentMessages.erase (it);
if (m_SentMessages.empty ())
m_ResendTimer.cancel ();
}
}
void SSUData::ProcessAcks (uint8_t *& buf, uint8_t flag)
{
if (flag & DATA_FLAG_EXPLICIT_ACKS_INCLUDED)
{
// explicit ACKs
uint8_t numAcks =*buf;
buf++;
for (int i = 0; i < numAcks; i++)
ProcessSentMessageAck (bufbe32toh (buf+i*4));
buf += numAcks*4;
}
if (flag & DATA_FLAG_ACK_BITFIELDS_INCLUDED)
{
// explicit ACK bitfields
uint8_t numBitfields =*buf;
buf++;
for (int i = 0; i < numBitfields; i++)
{
uint32_t msgID = bufbe32toh (buf);
buf += 4; // msgID
auto it = m_SentMessages.find (msgID);
// process individual Ack bitfields
bool isNonLast = false;
int fragment = 0;
do
{
uint8_t bitfield = *buf;
isNonLast = bitfield & 0x80;
bitfield &= 0x7F; // clear MSB
if (bitfield && it != m_SentMessages.end ())
{
int numSentFragments = it->second->fragments.size ();
// process bits
uint8_t mask = 0x01;
for (int j = 0; j < 7; j++)
{
if (bitfield & mask)
{
if (fragment < numSentFragments)
it->second->fragments[fragment].reset (nullptr);
}
fragment++;
mask <<= 1;
}
}
buf++;
}
while (isNonLast);
}
}
}
void SSUData::ProcessAcks (uint8_t *& buf, uint8_t flag)
{
if (flag & DATA_FLAG_EXPLICIT_ACKS_INCLUDED)
{
// explicit ACKs
uint8_t numAcks =*buf;
buf++;
for (int i = 0; i < numAcks; i++)
ProcessSentMessageAck (bufbe32toh (buf+i*4));
buf += numAcks*4;
}
if (flag & DATA_FLAG_ACK_BITFIELDS_INCLUDED)
{
// explicit ACK bitfields
uint8_t numBitfields =*buf;
buf++;
for (int i = 0; i < numBitfields; i++)
{
uint32_t msgID = bufbe32toh (buf);
buf += 4; // msgID
auto it = m_SentMessages.find (msgID);
// process individual Ack bitfields
bool isNonLast = false;
int fragment = 0;
do
{
uint8_t bitfield = *buf;
isNonLast = bitfield & 0x80;
bitfield &= 0x7F; // clear MSB
if (bitfield && it != m_SentMessages.end ())
{
int numSentFragments = it->second->fragments.size ();
// process bits
uint8_t mask = 0x01;
for (int j = 0; j < 7; j++)
{
if (bitfield & mask)
{
if (fragment < numSentFragments)
it->second->fragments[fragment].reset (nullptr);
}
fragment++;
mask <<= 1;
}
}
buf++;
}
while (isNonLast);
}
}
}
void SSUData::ProcessFragments (uint8_t * buf)
{
uint8_t numFragments = *buf; // number of fragments
buf++;
for (int i = 0; i < numFragments; i++)
{
uint32_t msgID = bufbe32toh (buf); // message ID
buf += 4;
uint8_t frag[4];
frag[0] = 0;
memcpy (frag + 1, buf, 3);
buf += 3;
uint32_t fragmentInfo = bufbe32toh (frag); // fragment info
uint16_t fragmentSize = fragmentInfo & 0x1FFF; // bits 0 - 13
bool isLast = fragmentInfo & 0x010000; // bit 16
uint8_t fragmentNum = fragmentInfo >> 17; // bits 23 - 17
if (fragmentSize >= SSU_V4_MAX_PACKET_SIZE)
{
LogPrint (eLogError, "Fragment size ", fragmentSize, "exceeds max SSU packet size");
return;
}
void SSUData::ProcessFragments (uint8_t * buf)
{
uint8_t numFragments = *buf; // number of fragments
buf++;
for (int i = 0; i < numFragments; i++)
{
uint32_t msgID = bufbe32toh (buf); // message ID
buf += 4;
uint8_t frag[4];
frag[0] = 0;
memcpy (frag + 1, buf, 3);
buf += 3;
uint32_t fragmentInfo = bufbe32toh (frag); // fragment info
uint16_t fragmentSize = fragmentInfo & 0x1FFF; // bits 0 - 13
bool isLast = fragmentInfo & 0x010000; // bit 16
uint8_t fragmentNum = fragmentInfo >> 17; // bits 23 - 17
if (fragmentSize >= SSU_V4_MAX_PACKET_SIZE)
{
LogPrint (eLogError, "Fragment size ", fragmentSize, "exceeds max SSU packet size");
return;
}
// find message with msgID
auto it = m_IncompleteMessages.find (msgID);
if (it == m_IncompleteMessages.end ())
{
// create new message
auto msg = ToSharedI2NPMessage (NewI2NPShortMessage ());
msg->len -= I2NP_SHORT_HEADER_SIZE;
it = m_IncompleteMessages.insert (std::make_pair (msgID,
std::unique_ptr<IncompleteMessage>(new IncompleteMessage (msg)))).first;
}
std::unique_ptr<IncompleteMessage>& incompleteMessage = it->second;
// find message with msgID
auto it = m_IncompleteMessages.find (msgID);
if (it == m_IncompleteMessages.end ())
{
// create new message
auto msg = ToSharedI2NPMessage (NewI2NPShortMessage ());
msg->len -= I2NP_SHORT_HEADER_SIZE;
it = m_IncompleteMessages.insert (std::make_pair (msgID,
std::unique_ptr<IncompleteMessage>(new IncompleteMessage (msg)))).first;
}
std::unique_ptr<IncompleteMessage>& incompleteMessage = it->second;
// handle current fragment
if (fragmentNum == incompleteMessage->nextFragmentNum)
{
// expected fragment
incompleteMessage->AttachNextFragment (buf, fragmentSize);
if (!isLast && !incompleteMessage->savedFragments.empty ())
{
// try saved fragments
for (auto it1 = incompleteMessage->savedFragments.begin (); it1 != incompleteMessage->savedFragments.end ();)
{
auto& savedFragment = *it1;
if (savedFragment->fragmentNum == incompleteMessage->nextFragmentNum)
{
incompleteMessage->AttachNextFragment (savedFragment->buf, savedFragment->len);
isLast = savedFragment->isLast;
incompleteMessage->savedFragments.erase (it1++);
}
else
break;
}
if (isLast)
LogPrint (eLogDebug, "Message ", msgID, " complete");
}
}
else
{
if (fragmentNum < incompleteMessage->nextFragmentNum)
// duplicate fragment
LogPrint (eLogWarning, "Duplicate fragment ", (int)fragmentNum, " of message ", msgID, ". Ignored");
else
{
// missing fragment
LogPrint (eLogWarning, "Missing fragments from ", (int)incompleteMessage->nextFragmentNum, " to ", fragmentNum - 1, " of message ", msgID);
auto savedFragment = new Fragment (fragmentNum, buf, fragmentSize, isLast);
if (incompleteMessage->savedFragments.insert (std::unique_ptr<Fragment>(savedFragment)).second)
incompleteMessage->lastFragmentInsertTime = i2p::util::GetSecondsSinceEpoch ();
else
LogPrint (eLogWarning, "Fragment ", (int)fragmentNum, " of message ", msgID, " already saved");
}
isLast = false;
}
// handle current fragment
if (fragmentNum == incompleteMessage->nextFragmentNum)
{
// expected fragment
incompleteMessage->AttachNextFragment (buf, fragmentSize);
if (!isLast && !incompleteMessage->savedFragments.empty ())
{
// try saved fragments
for (auto it1 = incompleteMessage->savedFragments.begin (); it1 != incompleteMessage->savedFragments.end ();)
{
auto& savedFragment = *it1;
if (savedFragment->fragmentNum == incompleteMessage->nextFragmentNum)
{
incompleteMessage->AttachNextFragment (savedFragment->buf, savedFragment->len);
isLast = savedFragment->isLast;
incompleteMessage->savedFragments.erase (it1++);
}
else
break;
}
if (isLast)
LogPrint (eLogDebug, "Message ", msgID, " complete");
}
}
else
{
if (fragmentNum < incompleteMessage->nextFragmentNum)
// duplicate fragment
LogPrint (eLogWarning, "Duplicate fragment ", (int)fragmentNum, " of message ", msgID, ". Ignored");
else
{
// missing fragment
LogPrint (eLogWarning, "Missing fragments from ", (int)incompleteMessage->nextFragmentNum, " to ", fragmentNum - 1, " of message ", msgID);
auto savedFragment = new Fragment (fragmentNum, buf, fragmentSize, isLast);
if (incompleteMessage->savedFragments.insert (std::unique_ptr<Fragment>(savedFragment)).second)
incompleteMessage->lastFragmentInsertTime = i2p::util::GetSecondsSinceEpoch ();
else
LogPrint (eLogWarning, "Fragment ", (int)fragmentNum, " of message ", msgID, " already saved");
}
isLast = false;
}
if (isLast)
{
// delete incomplete message
auto msg = incompleteMessage->msg;
incompleteMessage->msg = nullptr;
m_IncompleteMessages.erase (msgID);
// process message
SendMsgAck (msgID);
msg->FromSSU (msgID);
if (m_Session.GetState () == eSessionStateEstablished)
{
if (!m_ReceivedMessages.count (msgID))
{
if (m_ReceivedMessages.size () > MAX_NUM_RECEIVED_MESSAGES)
m_ReceivedMessages.clear ();
else
ScheduleDecay ();
m_ReceivedMessages.insert (msgID);
m_Handler.PutNextMessage (msg);
}
else
LogPrint (eLogWarning, "SSU message ", msgID, " already received");
}
else
{
// we expect DeliveryStatus
if (msg->GetTypeID () == eI2NPDeliveryStatus)
{
LogPrint ("SSU session established");
m_Session.Established ();
}
else
LogPrint (eLogError, "SSU unexpected message ", (int)msg->GetTypeID ());
}
}
else
SendFragmentAck (msgID, fragmentNum);
buf += fragmentSize;
}
}
if (isLast)
{
// delete incomplete message
auto msg = incompleteMessage->msg;
incompleteMessage->msg = nullptr;
m_IncompleteMessages.erase (msgID);
// process message
SendMsgAck (msgID);
msg->FromSSU (msgID);
if (m_Session.GetState () == eSessionStateEstablished)
{
if (!m_ReceivedMessages.count (msgID))
{
if (m_ReceivedMessages.size () > MAX_NUM_RECEIVED_MESSAGES)
m_ReceivedMessages.clear ();
else
ScheduleDecay ();
m_ReceivedMessages.insert (msgID);
m_Handler.PutNextMessage (msg);
}
else
LogPrint (eLogWarning, "SSU message ", msgID, " already received");
}
else
{
// we expect DeliveryStatus
if (msg->GetTypeID () == eI2NPDeliveryStatus)
{
LogPrint ("SSU session established");
m_Session.Established ();
}
else
LogPrint (eLogError, "SSU unexpected message ", (int)msg->GetTypeID ());
}
}
else
SendFragmentAck (msgID, fragmentNum);
buf += fragmentSize;
}
}
void SSUData::FlushReceivedMessage ()
{
m_Handler.Flush ();
}
void SSUData::ProcessMessage (uint8_t * buf, size_t len)
{
//uint8_t * start = buf;
uint8_t flag = *buf;
buf++;
LogPrint (eLogDebug, "Process SSU data flags=", (int)flag, " len=", len);
// process acks if presented
if (flag & (DATA_FLAG_ACK_BITFIELDS_INCLUDED | DATA_FLAG_EXPLICIT_ACKS_INCLUDED))
ProcessAcks (buf, flag);
// extended data if presented
if (flag & DATA_FLAG_EXTENDED_DATA_INCLUDED)
{
uint8_t extendedDataSize = *buf;
buf++; // size
LogPrint (eLogDebug, "SSU extended data of ", extendedDataSize, " bytes presented");
buf += extendedDataSize;
}
// process data
ProcessFragments (buf);
}
void SSUData::FlushReceivedMessage ()
{
m_Handler.Flush ();
}
void SSUData::ProcessMessage (uint8_t * buf, size_t len)
{
//uint8_t * start = buf;
uint8_t flag = *buf;
buf++;
LogPrint (eLogDebug, "Process SSU data flags=", (int)flag, " len=", len);
// process acks if presented
if (flag & (DATA_FLAG_ACK_BITFIELDS_INCLUDED | DATA_FLAG_EXPLICIT_ACKS_INCLUDED))
ProcessAcks (buf, flag);
// extended data if presented
if (flag & DATA_FLAG_EXTENDED_DATA_INCLUDED)
{
uint8_t extendedDataSize = *buf;
buf++; // size
LogPrint (eLogDebug, "SSU extended data of ", extendedDataSize, " bytes presented");
buf += extendedDataSize;
}
// process data
ProcessFragments (buf);
}
void SSUData::Send (std::shared_ptr<i2p::I2NPMessage> msg)
{
uint32_t msgID = msg->ToSSU ();
if (m_SentMessages.count (msgID) > 0)
{
LogPrint (eLogWarning, "SSU message ", msgID, " already sent");
return;
}
if (m_SentMessages.empty ()) // schedule resend at first message only
ScheduleResend ();
auto ret = m_SentMessages.insert (std::make_pair (msgID, std::unique_ptr<SentMessage>(new SentMessage)));
std::unique_ptr<SentMessage>& sentMessage = ret.first->second;
if (ret.second)
{
sentMessage->nextResendTime = i2p::util::GetSecondsSinceEpoch () + RESEND_INTERVAL;
sentMessage->numResends = 0;
}
auto& fragments = sentMessage->fragments;
size_t payloadSize = m_PacketSize - sizeof (SSUHeader) - 9; // 9 = flag + #frg(1) + messageID(4) + frag info (3)
size_t len = msg->GetLength ();
uint8_t * msgBuf = msg->GetSSUHeader ();
void SSUData::Send (std::shared_ptr<i2p::I2NPMessage> msg)
{
uint32_t msgID = msg->ToSSU ();
if (m_SentMessages.count (msgID) > 0)
{
LogPrint (eLogWarning, "SSU message ", msgID, " already sent");
return;
}
if (m_SentMessages.empty ()) // schedule resend at first message only
ScheduleResend ();
auto ret = m_SentMessages.insert (std::make_pair (msgID, std::unique_ptr<SentMessage>(new SentMessage)));
std::unique_ptr<SentMessage>& sentMessage = ret.first->second;
if (ret.second)
{
sentMessage->nextResendTime = i2p::util::GetSecondsSinceEpoch () + RESEND_INTERVAL;
sentMessage->numResends = 0;
}
auto& fragments = sentMessage->fragments;
size_t payloadSize = m_PacketSize - sizeof (SSUHeader) - 9; // 9 = flag + #frg(1) + messageID(4) + frag info (3)
size_t len = msg->GetLength ();
uint8_t * msgBuf = msg->GetSSUHeader ();
uint32_t fragmentNum = 0;
while (len > 0)
{
Fragment * fragment = new Fragment;
fragment->fragmentNum = fragmentNum;
uint8_t * buf = fragment->buf;
uint8_t * payload = buf + sizeof (SSUHeader);
*payload = DATA_FLAG_WANT_REPLY; // for compatibility
payload++;
*payload = 1; // always 1 message fragment per message
payload++;
htobe32buf (payload, msgID);
payload += 4;
bool isLast = (len <= payloadSize);
size_t size = isLast ? len : payloadSize;
uint32_t fragmentInfo = (fragmentNum << 17);
if (isLast)
fragmentInfo |= 0x010000;
fragmentInfo |= size;
fragmentInfo = htobe32 (fragmentInfo);
memcpy (payload, (uint8_t *)(&fragmentInfo) + 1, 3);
payload += 3;
memcpy (payload, msgBuf, size);
size += payload - buf;
if (size & 0x0F) // make sure 16 bytes boundary
size = ((size >> 4) + 1) << 4; // (/16 + 1)*16
fragment->len = size;
fragments.push_back (std::unique_ptr<Fragment> (fragment));
// encrypt message with session key
m_Session.FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, size);
try
{
m_Session.Send (buf, size);
}
catch (boost::system::system_error& ec)
{
LogPrint (eLogError, "Can't send SSU fragment ", ec.what ());
}
if (!isLast)
{
len -= payloadSize;
msgBuf += payloadSize;
}
else
len = 0;
fragmentNum++;
}
}
uint32_t fragmentNum = 0;
while (len > 0)
{
Fragment * fragment = new Fragment;
fragment->fragmentNum = fragmentNum;
uint8_t * buf = fragment->buf;
uint8_t * payload = buf + sizeof (SSUHeader);
*payload = DATA_FLAG_WANT_REPLY; // for compatibility
payload++;
*payload = 1; // always 1 message fragment per message
payload++;
htobe32buf (payload, msgID);
payload += 4;
bool isLast = (len <= payloadSize);
size_t size = isLast ? len : payloadSize;
uint32_t fragmentInfo = (fragmentNum << 17);
if (isLast)
fragmentInfo |= 0x010000;
fragmentInfo |= size;
fragmentInfo = htobe32 (fragmentInfo);
memcpy (payload, (uint8_t *)(&fragmentInfo) + 1, 3);
payload += 3;
memcpy (payload, msgBuf, size);
size += payload - buf;
if (size & 0x0F) // make sure 16 bytes boundary
size = ((size >> 4) + 1) << 4; // (/16 + 1)*16
fragment->len = size;
fragments.push_back (std::unique_ptr<Fragment> (fragment));
// encrypt message with session key
m_Session.FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, size);
try
{
m_Session.Send (buf, size);
}
catch (boost::system::system_error& ec)
{
LogPrint (eLogError, "Can't send SSU fragment ", ec.what ());
}
if (!isLast)
{
len -= payloadSize;
msgBuf += payloadSize;
}
else
len = 0;
fragmentNum++;
}
}
void SSUData::SendMsgAck (uint32_t msgID)
{
uint8_t buf[48 + 18]; // actual length is 44 = 37 + 7 but pad it to multiple of 16
uint8_t * payload = buf + sizeof (SSUHeader);
*payload = DATA_FLAG_EXPLICIT_ACKS_INCLUDED; // flag
payload++;
*payload = 1; // number of ACKs
payload++;
*(uint32_t *)(payload) = htobe32 (msgID); // msgID
payload += 4;
*payload = 0; // number of fragments
void SSUData::SendMsgAck (uint32_t msgID)
{
uint8_t buf[48 + 18]; // actual length is 44 = 37 + 7 but pad it to multiple of 16
uint8_t * payload = buf + sizeof (SSUHeader);
*payload = DATA_FLAG_EXPLICIT_ACKS_INCLUDED; // flag
payload++;
*payload = 1; // number of ACKs
payload++;
*(uint32_t *)(payload) = htobe32 (msgID); // msgID
payload += 4;
*payload = 0; // number of fragments
// encrypt message with session key
m_Session.FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, 48);
m_Session.Send (buf, 48);
}
// encrypt message with session key
m_Session.FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, 48);
m_Session.Send (buf, 48);
}
void SSUData::SendFragmentAck (uint32_t msgID, int fragmentNum)
{
if (fragmentNum > 64)
{
LogPrint (eLogWarning, "Fragment number ", fragmentNum, " exceeds 64");
return;
}
uint8_t buf[64 + 18];
uint8_t * payload = buf + sizeof (SSUHeader);
*payload = DATA_FLAG_ACK_BITFIELDS_INCLUDED; // flag
payload++;
*payload = 1; // number of ACK bitfields
payload++;
// one ack
*(uint32_t *)(payload) = htobe32 (msgID); // msgID
payload += 4;
div_t d = div (fragmentNum, 7);
memset (payload, 0x80, d.quot); // 0x80 means non-last
payload += d.quot;
*payload = 0x01 << d.rem; // set corresponding bit
payload++;
*payload = 0; // number of fragments
void SSUData::SendFragmentAck (uint32_t msgID, int fragmentNum)
{
if (fragmentNum > 64)
{
LogPrint (eLogWarning, "Fragment number ", fragmentNum, " exceeds 64");
return;
}
uint8_t buf[64 + 18];
uint8_t * payload = buf + sizeof (SSUHeader);
*payload = DATA_FLAG_ACK_BITFIELDS_INCLUDED; // flag
payload++;
*payload = 1; // number of ACK bitfields
payload++;
// one ack
*(uint32_t *)(payload) = htobe32 (msgID); // msgID
payload += 4;
div_t d = div (fragmentNum, 7);
memset (payload, 0x80, d.quot); // 0x80 means non-last
payload += d.quot;
*payload = 0x01 << d.rem; // set corresponding bit
payload++;
*payload = 0; // number of fragments
size_t len = d.quot < 4 ? 48 : 64; // 48 = 37 + 7 + 4 (3+1)
// encrypt message with session key
m_Session.FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, len);
m_Session.Send (buf, len);
}
size_t len = d.quot < 4 ? 48 : 64; // 48 = 37 + 7 + 4 (3+1)
// encrypt message with session key
m_Session.FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, len);
m_Session.Send (buf, len);
}
void SSUData::ScheduleResend()
{
m_ResendTimer.cancel ();
m_ResendTimer.expires_from_now (boost::posix_time::seconds(RESEND_INTERVAL));
auto s = m_Session.shared_from_this();
m_ResendTimer.async_wait ([s](const boost::system::error_code& ecode)
{ s->m_Data.HandleResendTimer (ecode); });
}
void SSUData::ScheduleResend()
{
m_ResendTimer.cancel ();
m_ResendTimer.expires_from_now (boost::posix_time::seconds(RESEND_INTERVAL));
auto s = m_Session.shared_from_this();
m_ResendTimer.async_wait ([s](const boost::system::error_code& ecode)
{ s->m_Data.HandleResendTimer (ecode); });
}
void SSUData::HandleResendTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
uint32_t ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_SentMessages.begin (); it != m_SentMessages.end ();)
{
if (ts >= it->second->nextResendTime)
{
if (it->second->numResends < MAX_NUM_RESENDS)
{
for (auto& f: it->second->fragments)
if (f)
{
try
{
m_Session.Send (f->buf, f->len); // resend
}
catch (boost::system::system_error& ec)
{
LogPrint (eLogError, "Can't resend SSU fragment ", ec.what ());
}
}
void SSUData::HandleResendTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
uint32_t ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_SentMessages.begin (); it != m_SentMessages.end ();)
{
if (ts >= it->second->nextResendTime)
{
if (it->second->numResends < MAX_NUM_RESENDS)
{
for (auto& f: it->second->fragments)
if (f)
{
try
{
m_Session.Send (f->buf, f->len); // resend
}
catch (boost::system::system_error& ec)
{
LogPrint (eLogError, "Can't resend SSU fragment ", ec.what ());
}
}
it->second->numResends++;
it->second->nextResendTime += it->second->numResends*RESEND_INTERVAL;
it++;
}
else
{
LogPrint (eLogError, "SSU message has not been ACKed after ", MAX_NUM_RESENDS, " attempts. Deleted");
it = m_SentMessages.erase (it);
}
}
else
it++;
}
ScheduleResend ();
}
}
it->second->numResends++;
it->second->nextResendTime += it->second->numResends*RESEND_INTERVAL;
it++;
}
else
{
LogPrint (eLogError, "SSU message has not been ACKed after ", MAX_NUM_RESENDS, " attempts. Deleted");
it = m_SentMessages.erase (it);
}
}
else
it++;
}
ScheduleResend ();
}
}
void SSUData::ScheduleDecay ()
{
m_DecayTimer.cancel ();
m_DecayTimer.expires_from_now (boost::posix_time::seconds(DECAY_INTERVAL));
auto s = m_Session.shared_from_this();
m_ResendTimer.async_wait ([s](const boost::system::error_code& ecode)
{ s->m_Data.HandleDecayTimer (ecode); });
}
void SSUData::ScheduleDecay ()
{
m_DecayTimer.cancel ();
m_DecayTimer.expires_from_now (boost::posix_time::seconds(DECAY_INTERVAL));
auto s = m_Session.shared_from_this();
m_ResendTimer.async_wait ([s](const boost::system::error_code& ecode)
{ s->m_Data.HandleDecayTimer (ecode); });
}
void SSUData::HandleDecayTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
m_ReceivedMessages.clear ();
}
void SSUData::HandleDecayTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
m_ReceivedMessages.clear ();
}
void SSUData::ScheduleIncompleteMessagesCleanup ()
{
m_IncompleteMessagesCleanupTimer.cancel ();
m_IncompleteMessagesCleanupTimer.expires_from_now (boost::posix_time::seconds(INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT));
auto s = m_Session.shared_from_this();
m_IncompleteMessagesCleanupTimer.async_wait ([s](const boost::system::error_code& ecode)
{ s->m_Data.HandleIncompleteMessagesCleanupTimer (ecode); });
}
void SSUData::HandleIncompleteMessagesCleanupTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
uint32_t ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_IncompleteMessages.begin (); it != m_IncompleteMessages.end ();)
{
if (ts > it->second->lastFragmentInsertTime + INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT)
{
LogPrint (eLogError, "SSU message ", it->first, " was not completed in ", INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT, " seconds. Deleted");
it = m_IncompleteMessages.erase (it);
}
else
it++;
}
ScheduleIncompleteMessagesCleanup ();
}
}
void SSUData::ScheduleIncompleteMessagesCleanup ()
{
m_IncompleteMessagesCleanupTimer.cancel ();
m_IncompleteMessagesCleanupTimer.expires_from_now (boost::posix_time::seconds(INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT));
auto s = m_Session.shared_from_this();
m_IncompleteMessagesCleanupTimer.async_wait ([s](const boost::system::error_code& ecode)
{ s->m_Data.HandleIncompleteMessagesCleanupTimer (ecode); });
}
void SSUData::HandleIncompleteMessagesCleanupTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
uint32_t ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_IncompleteMessages.begin (); it != m_IncompleteMessages.end ();)
{
if (ts > it->second->lastFragmentInsertTime + INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT)
{
LogPrint (eLogError, "SSU message ", it->first, " was not completed in ", INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT, " seconds. Deleted");
it = m_IncompleteMessages.erase (it);
}
else
it++;
}
ScheduleIncompleteMessagesCleanup ();
}
}
}
}

182
SSUData.h
View file

@ -17,110 +17,110 @@ namespace i2p
namespace transport
{
const size_t SSU_MTU_V4 = 1484;
const size_t SSU_MTU_V6 = 1472;
const size_t IPV4_HEADER_SIZE = 20;
const size_t IPV6_HEADER_SIZE = 40;
const size_t UDP_HEADER_SIZE = 8;
const size_t SSU_V4_MAX_PACKET_SIZE = SSU_MTU_V4 - IPV4_HEADER_SIZE - UDP_HEADER_SIZE; // 1456
const size_t SSU_V6_MAX_PACKET_SIZE = SSU_MTU_V6 - IPV6_HEADER_SIZE - UDP_HEADER_SIZE; // 1424
const int RESEND_INTERVAL = 3; // in seconds
const int MAX_NUM_RESENDS = 5;
const int DECAY_INTERVAL = 20; // in seconds
const int MAX_NUM_RECEIVED_MESSAGES = 1000; // how many msgID we store for duplicates check
const int INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT = 30; // in seconds
// data flags
const uint8_t DATA_FLAG_EXTENDED_DATA_INCLUDED = 0x02;
const uint8_t DATA_FLAG_WANT_REPLY = 0x04;
const uint8_t DATA_FLAG_REQUEST_PREVIOUS_ACKS = 0x08;
const uint8_t DATA_FLAG_EXPLICIT_CONGESTION_NOTIFICATION = 0x10;
const uint8_t DATA_FLAG_ACK_BITFIELDS_INCLUDED = 0x40;
const uint8_t DATA_FLAG_EXPLICIT_ACKS_INCLUDED = 0x80;
const size_t SSU_MTU_V4 = 1484;
const size_t SSU_MTU_V6 = 1472;
const size_t IPV4_HEADER_SIZE = 20;
const size_t IPV6_HEADER_SIZE = 40;
const size_t UDP_HEADER_SIZE = 8;
const size_t SSU_V4_MAX_PACKET_SIZE = SSU_MTU_V4 - IPV4_HEADER_SIZE - UDP_HEADER_SIZE; // 1456
const size_t SSU_V6_MAX_PACKET_SIZE = SSU_MTU_V6 - IPV6_HEADER_SIZE - UDP_HEADER_SIZE; // 1424
const int RESEND_INTERVAL = 3; // in seconds
const int MAX_NUM_RESENDS = 5;
const int DECAY_INTERVAL = 20; // in seconds
const int MAX_NUM_RECEIVED_MESSAGES = 1000; // how many msgID we store for duplicates check
const int INCOMPLETE_MESSAGES_CLEANUP_TIMEOUT = 30; // in seconds
// data flags
const uint8_t DATA_FLAG_EXTENDED_DATA_INCLUDED = 0x02;
const uint8_t DATA_FLAG_WANT_REPLY = 0x04;
const uint8_t DATA_FLAG_REQUEST_PREVIOUS_ACKS = 0x08;
const uint8_t DATA_FLAG_EXPLICIT_CONGESTION_NOTIFICATION = 0x10;
const uint8_t DATA_FLAG_ACK_BITFIELDS_INCLUDED = 0x40;
const uint8_t DATA_FLAG_EXPLICIT_ACKS_INCLUDED = 0x80;
struct Fragment
{
int fragmentNum;
size_t len;
bool isLast;
uint8_t buf[SSU_V4_MAX_PACKET_SIZE + 18]; // use biggest
struct Fragment
{
int fragmentNum;
size_t len;
bool isLast;
uint8_t buf[SSU_V4_MAX_PACKET_SIZE + 18]; // use biggest
Fragment () = default;
Fragment (int n, const uint8_t * b, int l, bool last):
fragmentNum (n), len (l), isLast (last) { memcpy (buf, b, len); };
};
Fragment () = default;
Fragment (int n, const uint8_t * b, int l, bool last):
fragmentNum (n), len (l), isLast (last) { memcpy (buf, b, len); };
};
struct FragmentCmp
{
bool operator() (const std::unique_ptr<Fragment>& f1, const std::unique_ptr<Fragment>& f2) const
{
return f1->fragmentNum < f2->fragmentNum;
};
};
struct IncompleteMessage
{
std::shared_ptr<I2NPMessage> msg;
int nextFragmentNum;
uint32_t lastFragmentInsertTime; // in seconds
std::set<std::unique_ptr<Fragment>, FragmentCmp> savedFragments;
IncompleteMessage (std::shared_ptr<I2NPMessage> m): msg (m), nextFragmentNum (0), lastFragmentInsertTime (0) {};
void AttachNextFragment (const uint8_t * fragment, size_t fragmentSize);
};
struct FragmentCmp
{
bool operator() (const std::unique_ptr<Fragment>& f1, const std::unique_ptr<Fragment>& f2) const
{
return f1->fragmentNum < f2->fragmentNum;
};
};
struct IncompleteMessage
{
std::shared_ptr<I2NPMessage> msg;
int nextFragmentNum;
uint32_t lastFragmentInsertTime; // in seconds
std::set<std::unique_ptr<Fragment>, FragmentCmp> savedFragments;
IncompleteMessage (std::shared_ptr<I2NPMessage> m): msg (m), nextFragmentNum (0), lastFragmentInsertTime (0) {};
void AttachNextFragment (const uint8_t * fragment, size_t fragmentSize);
};
struct SentMessage
{
std::vector<std::unique_ptr<Fragment> > fragments;
uint32_t nextResendTime; // in seconds
int numResends;
};
class SSUSession;
class SSUData
{
public:
struct SentMessage
{
std::vector<std::unique_ptr<Fragment> > fragments;
uint32_t nextResendTime; // in seconds
int numResends;
};
class SSUSession;
class SSUData
{
public:
SSUData (SSUSession& session);
~SSUData ();
SSUData (SSUSession& session);
~SSUData ();
void Start ();
void Stop ();
void ProcessMessage (uint8_t * buf, size_t len);
void FlushReceivedMessage ();
void Send (std::shared_ptr<i2p::I2NPMessage> msg);
void Start ();
void Stop ();
void ProcessMessage (uint8_t * buf, size_t len);
void FlushReceivedMessage ();
void Send (std::shared_ptr<i2p::I2NPMessage> msg);
void UpdatePacketSize (const i2p::data::IdentHash& remoteIdent);
void UpdatePacketSize (const i2p::data::IdentHash& remoteIdent);
private:
private:
void SendMsgAck (uint32_t msgID);
void SendFragmentAck (uint32_t msgID, int fragmentNum);
void ProcessAcks (uint8_t *& buf, uint8_t flag);
void ProcessFragments (uint8_t * buf);
void ProcessSentMessageAck (uint32_t msgID);
void SendMsgAck (uint32_t msgID);
void SendFragmentAck (uint32_t msgID, int fragmentNum);
void ProcessAcks (uint8_t *& buf, uint8_t flag);
void ProcessFragments (uint8_t * buf);
void ProcessSentMessageAck (uint32_t msgID);
void ScheduleResend ();
void HandleResendTimer (const boost::system::error_code& ecode);
void ScheduleResend ();
void HandleResendTimer (const boost::system::error_code& ecode);
void ScheduleDecay ();
void HandleDecayTimer (const boost::system::error_code& ecode);
void ScheduleDecay ();
void HandleDecayTimer (const boost::system::error_code& ecode);
void ScheduleIncompleteMessagesCleanup ();
void HandleIncompleteMessagesCleanupTimer (const boost::system::error_code& ecode);
void AdjustPacketSize (const i2p::data::RouterInfo& remoteRouter);
private:
void ScheduleIncompleteMessagesCleanup ();
void HandleIncompleteMessagesCleanupTimer (const boost::system::error_code& ecode);
void AdjustPacketSize (const i2p::data::RouterInfo& remoteRouter);
private:
SSUSession& m_Session;
std::map<uint32_t, std::unique_ptr<IncompleteMessage> > m_IncompleteMessages;
std::map<uint32_t, std::unique_ptr<SentMessage> > m_SentMessages;
std::set<uint32_t> m_ReceivedMessages;
boost::asio::deadline_timer m_ResendTimer, m_DecayTimer, m_IncompleteMessagesCleanupTimer;
int m_MaxPacketSize, m_PacketSize;
i2p::I2NPMessagesHandler m_Handler;
};
SSUSession& m_Session;
std::map<uint32_t, std::unique_ptr<IncompleteMessage> > m_IncompleteMessages;
std::map<uint32_t, std::unique_ptr<SentMessage> > m_SentMessages;
std::set<uint32_t> m_ReceivedMessages;
boost::asio::deadline_timer m_ResendTimer, m_DecayTimer, m_IncompleteMessagesCleanupTimer;
int m_MaxPacketSize, m_PacketSize;
i2p::I2NPMessagesHandler m_Handler;
};
}
}

File diff suppressed because it is too large Load diff

View file

@ -15,139 +15,141 @@ namespace i2p
namespace transport
{
#pragma pack(1)
struct SSUHeader
{
uint8_t mac[16];
uint8_t iv[16];
uint8_t flag;
uint32_t time;
// Warning: do not change the order of these variables
// (or fix the unsafe casts in SSU.h)
struct SSUHeader
{
uint8_t mac[16];
uint8_t iv[16];
uint8_t flag;
uint32_t time;
uint8_t GetPayloadType () const { return flag >> 4; };
};
uint8_t GetPayloadType () const { return flag >> 4; };
};
#pragma pack()
const int SSU_CONNECT_TIMEOUT = 5; // 5 seconds
const int SSU_TERMINATION_TIMEOUT = 330; // 5.5 minutes
const int SSU_CONNECT_TIMEOUT = 5; // 5 seconds
const int SSU_TERMINATION_TIMEOUT = 330; // 5.5 minutes
// payload types (4 bits)
const uint8_t PAYLOAD_TYPE_SESSION_REQUEST = 0;
const uint8_t PAYLOAD_TYPE_SESSION_CREATED = 1;
const uint8_t PAYLOAD_TYPE_SESSION_CONFIRMED = 2;
const uint8_t PAYLOAD_TYPE_RELAY_REQUEST = 3;
const uint8_t PAYLOAD_TYPE_RELAY_RESPONSE = 4;
const uint8_t PAYLOAD_TYPE_RELAY_INTRO = 5;
const uint8_t PAYLOAD_TYPE_DATA = 6;
const uint8_t PAYLOAD_TYPE_PEER_TEST = 7;
const uint8_t PAYLOAD_TYPE_SESSION_DESTROYED = 8;
// payload types (4 bits)
const uint8_t PAYLOAD_TYPE_SESSION_REQUEST = 0;
const uint8_t PAYLOAD_TYPE_SESSION_CREATED = 1;
const uint8_t PAYLOAD_TYPE_SESSION_CONFIRMED = 2;
const uint8_t PAYLOAD_TYPE_RELAY_REQUEST = 3;
const uint8_t PAYLOAD_TYPE_RELAY_RESPONSE = 4;
const uint8_t PAYLOAD_TYPE_RELAY_INTRO = 5;
const uint8_t PAYLOAD_TYPE_DATA = 6;
const uint8_t PAYLOAD_TYPE_PEER_TEST = 7;
const uint8_t PAYLOAD_TYPE_SESSION_DESTROYED = 8;
enum SessionState
{
eSessionStateUnknown,
eSessionStateIntroduced,
eSessionStateEstablished,
eSessionStateClosed,
eSessionStateFailed
};
enum SessionState
{
eSessionStateUnknown,
eSessionStateIntroduced,
eSessionStateEstablished,
eSessionStateClosed,
eSessionStateFailed
};
enum PeerTestParticipant
{
ePeerTestParticipantUnknown = 0,
ePeerTestParticipantAlice1,
ePeerTestParticipantAlice2,
ePeerTestParticipantBob,
ePeerTestParticipantCharlie
};
class SSUServer;
class SSUSession: public TransportSession, public std::enable_shared_from_this<SSUSession>
{
public:
enum PeerTestParticipant
{
ePeerTestParticipantUnknown = 0,
ePeerTestParticipantAlice1,
ePeerTestParticipantAlice2,
ePeerTestParticipantBob,
ePeerTestParticipantCharlie
};
class SSUServer;
class SSUSession: public TransportSession, public std::enable_shared_from_this<SSUSession>
{
public:
SSUSession (SSUServer& server, boost::asio::ip::udp::endpoint& remoteEndpoint,
std::shared_ptr<const i2p::data::RouterInfo> router = nullptr, bool peerTest = false);
void ProcessNextMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint);
~SSUSession ();
void Connect ();
void WaitForConnect ();
void Introduce (uint32_t iTag, const uint8_t * iKey);
void WaitForIntroduction ();
void Close ();
void Done ();
boost::asio::ip::udp::endpoint& GetRemoteEndpoint () { return m_RemoteEndpoint; };
bool IsV6 () const { return m_RemoteEndpoint.address ().is_v6 (); };
void SendI2NPMessages (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
void SendPeerTest (); // Alice
SSUSession (SSUServer& server, boost::asio::ip::udp::endpoint& remoteEndpoint,
std::shared_ptr<const i2p::data::RouterInfo> router = nullptr, bool peerTest = false);
void ProcessNextMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint);
~SSUSession ();
void Connect ();
void WaitForConnect ();
void Introduce (uint32_t iTag, const uint8_t * iKey);
void WaitForIntroduction ();
void Close ();
void Done ();
boost::asio::ip::udp::endpoint& GetRemoteEndpoint () { return m_RemoteEndpoint; };
bool IsV6 () const { return m_RemoteEndpoint.address ().is_v6 (); };
void SendI2NPMessages (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
void SendPeerTest (); // Alice
SessionState GetState () const { return m_State; };
size_t GetNumSentBytes () const { return m_NumSentBytes; };
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
void SendKeepAlive ();
uint32_t GetRelayTag () const { return m_RelayTag; };
uint32_t GetCreationTime () const { return m_CreationTime; };
SessionState GetState () const { return m_State; };
size_t GetNumSentBytes () const { return m_NumSentBytes; };
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
void SendKeepAlive ();
uint32_t GetRelayTag () const { return m_RelayTag; };
uint32_t GetCreationTime () const { return m_CreationTime; };
void FlushData ();
private:
void FlushData ();
private:
boost::asio::io_service& GetService ();
void CreateAESandMacKey (const uint8_t * pubKey);
boost::asio::io_service& GetService ();
void CreateAESandMacKey (const uint8_t * pubKey);
void PostI2NPMessages (std::vector<std::shared_ptr<I2NPMessage> > msgs);
void ProcessMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint); // call for established session
void ProcessSessionRequest (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint);
void SendSessionRequest ();
void SendRelayRequest (uint32_t iTag, const uint8_t * iKey);
void ProcessSessionCreated (uint8_t * buf, size_t len);
void SendSessionCreated (const uint8_t * x);
void ProcessSessionConfirmed (uint8_t * buf, size_t len);
void SendSessionConfirmed (const uint8_t * y, const uint8_t * ourAddress, size_t ourAddressLen);
void ProcessRelayRequest (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& from);
void SendRelayResponse (uint32_t nonce, const boost::asio::ip::udp::endpoint& from,
const uint8_t * introKey, const boost::asio::ip::udp::endpoint& to);
void SendRelayIntro (SSUSession * session, const boost::asio::ip::udp::endpoint& from);
void ProcessRelayResponse (uint8_t * buf, size_t len);
void ProcessRelayIntro (uint8_t * buf, size_t len);
void Established ();
void Failed ();
void ScheduleConnectTimer ();
void HandleConnectTimer (const boost::system::error_code& ecode);
void ProcessPeerTest (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint);
void SendPeerTest (uint32_t nonce, uint32_t address, uint16_t port, const uint8_t * introKey, bool toAddress = true, bool sendAddress = true);
void ProcessData (uint8_t * buf, size_t len);
void SendSesionDestroyed ();
void Send (uint8_t type, const uint8_t * payload, size_t len); // with session key
void Send (const uint8_t * buf, size_t size);
void FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len, const uint8_t * aesKey, const uint8_t * iv, const uint8_t * macKey);
void FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len); // with session key
void Decrypt (uint8_t * buf, size_t len, const uint8_t * aesKey);
void DecryptSessionKey (uint8_t * buf, size_t len);
bool Validate (uint8_t * buf, size_t len, const uint8_t * macKey);
const uint8_t * GetIntroKey () const;
void PostI2NPMessages (std::vector<std::shared_ptr<I2NPMessage> > msgs);
void ProcessMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint); // call for established session
void ProcessSessionRequest (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint);
void SendSessionRequest ();
void SendRelayRequest (uint32_t iTag, const uint8_t * iKey);
void ProcessSessionCreated (uint8_t * buf, size_t len);
void SendSessionCreated (const uint8_t * x);
void ProcessSessionConfirmed (uint8_t * buf, size_t len);
void SendSessionConfirmed (const uint8_t * y, const uint8_t * ourAddress, size_t ourAddressLen);
void ProcessRelayRequest (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& from);
void SendRelayResponse (uint32_t nonce, const boost::asio::ip::udp::endpoint& from,
const uint8_t * introKey, const boost::asio::ip::udp::endpoint& to);
void SendRelayIntro (SSUSession * session, const boost::asio::ip::udp::endpoint& from);
void ProcessRelayResponse (uint8_t * buf, size_t len);
void ProcessRelayIntro (uint8_t * buf, size_t len);
void Established ();
void Failed ();
void ScheduleConnectTimer ();
void HandleConnectTimer (const boost::system::error_code& ecode);
void ProcessPeerTest (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint);
void SendPeerTest (uint32_t nonce, uint32_t address, uint16_t port, const uint8_t * introKey, bool toAddress = true, bool sendAddress = true);
void ProcessData (uint8_t * buf, size_t len);
void SendSesionDestroyed ();
void Send (uint8_t type, const uint8_t * payload, size_t len); // with session key
void Send (const uint8_t * buf, size_t size);
void FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len, const uint8_t * aesKey, const uint8_t * iv, const uint8_t * macKey);
void FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len); // with session key
void Decrypt (uint8_t * buf, size_t len, const uint8_t * aesKey);
void DecryptSessionKey (uint8_t * buf, size_t len);
bool Validate (uint8_t * buf, size_t len, const uint8_t * macKey);
const uint8_t * GetIntroKey () const;
void ScheduleTermination ();
void HandleTerminationTimer (const boost::system::error_code& ecode);
void ScheduleTermination ();
void HandleTerminationTimer (const boost::system::error_code& ecode);
private:
friend class SSUData; // TODO: change in later
SSUServer& m_Server;
boost::asio::ip::udp::endpoint m_RemoteEndpoint;
boost::asio::deadline_timer m_Timer;
bool m_PeerTest;
SessionState m_State;
bool m_IsSessionKey;
uint32_t m_RelayTag;
i2p::crypto::CBCEncryption m_SessionKeyEncryption;
i2p::crypto::CBCDecryption m_SessionKeyDecryption;
i2p::crypto::AESKey m_SessionKey;
i2p::crypto::MACKey m_MacKey;
uint32_t m_CreationTime; // seconds since epoch
SSUData m_Data;
bool m_IsDataReceived;
};
private:
friend class SSUData; // TODO: change in later
SSUServer& m_Server;
boost::asio::ip::udp::endpoint m_RemoteEndpoint;
boost::asio::deadline_timer m_Timer;
bool m_PeerTest;
SessionState m_State;
bool m_IsSessionKey;
uint32_t m_RelayTag;
i2p::crypto::CBCEncryption m_SessionKeyEncryption;
i2p::crypto::CBCDecryption m_SessionKeyDecryption;
i2p::crypto::AESKey m_SessionKey;
i2p::crypto::MACKey m_MacKey;
uint32_t m_CreationTime; // seconds since epoch
SSUData m_Data;
bool m_IsDataReceived;
};
}

View file

@ -8,113 +8,113 @@ namespace i2p
{
namespace crypto
{
class Ed25519
{
public:
class Ed25519
{
public:
Ed25519 ()
{
q = CryptoPP::Integer::Power2 (255) - CryptoPP::Integer (19); // 2^255-19
l = CryptoPP::Integer::Power2 (252) + CryptoPP::Integer ("27742317777372353535851937790883648493");
// 2^252 + 27742317777372353535851937790883648493
d = CryptoPP::Integer (-121665) * CryptoPP::Integer (121666).InverseMod (q); // -121665/121666
I = a_exp_b_mod_c (CryptoPP::Integer::Two (), (q - CryptoPP::Integer::One ()).DividedBy (4), q);
B = DecodePoint (CryptoPP::Integer (4)*CryptoPP::Integer (5).InverseMod (q));
}
Ed25519 ()
{
q = CryptoPP::Integer::Power2 (255) - CryptoPP::Integer (19); // 2^255-19
l = CryptoPP::Integer::Power2 (252) + CryptoPP::Integer ("27742317777372353535851937790883648493");
// 2^252 + 27742317777372353535851937790883648493
d = CryptoPP::Integer (-121665) * CryptoPP::Integer (121666).InverseMod (q); // -121665/121666
I = a_exp_b_mod_c (CryptoPP::Integer::Two (), (q - CryptoPP::Integer::One ()).DividedBy (4), q);
B = DecodePoint (CryptoPP::Integer (4)*CryptoPP::Integer (5).InverseMod (q));
}
CryptoPP::ECP::Point DecodePublicKey (const uint8_t * key) const
{
return DecodePoint (CryptoPP::Integer (key, 32));
}
CryptoPP::ECP::Point DecodePublicKey (const uint8_t * key) const
{
return DecodePoint (CryptoPP::Integer (key, 32));
}
CryptoPP::ECP::Point GeneratePublicKey (const uint8_t * privateKey) const
{
return Mul (B, CryptoPP::Integer (privateKey, 32));
}
CryptoPP::ECP::Point GeneratePublicKey (const uint8_t * privateKey) const
{
return Mul (B, CryptoPP::Integer (privateKey, 32));
}
private:
private:
CryptoPP::ECP::Point Sum (const CryptoPP::ECP::Point& p1, const CryptoPP::ECP::Point& p2) const
{
CryptoPP::Integer m = d*p1.x*p2.x*p1.y*p2.y,
x = a_times_b_mod_c (p1.x*p2.y + p2.x*p1.y, (CryptoPP::Integer::One() + m).InverseMod (q), q),
y = a_times_b_mod_c (p1.y*p2.y + p1.x*p2.x, (CryptoPP::Integer::One() - m).InverseMod (q), q);
return CryptoPP::ECP::Point {x, y};
}
CryptoPP::ECP::Point Sum (const CryptoPP::ECP::Point& p1, const CryptoPP::ECP::Point& p2) const
{
CryptoPP::Integer m = d*p1.x*p2.x*p1.y*p2.y,
x = a_times_b_mod_c (p1.x*p2.y + p2.x*p1.y, (CryptoPP::Integer::One() + m).InverseMod (q), q),
y = a_times_b_mod_c (p1.y*p2.y + p1.x*p2.x, (CryptoPP::Integer::One() - m).InverseMod (q), q);
return CryptoPP::ECP::Point {x, y};
}
CryptoPP::ECP::Point Mul (const CryptoPP::ECP::Point& p, const CryptoPP::Integer& e) const
{
CryptoPP::ECP::Point res {0, 1};
if (!e.IsZero ())
{
auto bitCount = e.BitCount ();
for (int i = bitCount - 1; i >= 0; i--)
{
res = Sum (res, res);
if (e.GetBit (i)) res = Sum (res, p);
}
}
return res;
}
CryptoPP::ECP::Point Mul (const CryptoPP::ECP::Point& p, const CryptoPP::Integer& e) const
{
CryptoPP::ECP::Point res {0, 1};
if (!e.IsZero ())
{
auto bitCount = e.BitCount ();
for (int i = bitCount - 1; i >= 0; i--)
{
res = Sum (res, res);
if (e.GetBit (i)) res = Sum (res, p);
}
}
return res;
}
bool IsOnCurve (const CryptoPP::ECP::Point& p) const
{
auto x2 = p.x.Squared(), y2 = p.y.Squared ();
return (y2 - x2 - CryptoPP::Integer::One() - d*x2*y2).Modulo (q).IsZero ();
}
bool IsOnCurve (const CryptoPP::ECP::Point& p) const
{
auto x2 = p.x.Squared(), y2 = p.y.Squared ();
return (y2 - x2 - CryptoPP::Integer::One() - d*x2*y2).Modulo (q).IsZero ();
}
CryptoPP::Integer RecoverX (const CryptoPP::Integer& y) const
{
auto y2 = y.Squared ();
auto xx = (y2 - CryptoPP::Integer::One())*(d*y2 + CryptoPP::Integer::One()).InverseMod (q);
auto x = a_exp_b_mod_c (xx, (q + CryptoPP::Integer (3)).DividedBy (8), q);
if (!(x.Squared () - xx).Modulo (q).IsZero ())
x = a_times_b_mod_c (x, I, q);
if (x.IsOdd ()) x = q - x;
return x;
}
CryptoPP::Integer RecoverX (const CryptoPP::Integer& y) const
{
auto y2 = y.Squared ();
auto xx = (y2 - CryptoPP::Integer::One())*(d*y2 + CryptoPP::Integer::One()).InverseMod (q);
auto x = a_exp_b_mod_c (xx, (q + CryptoPP::Integer (3)).DividedBy (8), q);
if (!(x.Squared () - xx).Modulo (q).IsZero ())
x = a_times_b_mod_c (x, I, q);
if (x.IsOdd ()) x = q - x;
return x;
}
CryptoPP::ECP::Point DecodePoint (const CryptoPP::Integer& y) const
{
auto x = RecoverX (y);
CryptoPP::ECP::Point p {x, y};
if (!IsOnCurve (p))
{
LogPrint (eLogError, "Decoded point is not on 25519");
return CryptoPP::ECP::Point {0, 1};
}
return p;
}
CryptoPP::ECP::Point DecodePoint (const CryptoPP::Integer& y) const
{
auto x = RecoverX (y);
CryptoPP::ECP::Point p {x, y};
if (!IsOnCurve (p))
{
LogPrint (eLogError, "Decoded point is not on 25519");
return CryptoPP::ECP::Point {0, 1};
}
return p;
}
private:
private:
CryptoPP::Integer q, l, d, I;
CryptoPP::ECP::Point B; // base point
};
CryptoPP::Integer q, l, d, I;
CryptoPP::ECP::Point B; // base point
};
static std::unique_ptr<Ed25519> g_Ed25519;
std::unique_ptr<Ed25519>& GetEd25519 ()
{
if (!g_Ed25519)
g_Ed25519.reset (new Ed25519 ());
return g_Ed25519;
}
static std::unique_ptr<Ed25519> g_Ed25519;
std::unique_ptr<Ed25519>& GetEd25519 ()
{
if (!g_Ed25519)
g_Ed25519.reset (new Ed25519 ());
return g_Ed25519;
}
EDDSA25519Verifier::EDDSA25519Verifier (const uint8_t * signingKey):
m_PublicKey (GetEd25519 ()->DecodePublicKey (signingKey))
{
}
EDDSA25519Verifier::EDDSA25519Verifier (const uint8_t * signingKey):
m_PublicKey (GetEd25519 ()->DecodePublicKey (signingKey))
{
}
bool EDDSA25519Verifier::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
return true; // TODO:
}
bool EDDSA25519Verifier::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
return true; // TODO:
}
void EDDSA25519Signer::Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
// TODO
}
void EDDSA25519Signer::Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
// TODO
}
}
}

View file

@ -14,430 +14,430 @@ namespace i2p
{
namespace crypto
{
class Verifier
{
public:
virtual ~Verifier () {};
virtual bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const = 0;
virtual size_t GetPublicKeyLen () const = 0;
virtual size_t GetSignatureLen () const = 0;
virtual size_t GetPrivateKeyLen () const { return GetSignatureLen ()/2; };
};
class Verifier
{
public:
virtual ~Verifier () {};
virtual bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const = 0;
virtual size_t GetPublicKeyLen () const = 0;
virtual size_t GetSignatureLen () const = 0;
virtual size_t GetPrivateKeyLen () const { return GetSignatureLen ()/2; };
};
class Signer
{
public:
class Signer
{
public:
virtual ~Signer () {};
virtual void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const = 0;
};
virtual ~Signer () {};
virtual void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const = 0;
};
const size_t DSA_PUBLIC_KEY_LENGTH = 128;
const size_t DSA_SIGNATURE_LENGTH = 40;
const size_t DSA_PRIVATE_KEY_LENGTH = DSA_SIGNATURE_LENGTH/2;
class DSAVerifier: public Verifier
{
public:
const size_t DSA_PUBLIC_KEY_LENGTH = 128;
const size_t DSA_SIGNATURE_LENGTH = 40;
const size_t DSA_PRIVATE_KEY_LENGTH = DSA_SIGNATURE_LENGTH/2;
class DSAVerifier: public Verifier
{
public:
DSAVerifier (const uint8_t * signingKey)
{
m_PublicKey.Initialize (dsap, dsaq, dsag, CryptoPP::Integer (signingKey, DSA_PUBLIC_KEY_LENGTH));
}
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
CryptoPP::DSA::Verifier verifier (m_PublicKey);
return verifier.VerifyMessage (buf, len, signature, DSA_SIGNATURE_LENGTH);
}
DSAVerifier (const uint8_t * signingKey)
{
m_PublicKey.Initialize (dsap, dsaq, dsag, CryptoPP::Integer (signingKey, DSA_PUBLIC_KEY_LENGTH));
}
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
CryptoPP::DSA::Verifier verifier (m_PublicKey);
return verifier.VerifyMessage (buf, len, signature, DSA_SIGNATURE_LENGTH);
}
size_t GetPublicKeyLen () const { return DSA_PUBLIC_KEY_LENGTH; };
size_t GetSignatureLen () const { return DSA_SIGNATURE_LENGTH; };
private:
size_t GetPublicKeyLen () const { return DSA_PUBLIC_KEY_LENGTH; };
size_t GetSignatureLen () const { return DSA_SIGNATURE_LENGTH; };
private:
CryptoPP::DSA::PublicKey m_PublicKey;
};
CryptoPP::DSA::PublicKey m_PublicKey;
};
class DSASigner: public Signer
{
public:
class DSASigner: public Signer
{
public:
DSASigner (const uint8_t * signingPrivateKey)
{
m_PrivateKey.Initialize (dsap, dsaq, dsag, CryptoPP::Integer (signingPrivateKey, DSA_PRIVATE_KEY_LENGTH));
}
DSASigner (const uint8_t * signingPrivateKey)
{
m_PrivateKey.Initialize (dsap, dsaq, dsag, CryptoPP::Integer (signingPrivateKey, DSA_PRIVATE_KEY_LENGTH));
}
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
CryptoPP::DSA::Signer signer (m_PrivateKey);
signer.SignMessage (rnd, buf, len, signature);
}
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
CryptoPP::DSA::Signer signer (m_PrivateKey);
signer.SignMessage (rnd, buf, len, signature);
}
private:
private:
CryptoPP::DSA::PrivateKey m_PrivateKey;
};
CryptoPP::DSA::PrivateKey m_PrivateKey;
};
inline void CreateDSARandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CryptoPP::DSA::PrivateKey privateKey;
CryptoPP::DSA::PublicKey publicKey;
privateKey.Initialize (rnd, dsap, dsaq, dsag);
privateKey.MakePublicKey (publicKey);
privateKey.GetPrivateExponent ().Encode (signingPrivateKey, DSA_PRIVATE_KEY_LENGTH);
publicKey.GetPublicElement ().Encode (signingPublicKey, DSA_PUBLIC_KEY_LENGTH);
}
inline void CreateDSARandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CryptoPP::DSA::PrivateKey privateKey;
CryptoPP::DSA::PublicKey publicKey;
privateKey.Initialize (rnd, dsap, dsaq, dsag);
privateKey.MakePublicKey (publicKey);
privateKey.GetPrivateExponent ().Encode (signingPrivateKey, DSA_PRIVATE_KEY_LENGTH);
publicKey.GetPublicElement ().Encode (signingPublicKey, DSA_PUBLIC_KEY_LENGTH);
}
template<typename Hash, size_t keyLen>
class ECDSAVerifier: public Verifier
{
public:
template<typename Hash, size_t keyLen>
class ECDSAVerifier: public Verifier
{
public:
template<typename Curve>
ECDSAVerifier (Curve curve, const uint8_t * signingKey)
{
m_PublicKey.Initialize (curve,
CryptoPP::ECP::Point (CryptoPP::Integer (signingKey, keyLen/2),
CryptoPP::Integer (signingKey + keyLen/2, keyLen/2)));
}
template<typename Curve>
ECDSAVerifier (Curve curve, const uint8_t * signingKey)
{
m_PublicKey.Initialize (curve,
CryptoPP::ECP::Point (CryptoPP::Integer (signingKey, keyLen/2),
CryptoPP::Integer (signingKey + keyLen/2, keyLen/2)));
}
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::Verifier verifier (m_PublicKey);
return verifier.VerifyMessage (buf, len, signature, keyLen); // signature length
}
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::Verifier verifier (m_PublicKey);
return verifier.VerifyMessage (buf, len, signature, keyLen); // signature length
}
size_t GetPublicKeyLen () const { return keyLen; };
size_t GetSignatureLen () const { return keyLen; }; // signature length = key length
private:
size_t GetPublicKeyLen () const { return keyLen; };
size_t GetSignatureLen () const { return keyLen; }; // signature length = key length
private:
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PublicKey m_PublicKey;
};
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PublicKey m_PublicKey;
};
template<typename Hash>
class ECDSASigner: public Signer
{
public:
template<typename Hash>
class ECDSASigner: public Signer
{
public:
template<typename Curve>
ECDSASigner (Curve curve, const uint8_t * signingPrivateKey, size_t keyLen)
{
m_PrivateKey.Initialize (curve, CryptoPP::Integer (signingPrivateKey, keyLen/2)); // private key length
}
template<typename Curve>
ECDSASigner (Curve curve, const uint8_t * signingPrivateKey, size_t keyLen)
{
m_PrivateKey.Initialize (curve, CryptoPP::Integer (signingPrivateKey, keyLen/2)); // private key length
}
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::Signer signer (m_PrivateKey);
signer.SignMessage (rnd, buf, len, signature);
}
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::Signer signer (m_PrivateKey);
signer.SignMessage (rnd, buf, len, signature);
}
private:
private:
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PrivateKey m_PrivateKey;
};
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PrivateKey m_PrivateKey;
};
template<typename Hash, typename Curve>
inline void CreateECDSARandomKeys (CryptoPP::RandomNumberGenerator& rnd, Curve curve,
size_t keyLen, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PrivateKey privateKey;
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PublicKey publicKey;
privateKey.Initialize (rnd, curve);
privateKey.MakePublicKey (publicKey);
privateKey.GetPrivateExponent ().Encode (signingPrivateKey, keyLen/2);
auto q = publicKey.GetPublicElement ();
q.x.Encode (signingPublicKey, keyLen/2);
q.y.Encode (signingPublicKey + keyLen/2, keyLen/2);
}
template<typename Hash, typename Curve>
inline void CreateECDSARandomKeys (CryptoPP::RandomNumberGenerator& rnd, Curve curve,
size_t keyLen, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PrivateKey privateKey;
typename CryptoPP::ECDSA<CryptoPP::ECP, Hash>::PublicKey publicKey;
privateKey.Initialize (rnd, curve);
privateKey.MakePublicKey (publicKey);
privateKey.GetPrivateExponent ().Encode (signingPrivateKey, keyLen/2);
auto q = publicKey.GetPublicElement ();
q.x.Encode (signingPublicKey, keyLen/2);
q.y.Encode (signingPublicKey + keyLen/2, keyLen/2);
}
// ECDSA_SHA256_P256
const size_t ECDSAP256_KEY_LENGTH = 64;
class ECDSAP256Verifier: public ECDSAVerifier<CryptoPP::SHA256, ECDSAP256_KEY_LENGTH>
{
public:
const size_t ECDSAP256_KEY_LENGTH = 64;
class ECDSAP256Verifier: public ECDSAVerifier<CryptoPP::SHA256, ECDSAP256_KEY_LENGTH>
{
public:
ECDSAP256Verifier (const uint8_t * signingKey):
ECDSAVerifier (CryptoPP::ASN1::secp256r1(), signingKey)
{
}
};
ECDSAP256Verifier (const uint8_t * signingKey):
ECDSAVerifier (CryptoPP::ASN1::secp256r1(), signingKey)
{
}
};
class ECDSAP256Signer: public ECDSASigner<CryptoPP::SHA256>
{
public:
class ECDSAP256Signer: public ECDSASigner<CryptoPP::SHA256>
{
public:
ECDSAP256Signer (const uint8_t * signingPrivateKey):
ECDSASigner (CryptoPP::ASN1::secp256r1(), signingPrivateKey, ECDSAP256_KEY_LENGTH)
{
}
};
ECDSAP256Signer (const uint8_t * signingPrivateKey):
ECDSASigner (CryptoPP::ASN1::secp256r1(), signingPrivateKey, ECDSAP256_KEY_LENGTH)
{
}
};
inline void CreateECDSAP256RandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CreateECDSARandomKeys<CryptoPP::SHA256> (rnd, CryptoPP::ASN1::secp256r1(), ECDSAP256_KEY_LENGTH, signingPrivateKey, signingPublicKey);
}
inline void CreateECDSAP256RandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CreateECDSARandomKeys<CryptoPP::SHA256> (rnd, CryptoPP::ASN1::secp256r1(), ECDSAP256_KEY_LENGTH, signingPrivateKey, signingPublicKey);
}
// ECDSA_SHA384_P384
const size_t ECDSAP384_KEY_LENGTH = 96;
class ECDSAP384Verifier: public ECDSAVerifier<CryptoPP::SHA384, ECDSAP384_KEY_LENGTH>
{
public:
const size_t ECDSAP384_KEY_LENGTH = 96;
class ECDSAP384Verifier: public ECDSAVerifier<CryptoPP::SHA384, ECDSAP384_KEY_LENGTH>
{
public:
ECDSAP384Verifier (const uint8_t * signingKey):
ECDSAVerifier (CryptoPP::ASN1::secp384r1(), signingKey)
{
}
};
ECDSAP384Verifier (const uint8_t * signingKey):
ECDSAVerifier (CryptoPP::ASN1::secp384r1(), signingKey)
{
}
};
class ECDSAP384Signer: public ECDSASigner<CryptoPP::SHA384>
{
public:
class ECDSAP384Signer: public ECDSASigner<CryptoPP::SHA384>
{
public:
ECDSAP384Signer (const uint8_t * signingPrivateKey):
ECDSASigner (CryptoPP::ASN1::secp384r1(), signingPrivateKey, ECDSAP384_KEY_LENGTH)
{
}
};
ECDSAP384Signer (const uint8_t * signingPrivateKey):
ECDSASigner (CryptoPP::ASN1::secp384r1(), signingPrivateKey, ECDSAP384_KEY_LENGTH)
{
}
};
inline void CreateECDSAP384RandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CreateECDSARandomKeys<CryptoPP::SHA384> (rnd, CryptoPP::ASN1::secp384r1(), ECDSAP384_KEY_LENGTH, signingPrivateKey, signingPublicKey);
}
inline void CreateECDSAP384RandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CreateECDSARandomKeys<CryptoPP::SHA384> (rnd, CryptoPP::ASN1::secp384r1(), ECDSAP384_KEY_LENGTH, signingPrivateKey, signingPublicKey);
}
// ECDSA_SHA512_P521
const size_t ECDSAP521_KEY_LENGTH = 132;
class ECDSAP521Verifier: public ECDSAVerifier<CryptoPP::SHA512, ECDSAP521_KEY_LENGTH>
{
public:
const size_t ECDSAP521_KEY_LENGTH = 132;
class ECDSAP521Verifier: public ECDSAVerifier<CryptoPP::SHA512, ECDSAP521_KEY_LENGTH>
{
public:
ECDSAP521Verifier (const uint8_t * signingKey):
ECDSAVerifier (CryptoPP::ASN1::secp521r1(), signingKey)
{
}
};
ECDSAP521Verifier (const uint8_t * signingKey):
ECDSAVerifier (CryptoPP::ASN1::secp521r1(), signingKey)
{
}
};
class ECDSAP521Signer: public ECDSASigner<CryptoPP::SHA512>
{
public:
class ECDSAP521Signer: public ECDSASigner<CryptoPP::SHA512>
{
public:
ECDSAP521Signer (const uint8_t * signingPrivateKey):
ECDSASigner (CryptoPP::ASN1::secp521r1(), signingPrivateKey, ECDSAP521_KEY_LENGTH)
{
}
};
ECDSAP521Signer (const uint8_t * signingPrivateKey):
ECDSASigner (CryptoPP::ASN1::secp521r1(), signingPrivateKey, ECDSAP521_KEY_LENGTH)
{
}
};
inline void CreateECDSAP521RandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CreateECDSARandomKeys<CryptoPP::SHA512> (rnd, CryptoPP::ASN1::secp521r1(), ECDSAP521_KEY_LENGTH, signingPrivateKey, signingPublicKey);
}
inline void CreateECDSAP521RandomKeys (CryptoPP::RandomNumberGenerator& rnd, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CreateECDSARandomKeys<CryptoPP::SHA512> (rnd, CryptoPP::ASN1::secp521r1(), ECDSAP521_KEY_LENGTH, signingPrivateKey, signingPublicKey);
}
// RSA
template<typename Hash, size_t keyLen>
class RSAVerifier: public Verifier
{
public:
template<typename Hash, size_t keyLen>
class RSAVerifier: public Verifier
{
public:
RSAVerifier (const uint8_t * signingKey)
{
m_PublicKey.Initialize (CryptoPP::Integer (signingKey, keyLen), CryptoPP::Integer (rsae));
}
RSAVerifier (const uint8_t * signingKey)
{
m_PublicKey.Initialize (CryptoPP::Integer (signingKey, keyLen), CryptoPP::Integer (rsae));
}
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
typename CryptoPP::RSASS<CryptoPP::PKCS1v15, Hash>::Verifier verifier (m_PublicKey);
return verifier.VerifyMessage (buf, len, signature, keyLen); // signature length
}
size_t GetPublicKeyLen () const { return keyLen; }
size_t GetSignatureLen () const { return keyLen; }
size_t GetPrivateKeyLen () const { return GetSignatureLen ()*2; };
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
typename CryptoPP::RSASS<CryptoPP::PKCS1v15, Hash>::Verifier verifier (m_PublicKey);
return verifier.VerifyMessage (buf, len, signature, keyLen); // signature length
}
size_t GetPublicKeyLen () const { return keyLen; }
size_t GetSignatureLen () const { return keyLen; }
size_t GetPrivateKeyLen () const { return GetSignatureLen ()*2; };
private:
CryptoPP::RSA::PublicKey m_PublicKey;
};
private:
CryptoPP::RSA::PublicKey m_PublicKey;
};
template<typename Hash>
class RSASigner: public Signer
{
public:
template<typename Hash>
class RSASigner: public Signer
{
public:
RSASigner (const uint8_t * signingPrivateKey, size_t keyLen)
{
m_PrivateKey.Initialize (CryptoPP::Integer (signingPrivateKey, keyLen/2),
rsae,
CryptoPP::Integer (signingPrivateKey + keyLen/2, keyLen/2));
}
RSASigner (const uint8_t * signingPrivateKey, size_t keyLen)
{
m_PrivateKey.Initialize (CryptoPP::Integer (signingPrivateKey, keyLen/2),
rsae,
CryptoPP::Integer (signingPrivateKey + keyLen/2, keyLen/2));
}
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
typename CryptoPP::RSASS<CryptoPP::PKCS1v15, Hash>::Signer signer (m_PrivateKey);
signer.SignMessage (rnd, buf, len, signature);
}
private:
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const
{
typename CryptoPP::RSASS<CryptoPP::PKCS1v15, Hash>::Signer signer (m_PrivateKey);
signer.SignMessage (rnd, buf, len, signature);
}
private:
CryptoPP::RSA::PrivateKey m_PrivateKey;
};
CryptoPP::RSA::PrivateKey m_PrivateKey;
};
inline void CreateRSARandomKeys (CryptoPP::RandomNumberGenerator& rnd,
size_t publicKeyLen, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CryptoPP::RSA::PrivateKey privateKey;
privateKey.Initialize (rnd, publicKeyLen*8, rsae);
privateKey.GetModulus ().Encode (signingPrivateKey, publicKeyLen);
privateKey.GetPrivateExponent ().Encode (signingPrivateKey + publicKeyLen, publicKeyLen);
privateKey.GetModulus ().Encode (signingPublicKey, publicKeyLen);
}
inline void CreateRSARandomKeys (CryptoPP::RandomNumberGenerator& rnd,
size_t publicKeyLen, uint8_t * signingPrivateKey, uint8_t * signingPublicKey)
{
CryptoPP::RSA::PrivateKey privateKey;
privateKey.Initialize (rnd, publicKeyLen*8, rsae);
privateKey.GetModulus ().Encode (signingPrivateKey, publicKeyLen);
privateKey.GetPrivateExponent ().Encode (signingPrivateKey + publicKeyLen, publicKeyLen);
privateKey.GetModulus ().Encode (signingPublicKey, publicKeyLen);
}
// RSA_SHA256_2048
const size_t RSASHA2562048_KEY_LENGTH = 256;
class RSASHA2562048Verifier: public RSAVerifier<CryptoPP::SHA256, RSASHA2562048_KEY_LENGTH>
{
public:
const size_t RSASHA2562048_KEY_LENGTH = 256;
class RSASHA2562048Verifier: public RSAVerifier<CryptoPP::SHA256, RSASHA2562048_KEY_LENGTH>
{
public:
RSASHA2562048Verifier (const uint8_t * signingKey): RSAVerifier (signingKey)
{
}
};
RSASHA2562048Verifier (const uint8_t * signingKey): RSAVerifier (signingKey)
{
}
};
class RSASHA2562048Signer: public RSASigner<CryptoPP::SHA256>
{
public:
class RSASHA2562048Signer: public RSASigner<CryptoPP::SHA256>
{
public:
RSASHA2562048Signer (const uint8_t * signingPrivateKey):
RSASigner (signingPrivateKey, RSASHA2562048_KEY_LENGTH*2)
{
}
};
RSASHA2562048Signer (const uint8_t * signingPrivateKey):
RSASigner (signingPrivateKey, RSASHA2562048_KEY_LENGTH*2)
{
}
};
// RSA_SHA384_3072
const size_t RSASHA3843072_KEY_LENGTH = 384;
class RSASHA3843072Verifier: public RSAVerifier<CryptoPP::SHA384, RSASHA3843072_KEY_LENGTH>
{
public:
const size_t RSASHA3843072_KEY_LENGTH = 384;
class RSASHA3843072Verifier: public RSAVerifier<CryptoPP::SHA384, RSASHA3843072_KEY_LENGTH>
{
public:
RSASHA3843072Verifier (const uint8_t * signingKey): RSAVerifier (signingKey)
{
}
};
RSASHA3843072Verifier (const uint8_t * signingKey): RSAVerifier (signingKey)
{
}
};
class RSASHA3843072Signer: public RSASigner<CryptoPP::SHA384>
{
public:
class RSASHA3843072Signer: public RSASigner<CryptoPP::SHA384>
{
public:
RSASHA3843072Signer (const uint8_t * signingPrivateKey):
RSASigner (signingPrivateKey, RSASHA3843072_KEY_LENGTH*2)
{
}
};
RSASHA3843072Signer (const uint8_t * signingPrivateKey):
RSASigner (signingPrivateKey, RSASHA3843072_KEY_LENGTH*2)
{
}
};
// RSA_SHA512_4096
const size_t RSASHA5124096_KEY_LENGTH = 512;
class RSASHA5124096Verifier: public RSAVerifier<CryptoPP::SHA512, RSASHA5124096_KEY_LENGTH>
{
public:
const size_t RSASHA5124096_KEY_LENGTH = 512;
class RSASHA5124096Verifier: public RSAVerifier<CryptoPP::SHA512, RSASHA5124096_KEY_LENGTH>
{
public:
RSASHA5124096Verifier (const uint8_t * signingKey): RSAVerifier (signingKey)
{
}
};
RSASHA5124096Verifier (const uint8_t * signingKey): RSAVerifier (signingKey)
{
}
};
class RSASHA5124096Signer: public RSASigner<CryptoPP::SHA512>
{
public:
class RSASHA5124096Signer: public RSASigner<CryptoPP::SHA512>
{
public:
RSASHA5124096Signer (const uint8_t * signingPrivateKey):
RSASigner (signingPrivateKey, RSASHA5124096_KEY_LENGTH*2)
{
}
};
RSASHA5124096Signer (const uint8_t * signingPrivateKey):
RSASigner (signingPrivateKey, RSASHA5124096_KEY_LENGTH*2)
{
}
};
// Raw verifiers
class RawVerifier
{
public:
virtual ~RawVerifier () {};
virtual void Update (const uint8_t * buf, size_t len) = 0;
virtual bool Verify (const uint8_t * signature) = 0;
};
// Raw verifiers
class RawVerifier
{
public:
virtual ~RawVerifier () {};
virtual void Update (const uint8_t * buf, size_t len) = 0;
virtual bool Verify (const uint8_t * signature) = 0;
};
template<typename Hash, size_t keyLen>
class RSARawVerifier: public RawVerifier
{
public:
template<typename Hash, size_t keyLen>
class RSARawVerifier: public RawVerifier
{
public:
RSARawVerifier (const uint8_t * signingKey):
n (signingKey, keyLen)
{
}
RSARawVerifier (const uint8_t * signingKey):
n (signingKey, keyLen)
{
}
void Update (const uint8_t * buf, size_t len)
{
m_Hash.Update (buf, len);
}
bool Verify (const uint8_t * signature)
{
// RSA encryption first
CryptoPP::Integer enSig (a_exp_b_mod_c (CryptoPP::Integer (signature, keyLen),
CryptoPP::Integer (i2p::crypto::rsae), n)); // s^e mod n
uint8_t enSigBuf[keyLen];
enSig.Encode (enSigBuf, keyLen);
void Update (const uint8_t * buf, size_t len)
{
m_Hash.Update (buf, len);
}
bool Verify (const uint8_t * signature)
{
// RSA encryption first
CryptoPP::Integer enSig (a_exp_b_mod_c (CryptoPP::Integer (signature, keyLen),
CryptoPP::Integer (i2p::crypto::rsae), n)); // s^e mod n
uint8_t enSigBuf[keyLen];
enSig.Encode (enSigBuf, keyLen);
uint8_t digest[Hash::DIGESTSIZE];
m_Hash.Final (digest);
if ((int)keyLen < Hash::DIGESTSIZE) return false; // can't verify digest longer than key
// we assume digest is right aligned, at least for PKCS#1 v1.5 padding
return !memcmp (enSigBuf + (keyLen - Hash::DIGESTSIZE), digest, Hash::DIGESTSIZE);
}
uint8_t digest[Hash::DIGESTSIZE];
m_Hash.Final (digest);
if ((int)keyLen < Hash::DIGESTSIZE) return false; // can't verify digest longer than key
// we assume digest is right aligned, at least for PKCS#1 v1.5 padding
return !memcmp (enSigBuf + (keyLen - Hash::DIGESTSIZE), digest, Hash::DIGESTSIZE);
}
private:
private:
CryptoPP::Integer n; // RSA modulus
Hash m_Hash;
};
CryptoPP::Integer n; // RSA modulus
Hash m_Hash;
};
class RSASHA5124096RawVerifier: public RSARawVerifier<CryptoPP::SHA512, RSASHA5124096_KEY_LENGTH>
{
public:
class RSASHA5124096RawVerifier: public RSARawVerifier<CryptoPP::SHA512, RSASHA5124096_KEY_LENGTH>
{
public:
RSASHA5124096RawVerifier (const uint8_t * signingKey): RSARawVerifier (signingKey)
{
}
};
RSASHA5124096RawVerifier (const uint8_t * signingKey): RSARawVerifier (signingKey)
{
}
};
// EdDSA
const size_t EDDSA25519_PUBLIC_KEY_LENGTH = 32;
const size_t EDDSA25519_SIGNATURE_LENGTH = 64;
const size_t EDDSA25519_PRIVATE_KEY_LENGTH = 32;
class EDDSA25519Verifier: public Verifier
{
public:
// EdDSA
const size_t EDDSA25519_PUBLIC_KEY_LENGTH = 32;
const size_t EDDSA25519_SIGNATURE_LENGTH = 64;
const size_t EDDSA25519_PRIVATE_KEY_LENGTH = 32;
class EDDSA25519Verifier: public Verifier
{
public:
EDDSA25519Verifier (const uint8_t * signingKey);
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const;
EDDSA25519Verifier (const uint8_t * signingKey);
bool Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const;
size_t GetPublicKeyLen () const { return EDDSA25519_PUBLIC_KEY_LENGTH; };
size_t GetSignatureLen () const { return EDDSA25519_SIGNATURE_LENGTH; };
size_t GetPublicKeyLen () const { return EDDSA25519_PUBLIC_KEY_LENGTH; };
size_t GetSignatureLen () const { return EDDSA25519_SIGNATURE_LENGTH; };
private:
CryptoPP::ECP::Point m_PublicKey;
};
private:
CryptoPP::ECP::Point m_PublicKey;
};
class EDDSA25519Signer: public Signer
{
public:
class EDDSA25519Signer: public Signer
{
public:
EDDSA25519Signer (const uint8_t * signingPrivateKey) {};
EDDSA25519Signer (const uint8_t * signingPrivateKey) {};
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const;
};
void Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const;
};
}
}

File diff suppressed because it is too large Load diff

View file

@ -22,250 +22,250 @@ namespace i2p
{
namespace client
{
class ClientDestination;
class ClientDestination;
}
namespace stream
{
const uint16_t PACKET_FLAG_SYNCHRONIZE = 0x0001;
const uint16_t PACKET_FLAG_CLOSE = 0x0002;
const uint16_t PACKET_FLAG_RESET = 0x0004;
const uint16_t PACKET_FLAG_SIGNATURE_INCLUDED = 0x0008;
const uint16_t PACKET_FLAG_SIGNATURE_REQUESTED = 0x0010;
const uint16_t PACKET_FLAG_FROM_INCLUDED = 0x0020;
const uint16_t PACKET_FLAG_DELAY_REQUESTED = 0x0040;
const uint16_t PACKET_FLAG_MAX_PACKET_SIZE_INCLUDED = 0x0080;
const uint16_t PACKET_FLAG_PROFILE_INTERACTIVE = 0x0100;
const uint16_t PACKET_FLAG_ECHO = 0x0200;
const uint16_t PACKET_FLAG_NO_ACK = 0x0400;
const uint16_t PACKET_FLAG_SYNCHRONIZE = 0x0001;
const uint16_t PACKET_FLAG_CLOSE = 0x0002;
const uint16_t PACKET_FLAG_RESET = 0x0004;
const uint16_t PACKET_FLAG_SIGNATURE_INCLUDED = 0x0008;
const uint16_t PACKET_FLAG_SIGNATURE_REQUESTED = 0x0010;
const uint16_t PACKET_FLAG_FROM_INCLUDED = 0x0020;
const uint16_t PACKET_FLAG_DELAY_REQUESTED = 0x0040;
const uint16_t PACKET_FLAG_MAX_PACKET_SIZE_INCLUDED = 0x0080;
const uint16_t PACKET_FLAG_PROFILE_INTERACTIVE = 0x0100;
const uint16_t PACKET_FLAG_ECHO = 0x0200;
const uint16_t PACKET_FLAG_NO_ACK = 0x0400;
const size_t STREAMING_MTU = 1730;
const size_t MAX_PACKET_SIZE = 4096;
const size_t COMPRESSION_THRESHOLD_SIZE = 66;
const int ACK_SEND_TIMEOUT = 200; // in milliseconds
const int MAX_NUM_RESEND_ATTEMPTS = 6;
const int WINDOW_SIZE = 6; // in messages
const int MIN_WINDOW_SIZE = 1;
const int MAX_WINDOW_SIZE = 128;
const int INITIAL_RTT = 8000; // in milliseconds
const int INITIAL_RTO = 9000; // in milliseconds
struct Packet
{
size_t len, offset;
uint8_t buf[MAX_PACKET_SIZE];
uint64_t sendTime;
Packet (): len (0), offset (0), sendTime (0) {};
uint8_t * GetBuffer () { return buf + offset; };
size_t GetLength () const { return len - offset; };
const size_t STREAMING_MTU = 1730;
const size_t MAX_PACKET_SIZE = 4096;
const size_t COMPRESSION_THRESHOLD_SIZE = 66;
const int ACK_SEND_TIMEOUT = 200; // in milliseconds
const int MAX_NUM_RESEND_ATTEMPTS = 6;
const int WINDOW_SIZE = 6; // in messages
const int MIN_WINDOW_SIZE = 1;
const int MAX_WINDOW_SIZE = 128;
const int INITIAL_RTT = 8000; // in milliseconds
const int INITIAL_RTO = 9000; // in milliseconds
struct Packet
{
size_t len, offset;
uint8_t buf[MAX_PACKET_SIZE];
uint64_t sendTime;
Packet (): len (0), offset (0), sendTime (0) {};
uint8_t * GetBuffer () { return buf + offset; };
size_t GetLength () const { return len - offset; };
uint32_t GetSendStreamID () const { return bufbe32toh (buf); };
uint32_t GetReceiveStreamID () const { return bufbe32toh (buf + 4); };
uint32_t GetSeqn () const { return bufbe32toh (buf + 8); };
uint32_t GetAckThrough () const { return bufbe32toh (buf + 12); };
uint8_t GetNACKCount () const { return buf[16]; };
uint32_t GetNACK (int i) const { return bufbe32toh (buf + 17 + 4 * i); };
const uint8_t * GetOption () const { return buf + 17 + GetNACKCount ()*4 + 3; }; // 3 = resendDelay + flags
uint16_t GetFlags () const { return bufbe16toh (GetOption () - 2); };
uint16_t GetOptionSize () const { return bufbe16toh (GetOption ()); };
const uint8_t * GetOptionData () const { return GetOption () + 2; };
const uint8_t * GetPayload () const { return GetOptionData () + GetOptionSize (); };
uint32_t GetSendStreamID () const { return bufbe32toh (buf); };
uint32_t GetReceiveStreamID () const { return bufbe32toh (buf + 4); };
uint32_t GetSeqn () const { return bufbe32toh (buf + 8); };
uint32_t GetAckThrough () const { return bufbe32toh (buf + 12); };
uint8_t GetNACKCount () const { return buf[16]; };
uint32_t GetNACK (int i) const { return bufbe32toh (buf + 17 + 4 * i); };
const uint8_t * GetOption () const { return buf + 17 + GetNACKCount ()*4 + 3; }; // 3 = resendDelay + flags
uint16_t GetFlags () const { return bufbe16toh (GetOption () - 2); };
uint16_t GetOptionSize () const { return bufbe16toh (GetOption ()); };
const uint8_t * GetOptionData () const { return GetOption () + 2; };
const uint8_t * GetPayload () const { return GetOptionData () + GetOptionSize (); };
bool IsSYN () const { return GetFlags () & PACKET_FLAG_SYNCHRONIZE; };
bool IsNoAck () const { return GetFlags () & PACKET_FLAG_NO_ACK; };
};
bool IsSYN () const { return GetFlags () & PACKET_FLAG_SYNCHRONIZE; };
bool IsNoAck () const { return GetFlags () & PACKET_FLAG_NO_ACK; };
};
struct PacketCmp
{
bool operator() (const Packet * p1, const Packet * p2) const
{
return p1->GetSeqn () < p2->GetSeqn ();
};
};
struct PacketCmp
{
bool operator() (const Packet * p1, const Packet * p2) const
{
return p1->GetSeqn () < p2->GetSeqn ();
};
};
enum StreamStatus
{
eStreamStatusNew = 0,
eStreamStatusOpen,
eStreamStatusReset,
eStreamStatusClosing,
eStreamStatusClosed
};
class StreamingDestination;
class Stream: public std::enable_shared_from_this<Stream>
{
public:
enum StreamStatus
{
eStreamStatusNew = 0,
eStreamStatusOpen,
eStreamStatusReset,
eStreamStatusClosing,
eStreamStatusClosed
};
class StreamingDestination;
class Stream: public std::enable_shared_from_this<Stream>
{
public:
typedef std::function<void (const boost::system::error_code& ecode)> SendHandler;
typedef std::function<void (const boost::system::error_code& ecode)> SendHandler;
Stream (boost::asio::io_service& service, StreamingDestination& local,
std::shared_ptr<const i2p::data::LeaseSet> remote, int port = 0); // outgoing
Stream (boost::asio::io_service& service, StreamingDestination& local); // incoming
Stream (boost::asio::io_service& service, StreamingDestination& local,
std::shared_ptr<const i2p::data::LeaseSet> remote, int port = 0); // outgoing
Stream (boost::asio::io_service& service, StreamingDestination& local); // incoming
~Stream ();
uint32_t GetSendStreamID () const { return m_SendStreamID; };
uint32_t GetRecvStreamID () const { return m_RecvStreamID; };
std::shared_ptr<const i2p::data::LeaseSet> GetRemoteLeaseSet () const { return m_RemoteLeaseSet; };
const i2p::data::IdentityEx& GetRemoteIdentity () const { return m_RemoteIdentity; };
bool IsOpen () const { return m_Status == eStreamStatusOpen; };
bool IsEstablished () const { return m_SendStreamID; };
StreamStatus GetStatus () const { return m_Status; };
StreamingDestination& GetLocalDestination () { return m_LocalDestination; };
void HandleNextPacket (Packet * packet);
size_t Send (const uint8_t * buf, size_t len);
void AsyncSend (const uint8_t * buf, size_t len, SendHandler handler);
template<typename Buffer, typename ReceiveHandler>
void AsyncReceive (const Buffer& buffer, ReceiveHandler handler, int timeout = 0);
size_t ReadSome (uint8_t * buf, size_t len) { return ConcatenatePackets (buf, len); };
void Close ();
void Cancel () { m_ReceiveTimer.cancel (); };
~Stream ();
uint32_t GetSendStreamID () const { return m_SendStreamID; };
uint32_t GetRecvStreamID () const { return m_RecvStreamID; };
std::shared_ptr<const i2p::data::LeaseSet> GetRemoteLeaseSet () const { return m_RemoteLeaseSet; };
const i2p::data::IdentityEx& GetRemoteIdentity () const { return m_RemoteIdentity; };
bool IsOpen () const { return m_Status == eStreamStatusOpen; };
bool IsEstablished () const { return m_SendStreamID; };
StreamStatus GetStatus () const { return m_Status; };
StreamingDestination& GetLocalDestination () { return m_LocalDestination; };
void HandleNextPacket (Packet * packet);
size_t Send (const uint8_t * buf, size_t len);
void AsyncSend (const uint8_t * buf, size_t len, SendHandler handler);
template<typename Buffer, typename ReceiveHandler>
void AsyncReceive (const Buffer& buffer, ReceiveHandler handler, int timeout = 0);
size_t ReadSome (uint8_t * buf, size_t len) { return ConcatenatePackets (buf, len); };
void Close ();
void Cancel () { m_ReceiveTimer.cancel (); };
size_t GetNumSentBytes () const { return m_NumSentBytes; };
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
size_t GetSendQueueSize () const { return m_SentPackets.size (); };
size_t GetReceiveQueueSize () const { return m_ReceiveQueue.size (); };
size_t GetSendBufferSize () const { return m_SendBuffer.rdbuf ()->in_avail (); };
int GetWindowSize () const { return m_WindowSize; };
int GetRTT () const { return m_RTT; };
private:
size_t GetNumSentBytes () const { return m_NumSentBytes; };
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
size_t GetSendQueueSize () const { return m_SentPackets.size (); };
size_t GetReceiveQueueSize () const { return m_ReceiveQueue.size (); };
size_t GetSendBufferSize () const { return m_SendBuffer.rdbuf ()->in_avail (); };
int GetWindowSize () const { return m_WindowSize; };
int GetRTT () const { return m_RTT; };
private:
void Terminate ();
void Terminate ();
void SendBuffer ();
void SendQuickAck ();
void SendClose ();
bool SendPacket (Packet * packet);
void SendPackets (const std::vector<Packet *>& packets);
void SendBuffer ();
void SendQuickAck ();
void SendClose ();
bool SendPacket (Packet * packet);
void SendPackets (const std::vector<Packet *>& packets);
void SavePacket (Packet * packet);
void ProcessPacket (Packet * packet);
void ProcessAck (Packet * packet);
size_t ConcatenatePackets (uint8_t * buf, size_t len);
void SavePacket (Packet * packet);
void ProcessPacket (Packet * packet);
void ProcessAck (Packet * packet);
size_t ConcatenatePackets (uint8_t * buf, size_t len);
void UpdateCurrentRemoteLease (bool expired = false);
template<typename Buffer, typename ReceiveHandler>
void HandleReceiveTimer (const boost::system::error_code& ecode, const Buffer& buffer, ReceiveHandler handler);
void ScheduleResend ();
void HandleResendTimer (const boost::system::error_code& ecode);
void HandleAckSendTimer (const boost::system::error_code& ecode);
void UpdateCurrentRemoteLease (bool expired = false);
template<typename Buffer, typename ReceiveHandler>
void HandleReceiveTimer (const boost::system::error_code& ecode, const Buffer& buffer, ReceiveHandler handler);
void ScheduleResend ();
void HandleResendTimer (const boost::system::error_code& ecode);
void HandleAckSendTimer (const boost::system::error_code& ecode);
std::shared_ptr<I2NPMessage> CreateDataMessage (const uint8_t * payload, size_t len);
private:
std::shared_ptr<I2NPMessage> CreateDataMessage (const uint8_t * payload, size_t len);
private:
boost::asio::io_service& m_Service;
uint32_t m_SendStreamID, m_RecvStreamID, m_SequenceNumber;
int32_t m_LastReceivedSequenceNumber;
StreamStatus m_Status;
bool m_IsAckSendScheduled;
StreamingDestination& m_LocalDestination;
i2p::data::IdentityEx m_RemoteIdentity;
std::shared_ptr<const i2p::data::LeaseSet> m_RemoteLeaseSet;
std::shared_ptr<i2p::garlic::GarlicRoutingSession> m_RoutingSession;
i2p::data::Lease m_CurrentRemoteLease;
std::shared_ptr<i2p::tunnel::OutboundTunnel> m_CurrentOutboundTunnel;
std::queue<Packet *> m_ReceiveQueue;
std::set<Packet *, PacketCmp> m_SavedPackets;
std::set<Packet *, PacketCmp> m_SentPackets;
boost::asio::deadline_timer m_ReceiveTimer, m_ResendTimer, m_AckSendTimer;
size_t m_NumSentBytes, m_NumReceivedBytes;
uint16_t m_Port;
boost::asio::io_service& m_Service;
uint32_t m_SendStreamID, m_RecvStreamID, m_SequenceNumber;
int32_t m_LastReceivedSequenceNumber;
StreamStatus m_Status;
bool m_IsAckSendScheduled;
StreamingDestination& m_LocalDestination;
i2p::data::IdentityEx m_RemoteIdentity;
std::shared_ptr<const i2p::data::LeaseSet> m_RemoteLeaseSet;
std::shared_ptr<i2p::garlic::GarlicRoutingSession> m_RoutingSession;
i2p::data::Lease m_CurrentRemoteLease;
std::shared_ptr<i2p::tunnel::OutboundTunnel> m_CurrentOutboundTunnel;
std::queue<Packet *> m_ReceiveQueue;
std::set<Packet *, PacketCmp> m_SavedPackets;
std::set<Packet *, PacketCmp> m_SentPackets;
boost::asio::deadline_timer m_ReceiveTimer, m_ResendTimer, m_AckSendTimer;
size_t m_NumSentBytes, m_NumReceivedBytes;
uint16_t m_Port;
std::mutex m_SendBufferMutex;
std::stringstream m_SendBuffer;
int m_WindowSize, m_RTT, m_RTO;
uint64_t m_LastWindowSizeIncreaseTime;
int m_NumResendAttempts;
SendHandler m_SendHandler;
};
std::mutex m_SendBufferMutex;
std::stringstream m_SendBuffer;
int m_WindowSize, m_RTT, m_RTO;
uint64_t m_LastWindowSizeIncreaseTime;
int m_NumResendAttempts;
SendHandler m_SendHandler;
};
class StreamingDestination
{
public:
class StreamingDestination
{
public:
typedef std::function<void (std::shared_ptr<Stream>)> Acceptor;
typedef std::function<void (std::shared_ptr<Stream>)> Acceptor;
StreamingDestination (i2p::client::ClientDestination& owner, uint16_t localPort = 0):
m_Owner (owner), m_LocalPort (localPort) {};
~StreamingDestination () {};
StreamingDestination (i2p::client::ClientDestination& owner, uint16_t localPort = 0):
m_Owner (owner), m_LocalPort (localPort) {};
~StreamingDestination () {};
void Start ();
void Stop ();
void Start ();
void Stop ();
std::shared_ptr<Stream> CreateNewOutgoingStream (std::shared_ptr<const i2p::data::LeaseSet> remote, int port = 0);
void DeleteStream (std::shared_ptr<Stream> stream);
void SetAcceptor (const Acceptor& acceptor) { m_Acceptor = acceptor; };
void ResetAcceptor () { if (m_Acceptor) m_Acceptor (nullptr); m_Acceptor = nullptr; };
bool IsAcceptorSet () const { return m_Acceptor != nullptr; };
i2p::client::ClientDestination& GetOwner () { return m_Owner; };
uint16_t GetLocalPort () const { return m_LocalPort; };
std::shared_ptr<Stream> CreateNewOutgoingStream (std::shared_ptr<const i2p::data::LeaseSet> remote, int port = 0);
void DeleteStream (std::shared_ptr<Stream> stream);
void SetAcceptor (const Acceptor& acceptor) { m_Acceptor = acceptor; };
void ResetAcceptor () { if (m_Acceptor) m_Acceptor (nullptr); m_Acceptor = nullptr; };
bool IsAcceptorSet () const { return m_Acceptor != nullptr; };
i2p::client::ClientDestination& GetOwner () { return m_Owner; };
uint16_t GetLocalPort () const { return m_LocalPort; };
void HandleDataMessagePayload (const uint8_t * buf, size_t len);
void HandleDataMessagePayload (const uint8_t * buf, size_t len);
private:
void HandleNextPacket (Packet * packet);
std::shared_ptr<Stream> CreateNewIncomingStream ();
private:
void HandleNextPacket (Packet * packet);
std::shared_ptr<Stream> CreateNewIncomingStream ();
private:
private:
i2p::client::ClientDestination& m_Owner;
uint16_t m_LocalPort;
std::mutex m_StreamsMutex;
std::map<uint32_t, std::shared_ptr<Stream> > m_Streams;
Acceptor m_Acceptor;
public:
i2p::client::ClientDestination& m_Owner;
uint16_t m_LocalPort;
std::mutex m_StreamsMutex;
std::map<uint32_t, std::shared_ptr<Stream> > m_Streams;
Acceptor m_Acceptor;
public:
// for HTTP only
const decltype(m_Streams)& GetStreams () const { return m_Streams; };
};
// for HTTP only
const decltype(m_Streams)& GetStreams () const { return m_Streams; };
};
//-------------------------------------------------
template<typename Buffer, typename ReceiveHandler>
void Stream::AsyncReceive (const Buffer& buffer, ReceiveHandler handler, int timeout)
{
auto s = shared_from_this();
m_Service.post ([=](void)
{
if (!m_ReceiveQueue.empty () || m_Status == eStreamStatusReset)
s->HandleReceiveTimer (boost::asio::error::make_error_code (boost::asio::error::operation_aborted), buffer, handler);
else
{
s->m_ReceiveTimer.expires_from_now (boost::posix_time::seconds(timeout));
s->m_ReceiveTimer.async_wait ([=](const boost::system::error_code& ecode)
{ s->HandleReceiveTimer (ecode, buffer, handler); });
}
});
}
template<typename Buffer, typename ReceiveHandler>
void Stream::AsyncReceive (const Buffer& buffer, ReceiveHandler handler, int timeout)
{
auto s = shared_from_this();
m_Service.post ([=](void)
{
if (!m_ReceiveQueue.empty () || m_Status == eStreamStatusReset)
s->HandleReceiveTimer (boost::asio::error::make_error_code (boost::asio::error::operation_aborted), buffer, handler);
else
{
s->m_ReceiveTimer.expires_from_now (boost::posix_time::seconds(timeout));
s->m_ReceiveTimer.async_wait ([=](const boost::system::error_code& ecode)
{ s->HandleReceiveTimer (ecode, buffer, handler); });
}
});
}
template<typename Buffer, typename ReceiveHandler>
void Stream::HandleReceiveTimer (const boost::system::error_code& ecode, const Buffer& buffer, ReceiveHandler handler)
{
size_t received = ConcatenatePackets (boost::asio::buffer_cast<uint8_t *>(buffer), boost::asio::buffer_size(buffer));
if (received > 0)
handler (boost::system::error_code (), received);
else if (ecode == boost::asio::error::operation_aborted)
{
// timeout not expired
if (m_Status == eStreamStatusReset)
handler (boost::asio::error::make_error_code (boost::asio::error::connection_reset), 0);
else
handler (boost::asio::error::make_error_code (boost::asio::error::operation_aborted), 0);
}
else
// timeout expired
handler (boost::asio::error::make_error_code (boost::asio::error::timed_out), received);
}
}
}
template<typename Buffer, typename ReceiveHandler>
void Stream::HandleReceiveTimer (const boost::system::error_code& ecode, const Buffer& buffer, ReceiveHandler handler)
{
size_t received = ConcatenatePackets (boost::asio::buffer_cast<uint8_t *>(buffer), boost::asio::buffer_size(buffer));
if (received > 0)
handler (boost::system::error_code (), received);
else if (ecode == boost::asio::error::operation_aborted)
{
// timeout not expired
if (m_Status == eStreamStatusReset)
handler (boost::asio::error::make_error_code (boost::asio::error::connection_reset), 0);
else
handler (boost::asio::error::make_error_code (boost::asio::error::operation_aborted), 0);
}
else
// timeout expired
handler (boost::asio::error::make_error_code (boost::asio::error::timed_out), received);
}
}
}
#endif

13
TODO Normal file
View file

@ -0,0 +1,13 @@
Short-term refactoring:
- SSUSession:637, SSUSession:635 get rid of casting to SSUHeader
- Identity.cpp:156 check for self asignment
Long-term refactoring:
- Rely on a library for TLS and SSL.
- Move parsing code out of networking code, to allow better testing.
- Separate front-end code (SAM, BOB, ...) from the back-end.
Additions:
- Write tests.
- Add documentation.

View file

@ -8,23 +8,23 @@ namespace i2p
{
namespace util
{
inline uint64_t GetMillisecondsSinceEpoch ()
{
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch()).count ();
}
inline uint64_t GetMillisecondsSinceEpoch ()
{
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch()).count ();
}
inline uint32_t GetHoursSinceEpoch ()
{
return std::chrono::duration_cast<std::chrono::hours>(
std::chrono::system_clock::now().time_since_epoch()).count ();
}
inline uint32_t GetHoursSinceEpoch ()
{
return std::chrono::duration_cast<std::chrono::hours>(
std::chrono::system_clock::now().time_since_epoch()).count ();
}
inline uint64_t GetSecondsSinceEpoch ()
{
return std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::system_clock::now().time_since_epoch()).count ();
}
inline uint64_t GetSecondsSinceEpoch ()
{
return std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::system_clock::now().time_since_epoch()).count ();
}
}
}

View file

@ -10,102 +10,102 @@
namespace i2p
{
namespace tunnel
{
TransitTunnel::TransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
m_TunnelID (receiveTunnelID), m_NextTunnelID (nextTunnelID),
m_NextIdent (nextIdent)
{
m_Encryption.SetKeys (layerKey, ivKey);
}
{
TransitTunnel::TransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
m_TunnelID (receiveTunnelID), m_NextTunnelID (nextTunnelID),
m_NextIdent (nextIdent)
{
m_Encryption.SetKeys (layerKey, ivKey);
}
void TransitTunnel::EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out)
{
m_Encryption.Encrypt (in->GetPayload () + 4, out->GetPayload () + 4);
}
void TransitTunnel::EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out)
{
m_Encryption.Encrypt (in->GetPayload () + 4, out->GetPayload () + 4);
}
TransitTunnelParticipant::~TransitTunnelParticipant ()
{
}
void TransitTunnelParticipant::HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg)
{
auto newMsg = CreateEmptyTunnelDataMsg ();
EncryptTunnelMsg (tunnelMsg, newMsg);
m_NumTransmittedBytes += tunnelMsg->GetLength ();
htobe32buf (newMsg->GetPayload (), GetNextTunnelID ());
newMsg->FillI2NPMessageHeader (eI2NPTunnelData);
m_TunnelDataMsgs.push_back (newMsg);
}
TransitTunnelParticipant::~TransitTunnelParticipant ()
{
}
void TransitTunnelParticipant::HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg)
{
auto newMsg = CreateEmptyTunnelDataMsg ();
EncryptTunnelMsg (tunnelMsg, newMsg);
m_NumTransmittedBytes += tunnelMsg->GetLength ();
htobe32buf (newMsg->GetPayload (), GetNextTunnelID ());
newMsg->FillI2NPMessageHeader (eI2NPTunnelData);
m_TunnelDataMsgs.push_back (newMsg);
}
void TransitTunnelParticipant::FlushTunnelDataMsgs ()
{
if (!m_TunnelDataMsgs.empty ())
{
auto num = m_TunnelDataMsgs.size ();
if (num > 1)
LogPrint (eLogDebug, "TransitTunnel: ",GetTunnelID (),"->", GetNextTunnelID (), " ", num);
i2p::transport::transports.SendMessages (GetNextIdentHash (), m_TunnelDataMsgs);
m_TunnelDataMsgs.clear ();
}
}
void TransitTunnel::SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg)
{
LogPrint (eLogError, "We are not a gateway for transit tunnel ", m_TunnelID);
}
void TransitTunnelParticipant::FlushTunnelDataMsgs ()
{
if (!m_TunnelDataMsgs.empty ())
{
auto num = m_TunnelDataMsgs.size ();
if (num > 1)
LogPrint (eLogDebug, "TransitTunnel: ",GetTunnelID (),"->", GetNextTunnelID (), " ", num);
i2p::transport::transports.SendMessages (GetNextIdentHash (), m_TunnelDataMsgs);
m_TunnelDataMsgs.clear ();
}
}
void TransitTunnel::SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg)
{
LogPrint (eLogError, "We are not a gateway for transit tunnel ", m_TunnelID);
}
void TransitTunnel::HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg)
{
LogPrint (eLogError, "Incoming tunnel message is not supported ", m_TunnelID);
}
void TransitTunnelGateway::SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg)
{
TunnelMessageBlock block;
block.deliveryType = eDeliveryTypeLocal;
block.data = msg;
std::unique_lock<std::mutex> l(m_SendMutex);
m_Gateway.PutTunnelDataMsg (block);
}
void TransitTunnel::HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg)
{
LogPrint (eLogError, "Incoming tunnel message is not supported ", m_TunnelID);
}
void TransitTunnelGateway::SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg)
{
TunnelMessageBlock block;
block.deliveryType = eDeliveryTypeLocal;
block.data = msg;
std::unique_lock<std::mutex> l(m_SendMutex);
m_Gateway.PutTunnelDataMsg (block);
}
void TransitTunnelGateway::FlushTunnelDataMsgs ()
{
std::unique_lock<std::mutex> l(m_SendMutex);
m_Gateway.SendBuffer ();
}
void TransitTunnelEndpoint::HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg)
{
auto newMsg = CreateEmptyTunnelDataMsg ();
EncryptTunnelMsg (tunnelMsg, newMsg);
LogPrint (eLogDebug, "TransitTunnel endpoint for ", GetTunnelID ());
m_Endpoint.HandleDecryptedTunnelDataMsg (newMsg);
}
TransitTunnel * CreateTransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey,
bool isGateway, bool isEndpoint)
{
if (isEndpoint)
{
LogPrint (eLogInfo, "TransitTunnel endpoint: ", receiveTunnelID, " created");
return new TransitTunnelEndpoint (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey);
}
else if (isGateway)
{
LogPrint (eLogInfo, "TransitTunnel gateway: ", receiveTunnelID, " created");
return new TransitTunnelGateway (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey);
}
else
{
LogPrint (eLogInfo, "TransitTunnel: ", receiveTunnelID, "->", nextTunnelID, " created");
return new TransitTunnelParticipant (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey);
}
}
void TransitTunnelGateway::FlushTunnelDataMsgs ()
{
std::unique_lock<std::mutex> l(m_SendMutex);
m_Gateway.SendBuffer ();
}
void TransitTunnelEndpoint::HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg)
{
auto newMsg = CreateEmptyTunnelDataMsg ();
EncryptTunnelMsg (tunnelMsg, newMsg);
LogPrint (eLogDebug, "TransitTunnel endpoint for ", GetTunnelID ());
m_Endpoint.HandleDecryptedTunnelDataMsg (newMsg);
}
TransitTunnel * CreateTransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey,
bool isGateway, bool isEndpoint)
{
if (isEndpoint)
{
LogPrint (eLogInfo, "TransitTunnel endpoint: ", receiveTunnelID, " created");
return new TransitTunnelEndpoint (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey);
}
else if (isGateway)
{
LogPrint (eLogInfo, "TransitTunnel gateway: ", receiveTunnelID, " created");
return new TransitTunnelGateway (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey);
}
else
{
LogPrint (eLogInfo, "TransitTunnel: ", receiveTunnelID, "->", nextTunnelID, " created");
return new TransitTunnelParticipant (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey);
}
}
}
}

View file

@ -14,97 +14,97 @@
namespace i2p
{
namespace tunnel
{
class TransitTunnel: public TunnelBase
{
public:
{
class TransitTunnel: public TunnelBase
{
public:
TransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey);
virtual size_t GetNumTransmittedBytes () const { return 0; };
uint32_t GetTunnelID () const { return m_TunnelID; };
TransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey);
virtual size_t GetNumTransmittedBytes () const { return 0; };
uint32_t GetTunnelID () const { return m_TunnelID; };
// implements TunnelBase
void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg);
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
void EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out);
uint32_t GetNextTunnelID () const { return m_NextTunnelID; };
const i2p::data::IdentHash& GetNextIdentHash () const { return m_NextIdent; };
private:
// implements TunnelBase
void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg);
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
void EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out);
uint32_t GetNextTunnelID () const { return m_NextTunnelID; };
const i2p::data::IdentHash& GetNextIdentHash () const { return m_NextIdent; };
private:
uint32_t m_TunnelID, m_NextTunnelID;
i2p::data::IdentHash m_NextIdent;
i2p::crypto::TunnelEncryption m_Encryption;
};
uint32_t m_TunnelID, m_NextTunnelID;
i2p::data::IdentHash m_NextIdent;
i2p::crypto::TunnelEncryption m_Encryption;
};
class TransitTunnelParticipant: public TransitTunnel
{
public:
class TransitTunnelParticipant: public TransitTunnel
{
public:
TransitTunnelParticipant (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
TransitTunnel (receiveTunnelID, nextIdent, nextTunnelID,
layerKey, ivKey), m_NumTransmittedBytes (0) {};
~TransitTunnelParticipant ();
TransitTunnelParticipant (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
TransitTunnel (receiveTunnelID, nextIdent, nextTunnelID,
layerKey, ivKey), m_NumTransmittedBytes (0) {};
~TransitTunnelParticipant ();
size_t GetNumTransmittedBytes () const { return m_NumTransmittedBytes; };
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
void FlushTunnelDataMsgs ();
size_t GetNumTransmittedBytes () const { return m_NumTransmittedBytes; };
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
void FlushTunnelDataMsgs ();
private:
private:
size_t m_NumTransmittedBytes;
std::vector<std::shared_ptr<i2p::I2NPMessage> > m_TunnelDataMsgs;
};
class TransitTunnelGateway: public TransitTunnel
{
public:
size_t m_NumTransmittedBytes;
std::vector<std::shared_ptr<i2p::I2NPMessage> > m_TunnelDataMsgs;
};
class TransitTunnelGateway: public TransitTunnel
{
public:
TransitTunnelGateway (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
TransitTunnel (receiveTunnelID, nextIdent, nextTunnelID,
layerKey, ivKey), m_Gateway(this) {};
TransitTunnelGateway (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
TransitTunnel (receiveTunnelID, nextIdent, nextTunnelID,
layerKey, ivKey), m_Gateway(this) {};
void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg);
void FlushTunnelDataMsgs ();
size_t GetNumTransmittedBytes () const { return m_Gateway.GetNumSentBytes (); };
private:
void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg);
void FlushTunnelDataMsgs ();
size_t GetNumTransmittedBytes () const { return m_Gateway.GetNumSentBytes (); };
private:
std::mutex m_SendMutex;
TunnelGateway m_Gateway;
};
std::mutex m_SendMutex;
TunnelGateway m_Gateway;
};
class TransitTunnelEndpoint: public TransitTunnel
{
public:
class TransitTunnelEndpoint: public TransitTunnel
{
public:
TransitTunnelEndpoint (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
TransitTunnel (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey),
m_Endpoint (false) {}; // transit endpoint is always outbound
TransitTunnelEndpoint (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey):
TransitTunnel (receiveTunnelID, nextIdent, nextTunnelID, layerKey, ivKey),
m_Endpoint (false) {}; // transit endpoint is always outbound
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
size_t GetNumTransmittedBytes () const { return m_Endpoint.GetNumReceivedBytes (); }
private:
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
size_t GetNumTransmittedBytes () const { return m_Endpoint.GetNumReceivedBytes (); }
private:
TunnelEndpoint m_Endpoint;
};
TransitTunnel * CreateTransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey,
bool isGateway, bool isEndpoint);
TunnelEndpoint m_Endpoint;
};
TransitTunnel * CreateTransitTunnel (uint32_t receiveTunnelID,
const uint8_t * nextIdent, uint32_t nextTunnelID,
const uint8_t * layerKey,const uint8_t * ivKey,
bool isGateway, bool isEndpoint);
}
}

View file

@ -13,73 +13,73 @@ namespace i2p
{
namespace transport
{
struct DHKeysPair // transient keys for transport sessions
{
uint8_t publicKey[256];
uint8_t privateKey[256];
};
struct DHKeysPair // transient keys for transport sessions
{
uint8_t publicKey[256];
uint8_t privateKey[256];
};
class SignedData
{
public:
class SignedData
{
public:
SignedData () {};
void Insert (const uint8_t * buf, size_t len)
{
m_Stream.write ((char *)buf, len);
}
SignedData () {};
void Insert (const uint8_t * buf, size_t len)
{
m_Stream.write ((char *)buf, len);
}
template<typename T>
void Insert (T t)
{
m_Stream.write ((char *)&t, sizeof (T));
}
template<typename T>
void Insert (T t)
{
m_Stream.write ((char *)&t, sizeof (T));
}
bool Verify (const i2p::data::IdentityEx& ident, const uint8_t * signature) const
{
return ident.Verify ((const uint8_t *)m_Stream.str ().c_str (), m_Stream.str ().size (), signature);
}
bool Verify (const i2p::data::IdentityEx& ident, const uint8_t * signature) const
{
return ident.Verify ((const uint8_t *)m_Stream.str ().c_str (), m_Stream.str ().size (), signature);
}
void Sign (const i2p::data::PrivateKeys& keys, uint8_t * signature) const
{
keys.Sign ((const uint8_t *)m_Stream.str ().c_str (), m_Stream.str ().size (), signature);
}
void Sign (const i2p::data::PrivateKeys& keys, uint8_t * signature) const
{
keys.Sign ((const uint8_t *)m_Stream.str ().c_str (), m_Stream.str ().size (), signature);
}
private:
std::stringstream m_Stream;
};
private:
std::stringstream m_Stream;
};
class TransportSession
{
public:
class TransportSession
{
public:
TransportSession (std::shared_ptr<const i2p::data::RouterInfo> in_RemoteRouter):
m_RemoteRouter (in_RemoteRouter), m_DHKeysPair (nullptr),
m_NumSentBytes (0), m_NumReceivedBytes (0)
{
if (m_RemoteRouter)
m_RemoteIdentity = m_RemoteRouter->GetRouterIdentity ();
}
TransportSession (std::shared_ptr<const i2p::data::RouterInfo> in_RemoteRouter):
m_RemoteRouter (in_RemoteRouter), m_DHKeysPair (nullptr),
m_NumSentBytes (0), m_NumReceivedBytes (0)
{
if (m_RemoteRouter)
m_RemoteIdentity = m_RemoteRouter->GetRouterIdentity ();
}
virtual ~TransportSession () { delete m_DHKeysPair; };
virtual void Done () = 0;
std::shared_ptr<const i2p::data::RouterInfo> GetRemoteRouter () { return m_RemoteRouter; };
const i2p::data::IdentityEx& GetRemoteIdentity () { return m_RemoteIdentity; };
virtual ~TransportSession () { delete m_DHKeysPair; };
virtual void Done () = 0;
std::shared_ptr<const i2p::data::RouterInfo> GetRemoteRouter () { return m_RemoteRouter; };
const i2p::data::IdentityEx& GetRemoteIdentity () { return m_RemoteIdentity; };
size_t GetNumSentBytes () const { return m_NumSentBytes; };
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
virtual void SendI2NPMessages (const std::vector<std::shared_ptr<I2NPMessage> >& msgs) = 0;
protected:
size_t GetNumSentBytes () const { return m_NumSentBytes; };
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
virtual void SendI2NPMessages (const std::vector<std::shared_ptr<I2NPMessage> >& msgs) = 0;
protected:
std::shared_ptr<const i2p::data::RouterInfo> m_RemoteRouter;
i2p::data::IdentityEx m_RemoteIdentity;
DHKeysPair * m_DHKeysPair; // X - for client and Y - for server
size_t m_NumSentBytes, m_NumReceivedBytes;
};
std::shared_ptr<const i2p::data::RouterInfo> m_RemoteRouter;
i2p::data::IdentityEx m_RemoteIdentity;
DHKeysPair * m_DHKeysPair; // X - for client and Y - for server
size_t m_NumSentBytes, m_NumReceivedBytes;
};
}
}

View file

@ -12,490 +12,494 @@ namespace i2p
{
namespace transport
{
DHKeysPairSupplier::DHKeysPairSupplier (int size):
m_QueueSize (size), m_IsRunning (false), m_Thread (nullptr)
{
}
DHKeysPairSupplier::DHKeysPairSupplier (int size):
m_QueueSize (size), m_IsRunning (false), m_Thread (nullptr)
{
}
DHKeysPairSupplier::~DHKeysPairSupplier ()
{
Stop ();
}
DHKeysPairSupplier::~DHKeysPairSupplier ()
{
Stop ();
}
void DHKeysPairSupplier::Start ()
{
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&DHKeysPairSupplier::Run, this));
}
void DHKeysPairSupplier::Start ()
{
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&DHKeysPairSupplier::Run, this));
}
void DHKeysPairSupplier::Stop ()
{
m_IsRunning = false;
m_Acquired.notify_one ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = 0;
}
}
void DHKeysPairSupplier::Stop ()
{
m_IsRunning = false;
m_Acquired.notify_one ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = 0;
}
}
void DHKeysPairSupplier::Run ()
{
while (m_IsRunning)
{
int num;
while ((num = m_QueueSize - m_Queue.size ()) > 0)
CreateDHKeysPairs (num);
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Acquired.wait (l); // wait for element gets aquired
}
}
void DHKeysPairSupplier::Run ()
{
while (m_IsRunning)
{
int num;
while ((num = m_QueueSize - m_Queue.size ()) > 0)
CreateDHKeysPairs (num);
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Acquired.wait (l); // wait for element gets aquired
}
}
void DHKeysPairSupplier::CreateDHKeysPairs (int num)
{
if (num > 0)
{
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
for (int i = 0; i < num; i++)
{
i2p::transport::DHKeysPair * pair = new i2p::transport::DHKeysPair ();
dh.GenerateKeyPair(m_Rnd, pair->privateKey, pair->publicKey);
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Queue.push (pair);
}
}
}
void DHKeysPairSupplier::CreateDHKeysPairs (int num)
{
if (num > 0)
{
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
for (int i = 0; i < num; i++)
{
i2p::transport::DHKeysPair * pair = new i2p::transport::DHKeysPair ();
dh.GenerateKeyPair(m_Rnd, pair->privateKey, pair->publicKey);
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Queue.push (pair);
}
}
}
DHKeysPair * DHKeysPairSupplier::Acquire ()
{
if (!m_Queue.empty ())
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
auto pair = m_Queue.front ();
m_Queue.pop ();
m_Acquired.notify_one ();
return pair;
}
else // queue is empty, create new
{
DHKeysPair * pair = new DHKeysPair ();
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
dh.GenerateKeyPair(m_Rnd, pair->privateKey, pair->publicKey);
return pair;
}
}
DHKeysPair * DHKeysPairSupplier::Acquire ()
{
if (!m_Queue.empty ())
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
auto pair = m_Queue.front ();
m_Queue.pop ();
m_Acquired.notify_one ();
return pair;
}
else // queue is empty, create new
{
DHKeysPair * pair = new DHKeysPair ();
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
dh.GenerateKeyPair(m_Rnd, pair->privateKey, pair->publicKey);
return pair;
}
}
void DHKeysPairSupplier::Return (DHKeysPair * pair)
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Queue.push (pair);
}
void DHKeysPairSupplier::Return (DHKeysPair * pair)
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Queue.push (pair);
}
Transports transports;
Transports::Transports ():
m_IsRunning (false), m_Thread (nullptr), m_Work (m_Service), m_PeerCleanupTimer (m_Service),
m_NTCPServer (nullptr), m_SSUServer (nullptr), m_DHKeysPairSupplier (5), // 5 pre-generated keys
m_TotalSentBytes(0), m_TotalReceivedBytes(0), m_InBandwidth (0), m_OutBandwidth (0),
m_LastInBandwidthUpdateBytes (0), m_LastOutBandwidthUpdateBytes (0), m_LastBandwidthUpdateTime (0)
{
}
Transports::~Transports ()
{
Stop ();
}
Transports transports;
Transports::Transports ():
m_IsRunning (false), m_Thread (nullptr), m_Work (m_Service), m_PeerCleanupTimer (m_Service),
m_NTCPServer (nullptr), m_SSUServer (nullptr), m_DHKeysPairSupplier (5), // 5 pre-generated keys
m_TotalSentBytes(0), m_TotalReceivedBytes(0), m_InBandwidth (0), m_OutBandwidth (0),
m_LastInBandwidthUpdateBytes (0), m_LastOutBandwidthUpdateBytes (0), m_LastBandwidthUpdateTime (0)
{
}
Transports::~Transports ()
{
Stop ();
}
void Transports::Start ()
{
void Transports::Start ()
{
#ifdef USE_UPNP
m_UPnP.Start ();
LogPrint(eLogInfo, "UPnP started");
m_UPnP.Start ();
LogPrint(eLogInfo, "UPnP started");
#endif
m_DHKeysPairSupplier.Start ();
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&Transports::Run, this));
// create acceptors
auto addresses = context.GetRouterInfo ().GetAddresses ();
for (auto& address : addresses)
{
if (!m_NTCPServer)
{
m_NTCPServer = new NTCPServer (address.port);
m_NTCPServer->Start ();
}
if (address.transportStyle == RouterInfo::eTransportSSU && address.host.is_v4 ())
{
if (!m_SSUServer)
{
m_SSUServer = new SSUServer (address.port);
LogPrint ("Start listening UDP port ", address.port);
m_SSUServer->Start ();
DetectExternalIP ();
}
else
LogPrint ("SSU server already exists");
}
}
m_PeerCleanupTimer.expires_from_now (boost::posix_time::seconds(5*SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer.async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
}
void Transports::Stop ()
{
m_DHKeysPairSupplier.Start ();
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&Transports::Run, this));
// create acceptors
auto addresses = context.GetRouterInfo ().GetAddresses ();
for (auto& address : addresses)
{
if (!m_NTCPServer)
{
m_NTCPServer = new NTCPServer (address.port);
m_NTCPServer->Start ();
}
if (address.transportStyle == RouterInfo::eTransportSSU && address.host.is_v4 ())
{
if (!m_SSUServer)
{
m_SSUServer = new SSUServer (address.port);
LogPrint ("Start listening UDP port ", address.port);
m_SSUServer->Start ();
DetectExternalIP ();
}
else
LogPrint ("SSU server already exists");
}
}
m_PeerCleanupTimer.expires_from_now (boost::posix_time::seconds(5*SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer.async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
}
void Transports::Stop ()
{
#ifdef USE_UPNP
m_UPnP.Stop ();
LogPrint(eLogInfo, "UPnP stopped");
m_UPnP.Stop ();
LogPrint(eLogInfo, "UPnP stopped");
#endif
m_PeerCleanupTimer.cancel ();
m_Peers.clear ();
if (m_SSUServer)
{
m_SSUServer->Stop ();
delete m_SSUServer;
m_SSUServer = nullptr;
}
if (m_NTCPServer)
{
m_NTCPServer->Stop ();
delete m_NTCPServer;
m_NTCPServer = nullptr;
}
m_PeerCleanupTimer.cancel ();
m_Peers.clear ();
if (m_SSUServer)
{
m_SSUServer->Stop ();
delete m_SSUServer;
m_SSUServer = nullptr;
}
if (m_NTCPServer)
{
m_NTCPServer->Stop ();
delete m_NTCPServer;
m_NTCPServer = nullptr;
}
m_DHKeysPairSupplier.Stop ();
m_IsRunning = false;
m_Service.stop ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = nullptr;
}
}
m_DHKeysPairSupplier.Stop ();
m_IsRunning = false;
m_Service.stop ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = nullptr;
}
}
void Transports::Run ()
{
while (m_IsRunning)
{
try
{
m_Service.run ();
}
catch (std::exception& ex)
{
LogPrint ("Transports: ", ex.what ());
}
}
}
void Transports::UpdateBandwidth ()
{
uint64_t ts = i2p::util::GetMillisecondsSinceEpoch ();
if (m_LastBandwidthUpdateTime > 0)
{
auto delta = ts - m_LastBandwidthUpdateTime;
if (delta > 0)
{
m_InBandwidth = (m_TotalReceivedBytes - m_LastInBandwidthUpdateBytes)*1000/delta; // per second
m_OutBandwidth = (m_TotalSentBytes - m_LastOutBandwidthUpdateBytes)*1000/delta; // per second
}
}
m_LastBandwidthUpdateTime = ts;
m_LastInBandwidthUpdateBytes = m_TotalReceivedBytes;
m_LastOutBandwidthUpdateBytes = m_TotalSentBytes;
}
void Transports::Run ()
{
while (m_IsRunning)
{
try
{
m_Service.run ();
}
catch (std::exception& ex)
{
LogPrint ("Transports: ", ex.what ());
}
}
}
void Transports::UpdateBandwidth ()
{
uint64_t ts = i2p::util::GetMillisecondsSinceEpoch ();
if (m_LastBandwidthUpdateTime > 0)
{
auto delta = ts - m_LastBandwidthUpdateTime;
if (delta > 0)
{
m_InBandwidth = (m_TotalReceivedBytes - m_LastInBandwidthUpdateBytes)*1000/delta; // per second
m_OutBandwidth = (m_TotalSentBytes - m_LastOutBandwidthUpdateBytes)*1000/delta; // per second
}
}
m_LastBandwidthUpdateTime = ts;
m_LastInBandwidthUpdateBytes = m_TotalReceivedBytes;
m_LastOutBandwidthUpdateBytes = m_TotalSentBytes;
}
bool Transports::IsBandwidthExceeded () const
{
if (i2p::context.GetRouterInfo ().IsHighBandwidth ()) return false;
return std::max (m_InBandwidth, m_OutBandwidth) > LOW_BANDWIDTH_LIMIT;
}
bool Transports::IsBandwidthExceeded () const
{
if (i2p::context.GetRouterInfo ().IsHighBandwidth ()) return false;
return std::max (m_InBandwidth, m_OutBandwidth) > LOW_BANDWIDTH_LIMIT;
}
void Transports::SendMessage (const i2p::data::IdentHash& ident, std::shared_ptr<i2p::I2NPMessage> msg)
{
SendMessages (ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > {msg });
}
void Transports::SendMessage (const i2p::data::IdentHash& ident, std::shared_ptr<i2p::I2NPMessage> msg)
{
SendMessages (ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > {msg });
}
void Transports::SendMessages (const i2p::data::IdentHash& ident, const std::vector<std::shared_ptr<i2p::I2NPMessage> >& msgs)
{
m_Service.post (std::bind (&Transports::PostMessages, this, ident, msgs));
}
void Transports::SendMessages (const i2p::data::IdentHash& ident, const std::vector<std::shared_ptr<i2p::I2NPMessage> >& msgs)
{
m_Service.post (std::bind (&Transports::PostMessages, this, ident, msgs));
}
void Transports::PostMessages (i2p::data::IdentHash ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > msgs)
{
if (ident == i2p::context.GetRouterInfo ().GetIdentHash ())
{
// we send it to ourself
for (auto it: msgs)
i2p::HandleI2NPMessage (it);
return;
}
auto it = m_Peers.find (ident);
if (it == m_Peers.end ())
{
bool connected = false;
try
{
auto r = netdb.FindRouter (ident);
it = m_Peers.insert (std::pair<i2p::data::IdentHash, Peer>(ident, { 0, r, {},
i2p::util::GetSecondsSinceEpoch () })).first;
connected = ConnectToPeer (ident, it->second);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Transports::PostMessages ", ex.what ());
}
if (!connected) return;
}
if (!it->second.sessions.empty ())
it->second.sessions.front ()->SendI2NPMessages (msgs);
else
{
for (auto it1: msgs)
it->second.delayedMessages.push_back (it1);
}
}
bool Transports::ConnectToPeer (const i2p::data::IdentHash& ident, Peer& peer)
{
if (peer.router) // we have RI already
{
if (!peer.numAttempts) // NTCP
{
peer.numAttempts++;
auto address = peer.router->GetNTCPAddress (!context.SupportsV6 ());
if (address)
{
void Transports::PostMessages (i2p::data::IdentHash ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > msgs)
{
if (ident == i2p::context.GetRouterInfo ().GetIdentHash ())
{
// we send it to ourself
for (auto it: msgs)
i2p::HandleI2NPMessage (it);
return;
}
auto it = m_Peers.find (ident);
if (it == m_Peers.end ())
{
bool connected = false;
try
{
auto r = netdb.FindRouter (ident);
it = m_Peers.insert (std::pair<i2p::data::IdentHash, Peer>(ident, { 0, r, {},
i2p::util::GetSecondsSinceEpoch () })).first;
connected = ConnectToPeer (ident, it->second);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Transports::PostMessages ", ex.what ());
}
if (!connected) return;
}
if (!it->second.sessions.empty ())
it->second.sessions.front ()->SendI2NPMessages (msgs);
else
{
for (auto it1: msgs)
it->second.delayedMessages.push_back (it1);
}
}
bool Transports::ConnectToPeer (const i2p::data::IdentHash& ident, Peer& peer)
{
if (peer.router) // we have RI already
{
if (!peer.numAttempts) // NTCP
{
peer.numAttempts++;
auto address = peer.router->GetNTCPAddress (!context.SupportsV6 ());
if (address)
{
#if BOOST_VERSION >= 104900
if (!address->host.is_unspecified ()) // we have address now
if (!address->host.is_unspecified ()) // we have address now
#else
boost::system::error_code ecode;
address->host.to_string (ecode);
if (!ecode)
boost::system::error_code ecode;
address->host.to_string (ecode);
if (!ecode)
#endif
{
if (!peer.router->UsesIntroducer () && !peer.router->IsUnreachable ())
{
auto s = std::make_shared<NTCPSession> (*m_NTCPServer, peer.router);
m_NTCPServer->Connect (address->host, address->port, s);
return true;
}
}
else // we don't have address
{
if (address->addressString.length () > 0) // trying to resolve
{
LogPrint (eLogInfo, "Resolving ", address->addressString);
NTCPResolve (address->addressString, ident);
return true;
}
}
}
}
else if (peer.numAttempts == 1)// SSU
{
peer.numAttempts++;
if (m_SSUServer)
{
if (m_SSUServer->GetSession (peer.router))
return true;
}
}
LogPrint (eLogError, "No NTCP and SSU addresses available");
peer.Done ();
m_Peers.erase (ident);
return false;
}
else // otherwise request RI
{
LogPrint ("Router not found. Requested");
i2p::data::netdb.RequestDestination (ident, std::bind (
&Transports::RequestComplete, this, std::placeholders::_1, ident));
}
return true;
}
void Transports::RequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident)
{
m_Service.post (std::bind (&Transports::HandleRequestComplete, this, r, ident));
}
void Transports::HandleRequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident)
{
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
if (r)
{
LogPrint ("Router found. Trying to connect");
it->second.router = r;
ConnectToPeer (ident, it->second);
}
else
{
LogPrint ("Router not found. Failed to send messages");
m_Peers.erase (it);
}
}
}
{
if (!peer.router->UsesIntroducer () && !peer.router->IsUnreachable ())
{
auto s = std::make_shared<NTCPSession> (*m_NTCPServer, peer.router);
m_NTCPServer->Connect (address->host, address->port, s);
return true;
}
}
else // we don't have address
{
if (address->addressString.length () > 0) // trying to resolve
{
LogPrint (eLogInfo, "Resolving ", address->addressString);
NTCPResolve (address->addressString, ident);
return true;
}
}
}
}
else if (peer.numAttempts == 1)// SSU
{
peer.numAttempts++;
if (m_SSUServer)
{
if (m_SSUServer->GetSession (peer.router))
return true;
}
}
LogPrint (eLogError, "No NTCP and SSU addresses available");
peer.Done ();
m_Peers.erase (ident);
return false;
}
else // otherwise request RI
{
LogPrint ("Router not found. Requested");
i2p::data::netdb.RequestDestination (ident, std::bind (
&Transports::RequestComplete, this, std::placeholders::_1, ident));
}
return true;
}
void Transports::RequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident)
{
m_Service.post (std::bind (&Transports::HandleRequestComplete, this, r, ident));
}
void Transports::HandleRequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident)
{
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
if (r)
{
LogPrint ("Router found. Trying to connect");
it->second.router = r;
ConnectToPeer (ident, it->second);
}
else
{
LogPrint ("Router not found. Failed to send messages");
m_Peers.erase (it);
}
}
}
void Transports::NTCPResolve (const std::string& addr, const i2p::data::IdentHash& ident)
{
auto resolver = std::make_shared<boost::asio::ip::tcp::resolver>(m_Service);
resolver->async_resolve (boost::asio::ip::tcp::resolver::query (addr, ""),
std::bind (&Transports::HandleNTCPResolve, this,
std::placeholders::_1, std::placeholders::_2, ident, resolver));
}
void Transports::NTCPResolve (const std::string& addr, const i2p::data::IdentHash& ident)
{
auto resolver = std::make_shared<boost::asio::ip::tcp::resolver>(m_Service);
resolver->async_resolve (boost::asio::ip::tcp::resolver::query (addr, ""),
std::bind (&Transports::HandleNTCPResolve, this,
std::placeholders::_1, std::placeholders::_2, ident, resolver));
}
void Transports::HandleNTCPResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
i2p::data::IdentHash ident, std::shared_ptr<boost::asio::ip::tcp::resolver> resolver)
{
auto it1 = m_Peers.find (ident);
if (it1 != m_Peers.end ())
{
auto& peer = it1->second;
if (!ecode && peer.router)
{
auto address = (*it).endpoint ().address ();
LogPrint (eLogInfo, (*it).host_name (), " has been resolved to ", address);
auto addr = peer.router->GetNTCPAddress ();
if (addr)
{
auto s = std::make_shared<NTCPSession> (*m_NTCPServer, peer.router);
m_NTCPServer->Connect (address, addr->port, s);
return;
}
}
LogPrint (eLogError, "Unable to resolve NTCP address: ", ecode.message ());
m_Peers.erase (it1);
}
}
void Transports::HandleNTCPResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
i2p::data::IdentHash ident, std::shared_ptr<boost::asio::ip::tcp::resolver> resolver)
{
auto it1 = m_Peers.find (ident);
if (it1 != m_Peers.end ())
{
auto& peer = it1->second;
if (!ecode && peer.router)
{
auto address = (*it).endpoint ().address ();
LogPrint (eLogInfo, (*it).host_name (), " has been resolved to ", address);
auto addr = peer.router->GetNTCPAddress ();
if (addr)
{
auto s = std::make_shared<NTCPSession> (*m_NTCPServer, peer.router);
m_NTCPServer->Connect (address, addr->port, s);
return;
}
}
LogPrint (eLogError, "Unable to resolve NTCP address: ", ecode.message ());
m_Peers.erase (it1);
}
}
void Transports::CloseSession (std::shared_ptr<const i2p::data::RouterInfo> router)
{
if (!router) return;
m_Service.post (std::bind (&Transports::PostCloseSession, this, router));
}
void Transports::CloseSession (std::shared_ptr<const i2p::data::RouterInfo> router)
{
if (!router) return;
m_Service.post (std::bind (&Transports::PostCloseSession, this, router));
}
void Transports::PostCloseSession (std::shared_ptr<const i2p::data::RouterInfo> router)
{
auto ssuSession = m_SSUServer ? m_SSUServer->FindSession (router) : nullptr;
if (ssuSession) // try SSU first
{
m_SSUServer->DeleteSession (ssuSession);
LogPrint ("SSU session closed");
}
// TODO: delete NTCP
}
void Transports::DetectExternalIP ()
{
if (m_SSUServer)
{
i2p::context.SetStatus (eRouterStatusTesting);
for (int i = 0; i < 5; i++)
{
auto router = i2p::data::netdb.GetRandomPeerTestRouter ();
if (router && router->IsSSU ())
m_SSUServer->GetSession (router, true); // peer test
else
{
// if not peer test capable routers found pick any
router = i2p::data::netdb.GetRandomRouter ();
if (router && router->IsSSU ())
m_SSUServer->GetSession (router); // no peer test
}
}
}
else
LogPrint (eLogError, "Can't detect external IP. SSU is not available");
}
DHKeysPair * Transports::GetNextDHKeysPair ()
{
return m_DHKeysPairSupplier.Acquire ();
}
void Transports::PostCloseSession (std::shared_ptr<const i2p::data::RouterInfo> router)
{
auto ssuSession = m_SSUServer ? m_SSUServer->FindSession (router) : nullptr;
if (ssuSession) // try SSU first
{
m_SSUServer->DeleteSession (ssuSession);
LogPrint ("SSU session closed");
}
// TODO: delete NTCP
}
void Transports::DetectExternalIP ()
{
if (m_SSUServer)
{
i2p::context.SetStatus (eRouterStatusTesting);
for (int i = 0; i < 5; i++)
{
auto router = i2p::data::netdb.GetRandomPeerTestRouter ();
if (router && router->IsSSU ())
m_SSUServer->GetSession (router, true); // peer test
else
{
// if not peer test capable routers found pick any
router = i2p::data::netdb.GetRandomRouter ();
if (router && router->IsSSU ())
m_SSUServer->GetSession (router); // no peer test
}
}
}
else
LogPrint (eLogError, "Can't detect external IP. SSU is not available");
}
DHKeysPair * Transports::GetNextDHKeysPair ()
{
return m_DHKeysPairSupplier.Acquire ();
}
void Transports::ReuseDHKeysPair (DHKeysPair * pair)
{
m_DHKeysPairSupplier.Return (pair);
}
void Transports::ReuseDHKeysPair (DHKeysPair * pair)
{
m_DHKeysPairSupplier.Return (pair);
}
void Transports::PeerConnected (std::shared_ptr<TransportSession> session)
{
m_Service.post([session, this]()
{
auto ident = session->GetRemoteIdentity ().GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
it->second.sessions.push_back (session);
session->SendI2NPMessages (it->second.delayedMessages);
it->second.delayedMessages.clear ();
}
else // incoming connection
m_Peers.insert (std::make_pair (ident, Peer{ 0, nullptr, { session }, i2p::util::GetSecondsSinceEpoch () }));
});
}
void Transports::PeerDisconnected (std::shared_ptr<TransportSession> session)
{
m_Service.post([session, this]()
{
auto ident = session->GetRemoteIdentity ().GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
it->second.sessions.remove (session);
if (it->second.sessions.empty ()) // TODO: why?
{
if (it->second.delayedMessages.size () > 0)
ConnectToPeer (ident, it->second);
else
m_Peers.erase (it);
}
}
});
}
void Transports::PeerConnected (std::shared_ptr<TransportSession> session)
{
m_Service.post([session, this]()
{
auto ident = session->GetRemoteIdentity ().GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
it->second.sessions.push_back (session);
session->SendI2NPMessages (it->second.delayedMessages);
it->second.delayedMessages.clear ();
}
else // incoming connection
m_Peers.insert (std::make_pair (ident, Peer{ 0, nullptr, { session }, i2p::util::GetSecondsSinceEpoch () }));
});
}
void Transports::PeerDisconnected (std::shared_ptr<TransportSession> session)
{
m_Service.post([session, this]()
{
auto ident = session->GetRemoteIdentity ().GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
it->second.sessions.remove (session);
if (it->second.sessions.empty ()) // TODO: why?
{
if (it->second.delayedMessages.size () > 0)
ConnectToPeer (ident, it->second);
else
m_Peers.erase (it);
}
}
});
}
bool Transports::IsConnected (const i2p::data::IdentHash& ident) const
{
auto it = m_Peers.find (ident);
return it != m_Peers.end ();
}
void Transports::HandlePeerCleanupTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
auto ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_Peers.begin (); it != m_Peers.end (); )
{
if (it->second.sessions.empty () && ts > it->second.creationTime + SESSION_CREATION_TIMEOUT)
{
LogPrint (eLogError, "Session to peer ", it->first.ToBase64 (), " has not been created in ", SESSION_CREATION_TIMEOUT, " seconds");
it = m_Peers.erase (it);
}
else
it++;
}
UpdateBandwidth (); // TODO: use separate timer(s) for it
if (i2p::context.GetStatus () == eRouterStatusTesting) // if still testing, repeat peer test
DetectExternalIP ();
m_PeerCleanupTimer.expires_from_now (boost::posix_time::seconds(5*SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer.async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
}
}
bool Transports::IsConnected (const i2p::data::IdentHash& ident) const
{
auto it = m_Peers.find (ident);
return it != m_Peers.end ();
}
void Transports::HandlePeerCleanupTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
auto ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_Peers.begin (); it != m_Peers.end (); )
{
if (it->second.sessions.empty () && ts > it->second.creationTime + SESSION_CREATION_TIMEOUT)
{
LogPrint (eLogError, "Session to peer ", it->first.ToBase64 (), " has not been created in ", SESSION_CREATION_TIMEOUT, " seconds");
it = m_Peers.erase (it);
}
else
it++;
}
UpdateBandwidth (); // TODO: use separate timer(s) for it
if (i2p::context.GetStatus () == eRouterStatusTesting) // if still testing, repeat peer test
DetectExternalIP ();
m_PeerCleanupTimer.expires_from_now (boost::posix_time::seconds(5*SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer.async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
}
}
std::shared_ptr<const i2p::data::RouterInfo> Transports::GetRandomPeer () const
{
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
auto it = m_Peers.begin ();
std::advance (it, rnd.GenerateWord32 (0, m_Peers.size () - 1));
return it != m_Peers.end () ? it->second.router : nullptr;
}
std::shared_ptr<const i2p::data::RouterInfo> Transports::GetRandomPeer () const
{
if(m_Peers.empty()) // ensure m.Peers.size() >= 1
return nullptr;
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator();
auto it = m_Peers.begin();
std::advance(it, rnd.GenerateWord32(0, m_Peers.size () - 1));
return it->second.router;
}
}
}

View file

@ -28,133 +28,133 @@ namespace i2p
{
namespace transport
{
class DHKeysPairSupplier
{
public:
class DHKeysPairSupplier
{
public:
DHKeysPairSupplier (int size);
~DHKeysPairSupplier ();
void Start ();
void Stop ();
DHKeysPair * Acquire ();
void Return (DHKeysPair * pair);
DHKeysPairSupplier (int size);
~DHKeysPairSupplier ();
void Start ();
void Stop ();
DHKeysPair * Acquire ();
void Return (DHKeysPair * pair);
private:
private:
void Run ();
void CreateDHKeysPairs (int num);
void Run ();
void CreateDHKeysPairs (int num);
private:
private:
const int m_QueueSize;
std::queue<DHKeysPair *> m_Queue;
const int m_QueueSize;
std::queue<DHKeysPair *> m_Queue;
bool m_IsRunning;
std::thread * m_Thread;
std::condition_variable m_Acquired;
std::mutex m_AcquiredMutex;
CryptoPP::AutoSeededRandomPool m_Rnd;
};
bool m_IsRunning;
std::thread * m_Thread;
std::condition_variable m_Acquired;
std::mutex m_AcquiredMutex;
CryptoPP::AutoSeededRandomPool m_Rnd;
};
struct Peer
{
int numAttempts;
std::shared_ptr<const i2p::data::RouterInfo> router;
std::list<std::shared_ptr<TransportSession> > sessions;
uint64_t creationTime;
std::vector<std::shared_ptr<i2p::I2NPMessage> > delayedMessages;
struct Peer
{
int numAttempts;
std::shared_ptr<const i2p::data::RouterInfo> router;
std::list<std::shared_ptr<TransportSession> > sessions;
uint64_t creationTime;
std::vector<std::shared_ptr<i2p::I2NPMessage> > delayedMessages;
void Done ()
{
for (auto it: sessions)
it->Done ();
}
};
const size_t SESSION_CREATION_TIMEOUT = 10; // in seconds
const uint32_t LOW_BANDWIDTH_LIMIT = 32*1024; // 32KBs
class Transports
{
public:
void Done ()
{
for (auto it: sessions)
it->Done ();
}
};
const size_t SESSION_CREATION_TIMEOUT = 10; // in seconds
const uint32_t LOW_BANDWIDTH_LIMIT = 32*1024; // 32KBs
class Transports
{
public:
Transports ();
~Transports ();
Transports ();
~Transports ();
void Start ();
void Stop ();
boost::asio::io_service& GetService () { return m_Service; };
i2p::transport::DHKeysPair * GetNextDHKeysPair ();
void ReuseDHKeysPair (DHKeysPair * pair);
void Start ();
void Stop ();
boost::asio::io_service& GetService () { return m_Service; };
i2p::transport::DHKeysPair * GetNextDHKeysPair ();
void ReuseDHKeysPair (DHKeysPair * pair);
void SendMessage (const i2p::data::IdentHash& ident, std::shared_ptr<i2p::I2NPMessage> msg);
void SendMessages (const i2p::data::IdentHash& ident, const std::vector<std::shared_ptr<i2p::I2NPMessage> >& msgs);
void CloseSession (std::shared_ptr<const i2p::data::RouterInfo> router);
void SendMessage (const i2p::data::IdentHash& ident, std::shared_ptr<i2p::I2NPMessage> msg);
void SendMessages (const i2p::data::IdentHash& ident, const std::vector<std::shared_ptr<i2p::I2NPMessage> >& msgs);
void CloseSession (std::shared_ptr<const i2p::data::RouterInfo> router);
void PeerConnected (std::shared_ptr<TransportSession> session);
void PeerDisconnected (std::shared_ptr<TransportSession> session);
bool IsConnected (const i2p::data::IdentHash& ident) const;
void UpdateSentBytes (uint64_t numBytes) { m_TotalSentBytes += numBytes; };
void UpdateReceivedBytes (uint64_t numBytes) { m_TotalReceivedBytes += numBytes; };
uint64_t GetTotalSentBytes () const { return m_TotalSentBytes; };
uint64_t GetTotalReceivedBytes () const { return m_TotalReceivedBytes; };
uint32_t GetInBandwidth () const { return m_InBandwidth; }; // bytes per second
uint32_t GetOutBandwidth () const { return m_OutBandwidth; }; // bytes per second
bool IsBandwidthExceeded () const;
size_t GetNumPeers () const { return m_Peers.size (); };
std::shared_ptr<const i2p::data::RouterInfo> GetRandomPeer () const;
void PeerConnected (std::shared_ptr<TransportSession> session);
void PeerDisconnected (std::shared_ptr<TransportSession> session);
bool IsConnected (const i2p::data::IdentHash& ident) const;
void UpdateSentBytes (uint64_t numBytes) { m_TotalSentBytes += numBytes; };
void UpdateReceivedBytes (uint64_t numBytes) { m_TotalReceivedBytes += numBytes; };
uint64_t GetTotalSentBytes () const { return m_TotalSentBytes; };
uint64_t GetTotalReceivedBytes () const { return m_TotalReceivedBytes; };
uint32_t GetInBandwidth () const { return m_InBandwidth; }; // bytes per second
uint32_t GetOutBandwidth () const { return m_OutBandwidth; }; // bytes per second
bool IsBandwidthExceeded () const;
size_t GetNumPeers () const { return m_Peers.size (); };
std::shared_ptr<const i2p::data::RouterInfo> GetRandomPeer () const;
private:
private:
void Run ();
void RequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident);
void HandleRequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident);
void PostMessages (i2p::data::IdentHash ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > msgs);
void PostCloseSession (std::shared_ptr<const i2p::data::RouterInfo> router);
bool ConnectToPeer (const i2p::data::IdentHash& ident, Peer& peer);
void HandlePeerCleanupTimer (const boost::system::error_code& ecode);
void Run ();
void RequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident);
void HandleRequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident);
void PostMessages (i2p::data::IdentHash ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > msgs);
void PostCloseSession (std::shared_ptr<const i2p::data::RouterInfo> router);
bool ConnectToPeer (const i2p::data::IdentHash& ident, Peer& peer);
void HandlePeerCleanupTimer (const boost::system::error_code& ecode);
void NTCPResolve (const std::string& addr, const i2p::data::IdentHash& ident);
void HandleNTCPResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
i2p::data::IdentHash ident, std::shared_ptr<boost::asio::ip::tcp::resolver> resolver);
void NTCPResolve (const std::string& addr, const i2p::data::IdentHash& ident);
void HandleNTCPResolve (const boost::system::error_code& ecode, boost::asio::ip::tcp::resolver::iterator it,
i2p::data::IdentHash ident, std::shared_ptr<boost::asio::ip::tcp::resolver> resolver);
void UpdateBandwidth ();
void DetectExternalIP ();
private:
void UpdateBandwidth ();
void DetectExternalIP ();
private:
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
boost::asio::deadline_timer m_PeerCleanupTimer;
bool m_IsRunning;
std::thread * m_Thread;
boost::asio::io_service m_Service;
boost::asio::io_service::work m_Work;
boost::asio::deadline_timer m_PeerCleanupTimer;
NTCPServer * m_NTCPServer;
SSUServer * m_SSUServer;
std::map<i2p::data::IdentHash, Peer> m_Peers;
DHKeysPairSupplier m_DHKeysPairSupplier;
NTCPServer * m_NTCPServer;
SSUServer * m_SSUServer;
std::map<i2p::data::IdentHash, Peer> m_Peers;
DHKeysPairSupplier m_DHKeysPairSupplier;
std::atomic<uint64_t> m_TotalSentBytes, m_TotalReceivedBytes;
uint32_t m_InBandwidth, m_OutBandwidth;
uint64_t m_LastInBandwidthUpdateBytes, m_LastOutBandwidthUpdateBytes;
uint64_t m_LastBandwidthUpdateTime;
std::atomic<uint64_t> m_TotalSentBytes, m_TotalReceivedBytes;
uint32_t m_InBandwidth, m_OutBandwidth;
uint64_t m_LastInBandwidthUpdateBytes, m_LastOutBandwidthUpdateBytes;
uint64_t m_LastBandwidthUpdateTime;
#ifdef USE_UPNP
UPnP m_UPnP;
UPnP m_UPnP;
#endif
public:
public:
// for HTTP only
const NTCPServer * GetNTCPServer () const { return m_NTCPServer; };
const SSUServer * GetSSUServer () const { return m_SSUServer; };
const decltype(m_Peers)& GetPeers () const { return m_Peers; };
};
// for HTTP only
const NTCPServer * GetNTCPServer () const { return m_NTCPServer; };
const SSUServer * GetSSUServer () const { return m_SSUServer; };
const decltype(m_Peers)& GetPeers () const { return m_Peers; };
};
extern Transports transports;
}
extern Transports transports;
}
}
#endif

1360
Tunnel.cpp

File diff suppressed because it is too large Load diff

310
Tunnel.h
View file

@ -21,183 +21,183 @@
namespace i2p
{
namespace tunnel
{
const int TUNNEL_EXPIRATION_TIMEOUT = 660; // 11 minutes
const int TUNNEL_EXPIRATION_THRESHOLD = 60; // 1 minute
const int TUNNEL_RECREATION_THRESHOLD = 90; // 1.5 minutes
const int TUNNEL_CREATION_TIMEOUT = 30; // 30 seconds
const int STANDARD_NUM_RECORDS = 5; // in VariableTunnelBuild message
{
const int TUNNEL_EXPIRATION_TIMEOUT = 660; // 11 minutes
const int TUNNEL_EXPIRATION_THRESHOLD = 60; // 1 minute
const int TUNNEL_RECREATION_THRESHOLD = 90; // 1.5 minutes
const int TUNNEL_CREATION_TIMEOUT = 30; // 30 seconds
const int STANDARD_NUM_RECORDS = 5; // in VariableTunnelBuild message
enum TunnelState
{
eTunnelStatePending,
eTunnelStateBuildReplyReceived,
eTunnelStateBuildFailed,
eTunnelStateEstablished,
eTunnelStateTestFailed,
eTunnelStateFailed,
eTunnelStateExpiring
};
class OutboundTunnel;
class InboundTunnel;
class Tunnel: public TunnelBase
{
public:
enum TunnelState
{
eTunnelStatePending,
eTunnelStateBuildReplyReceived,
eTunnelStateBuildFailed,
eTunnelStateEstablished,
eTunnelStateTestFailed,
eTunnelStateFailed,
eTunnelStateExpiring
};
class OutboundTunnel;
class InboundTunnel;
class Tunnel: public TunnelBase
{
public:
Tunnel (std::shared_ptr<const TunnelConfig> config);
~Tunnel ();
Tunnel (std::shared_ptr<const TunnelConfig> config);
~Tunnel ();
void Build (uint32_t replyMsgID, std::shared_ptr<OutboundTunnel> outboundTunnel = nullptr);
std::shared_ptr<const TunnelConfig> GetTunnelConfig () const { return m_Config; }
TunnelState GetState () const { return m_State; };
void SetState (TunnelState state) { m_State = state; };
bool IsEstablished () const { return m_State == eTunnelStateEstablished; };
bool IsFailed () const { return m_State == eTunnelStateFailed; };
bool IsRecreated () const { return m_IsRecreated; };
void SetIsRecreated () { m_IsRecreated = true; };
void Build (uint32_t replyMsgID, std::shared_ptr<OutboundTunnel> outboundTunnel = nullptr);
std::shared_ptr<const TunnelConfig> GetTunnelConfig () const { return m_Config; }
TunnelState GetState () const { return m_State; };
void SetState (TunnelState state) { m_State = state; };
bool IsEstablished () const { return m_State == eTunnelStateEstablished; };
bool IsFailed () const { return m_State == eTunnelStateFailed; };
bool IsRecreated () const { return m_IsRecreated; };
void SetIsRecreated () { m_IsRecreated = true; };
std::shared_ptr<TunnelPool> GetTunnelPool () const { return m_Pool; };
void SetTunnelPool (std::shared_ptr<TunnelPool> pool) { m_Pool = pool; };
bool HandleTunnelBuildResponse (uint8_t * msg, size_t len);
// implements TunnelBase
void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg);
void EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out);
uint32_t GetNextTunnelID () const { return m_Config->GetFirstHop ()->tunnelID; };
const i2p::data::IdentHash& GetNextIdentHash () const { return m_Config->GetFirstHop ()->router->GetIdentHash (); };
private:
std::shared_ptr<TunnelPool> GetTunnelPool () const { return m_Pool; };
void SetTunnelPool (std::shared_ptr<TunnelPool> pool) { m_Pool = pool; };
bool HandleTunnelBuildResponse (uint8_t * msg, size_t len);
// implements TunnelBase
void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg);
void EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out);
uint32_t GetNextTunnelID () const { return m_Config->GetFirstHop ()->tunnelID; };
const i2p::data::IdentHash& GetNextIdentHash () const { return m_Config->GetFirstHop ()->router->GetIdentHash (); };
private:
std::shared_ptr<const TunnelConfig> m_Config;
std::shared_ptr<TunnelPool> m_Pool; // pool, tunnel belongs to, or null
TunnelState m_State;
bool m_IsRecreated;
};
std::shared_ptr<const TunnelConfig> m_Config;
std::shared_ptr<TunnelPool> m_Pool; // pool, tunnel belongs to, or null
TunnelState m_State;
bool m_IsRecreated;
};
class OutboundTunnel: public Tunnel
{
public:
class OutboundTunnel: public Tunnel
{
public:
OutboundTunnel (std::shared_ptr<const TunnelConfig> config): Tunnel (config), m_Gateway (this) {};
OutboundTunnel (std::shared_ptr<const TunnelConfig> config): Tunnel (config), m_Gateway (this) {};
void SendTunnelDataMsg (const uint8_t * gwHash, uint32_t gwTunnel, std::shared_ptr<i2p::I2NPMessage> msg);
void SendTunnelDataMsg (const std::vector<TunnelMessageBlock>& msgs); // multiple messages
std::shared_ptr<const i2p::data::RouterInfo> GetEndpointRouter () const
{ return GetTunnelConfig ()->GetLastHop ()->router; };
size_t GetNumSentBytes () const { return m_Gateway.GetNumSentBytes (); };
void SendTunnelDataMsg (const uint8_t * gwHash, uint32_t gwTunnel, std::shared_ptr<i2p::I2NPMessage> msg);
void SendTunnelDataMsg (const std::vector<TunnelMessageBlock>& msgs); // multiple messages
std::shared_ptr<const i2p::data::RouterInfo> GetEndpointRouter () const
{ return GetTunnelConfig ()->GetLastHop ()->router; };
size_t GetNumSentBytes () const { return m_Gateway.GetNumSentBytes (); };
// implements TunnelBase
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
uint32_t GetTunnelID () const { return GetNextTunnelID (); };
private:
// implements TunnelBase
void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg);
uint32_t GetTunnelID () const { return GetNextTunnelID (); };
private:
std::mutex m_SendMutex;
TunnelGateway m_Gateway;
};
class InboundTunnel: public Tunnel, public std::enable_shared_from_this<InboundTunnel>
{
public:
std::mutex m_SendMutex;
TunnelGateway m_Gateway;
};
class InboundTunnel: public Tunnel, public std::enable_shared_from_this<InboundTunnel>
{
public:
InboundTunnel (std::shared_ptr<const TunnelConfig> config): Tunnel (config), m_Endpoint (true) {};
void HandleTunnelDataMsg (std::shared_ptr<const I2NPMessage> msg);
size_t GetNumReceivedBytes () const { return m_Endpoint.GetNumReceivedBytes (); };
InboundTunnel (std::shared_ptr<const TunnelConfig> config): Tunnel (config), m_Endpoint (true) {};
void HandleTunnelDataMsg (std::shared_ptr<const I2NPMessage> msg);
size_t GetNumReceivedBytes () const { return m_Endpoint.GetNumReceivedBytes (); };
// implements TunnelBase
uint32_t GetTunnelID () const { return GetTunnelConfig ()->GetLastHop ()->nextTunnelID; };
private:
// implements TunnelBase
uint32_t GetTunnelID () const { return GetTunnelConfig ()->GetLastHop ()->nextTunnelID; };
private:
TunnelEndpoint m_Endpoint;
};
TunnelEndpoint m_Endpoint;
};
class Tunnels
{
public:
class Tunnels
{
public:
Tunnels ();
~Tunnels ();
void Start ();
void Stop ();
std::shared_ptr<InboundTunnel> GetInboundTunnel (uint32_t tunnelID);
std::shared_ptr<InboundTunnel> GetPendingInboundTunnel (uint32_t replyMsgID);
std::shared_ptr<OutboundTunnel> GetPendingOutboundTunnel (uint32_t replyMsgID);
std::shared_ptr<InboundTunnel> GetNextInboundTunnel ();
std::shared_ptr<OutboundTunnel> GetNextOutboundTunnel ();
std::shared_ptr<TunnelPool> GetExploratoryPool () const { return m_ExploratoryPool; };
TransitTunnel * GetTransitTunnel (uint32_t tunnelID);
int GetTransitTunnelsExpirationTimeout ();
void AddTransitTunnel (TransitTunnel * tunnel);
void AddOutboundTunnel (std::shared_ptr<OutboundTunnel> newTunnel);
void AddInboundTunnel (std::shared_ptr<InboundTunnel> newTunnel);
void PostTunnelData (std::shared_ptr<I2NPMessage> msg);
void PostTunnelData (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
template<class TTunnel>
std::shared_ptr<TTunnel> CreateTunnel (std::shared_ptr<TunnelConfig> config, std::shared_ptr<OutboundTunnel> outboundTunnel = nullptr);
void AddPendingTunnel (uint32_t replyMsgID, std::shared_ptr<InboundTunnel> tunnel);
void AddPendingTunnel (uint32_t replyMsgID, std::shared_ptr<OutboundTunnel> tunnel);
std::shared_ptr<TunnelPool> CreateTunnelPool (i2p::garlic::GarlicDestination * localDestination, int numInboundHops, int numOuboundHops, int numInboundTunnels, int numOutboundTunnels);
void DeleteTunnelPool (std::shared_ptr<TunnelPool> pool);
void StopTunnelPool (std::shared_ptr<TunnelPool> pool);
private:
template<class TTunnel>
std::shared_ptr<TTunnel> GetPendingTunnel (uint32_t replyMsgID, const std::map<uint32_t, std::shared_ptr<TTunnel> >& pendingTunnels);
Tunnels ();
~Tunnels ();
void Start ();
void Stop ();
std::shared_ptr<InboundTunnel> GetInboundTunnel (uint32_t tunnelID);
std::shared_ptr<InboundTunnel> GetPendingInboundTunnel (uint32_t replyMsgID);
std::shared_ptr<OutboundTunnel> GetPendingOutboundTunnel (uint32_t replyMsgID);
std::shared_ptr<InboundTunnel> GetNextInboundTunnel ();
std::shared_ptr<OutboundTunnel> GetNextOutboundTunnel ();
std::shared_ptr<TunnelPool> GetExploratoryPool () const { return m_ExploratoryPool; };
TransitTunnel * GetTransitTunnel (uint32_t tunnelID);
int GetTransitTunnelsExpirationTimeout ();
void AddTransitTunnel (TransitTunnel * tunnel);
void AddOutboundTunnel (std::shared_ptr<OutboundTunnel> newTunnel);
void AddInboundTunnel (std::shared_ptr<InboundTunnel> newTunnel);
void PostTunnelData (std::shared_ptr<I2NPMessage> msg);
void PostTunnelData (const std::vector<std::shared_ptr<I2NPMessage> >& msgs);
template<class TTunnel>
std::shared_ptr<TTunnel> CreateTunnel (std::shared_ptr<TunnelConfig> config, std::shared_ptr<OutboundTunnel> outboundTunnel = nullptr);
void AddPendingTunnel (uint32_t replyMsgID, std::shared_ptr<InboundTunnel> tunnel);
void AddPendingTunnel (uint32_t replyMsgID, std::shared_ptr<OutboundTunnel> tunnel);
std::shared_ptr<TunnelPool> CreateTunnelPool (i2p::garlic::GarlicDestination * localDestination, int numInboundHops, int numOuboundHops, int numInboundTunnels, int numOutboundTunnels);
void DeleteTunnelPool (std::shared_ptr<TunnelPool> pool);
void StopTunnelPool (std::shared_ptr<TunnelPool> pool);
private:
template<class TTunnel>
std::shared_ptr<TTunnel> GetPendingTunnel (uint32_t replyMsgID, const std::map<uint32_t, std::shared_ptr<TTunnel> >& pendingTunnels);
void HandleTunnelGatewayMsg (TunnelBase * tunnel, std::shared_ptr<I2NPMessage> msg);
void HandleTunnelGatewayMsg (TunnelBase * tunnel, std::shared_ptr<I2NPMessage> msg);
void Run ();
void ManageTunnels ();
void ManageOutboundTunnels ();
void ManageInboundTunnels ();
void ManageTransitTunnels ();
void ManagePendingTunnels ();
template<class PendingTunnels>
void ManagePendingTunnels (PendingTunnels& pendingTunnels);
void ManageTunnelPools ();
void CreateZeroHopsInboundTunnel ();
private:
void Run ();
void ManageTunnels ();
void ManageOutboundTunnels ();
void ManageInboundTunnels ();
void ManageTransitTunnels ();
void ManagePendingTunnels ();
template<class PendingTunnels>
void ManagePendingTunnels (PendingTunnels& pendingTunnels);
void ManageTunnelPools ();
void CreateZeroHopsInboundTunnel ();
private:
bool m_IsRunning;
std::thread * m_Thread;
std::map<uint32_t, std::shared_ptr<InboundTunnel> > m_PendingInboundTunnels; // by replyMsgID
std::map<uint32_t, std::shared_ptr<OutboundTunnel> > m_PendingOutboundTunnels; // by replyMsgID
std::map<uint32_t, std::shared_ptr<InboundTunnel> > m_InboundTunnels;
std::list<std::shared_ptr<OutboundTunnel> > m_OutboundTunnels;
std::mutex m_TransitTunnelsMutex;
std::map<uint32_t, TransitTunnel *> m_TransitTunnels;
std::mutex m_PoolsMutex;
std::list<std::shared_ptr<TunnelPool>> m_Pools;
std::shared_ptr<TunnelPool> m_ExploratoryPool;
i2p::util::Queue<std::shared_ptr<I2NPMessage> > m_Queue;
bool m_IsRunning;
std::thread * m_Thread;
std::map<uint32_t, std::shared_ptr<InboundTunnel> > m_PendingInboundTunnels; // by replyMsgID
std::map<uint32_t, std::shared_ptr<OutboundTunnel> > m_PendingOutboundTunnels; // by replyMsgID
std::map<uint32_t, std::shared_ptr<InboundTunnel> > m_InboundTunnels;
std::list<std::shared_ptr<OutboundTunnel> > m_OutboundTunnels;
std::mutex m_TransitTunnelsMutex;
std::map<uint32_t, TransitTunnel *> m_TransitTunnels;
std::mutex m_PoolsMutex;
std::list<std::shared_ptr<TunnelPool>> m_Pools;
std::shared_ptr<TunnelPool> m_ExploratoryPool;
i2p::util::Queue<std::shared_ptr<I2NPMessage> > m_Queue;
// some stats
int m_NumSuccesiveTunnelCreations, m_NumFailedTunnelCreations;
// some stats
int m_NumSuccesiveTunnelCreations, m_NumFailedTunnelCreations;
public:
public:
// for HTTP only
const decltype(m_OutboundTunnels)& GetOutboundTunnels () const { return m_OutboundTunnels; };
const decltype(m_InboundTunnels)& GetInboundTunnels () const { return m_InboundTunnels; };
const decltype(m_TransitTunnels)& GetTransitTunnels () const { return m_TransitTunnels; };
int GetQueueSize () { return m_Queue.GetSize (); };
int GetTunnelCreationSuccessRate () const // in percents
{
int totalNum = m_NumSuccesiveTunnelCreations + m_NumFailedTunnelCreations;
return totalNum ? m_NumSuccesiveTunnelCreations*100/totalNum : 0;
}
};
// for HTTP only
const decltype(m_OutboundTunnels)& GetOutboundTunnels () const { return m_OutboundTunnels; };
const decltype(m_InboundTunnels)& GetInboundTunnels () const { return m_InboundTunnels; };
const decltype(m_TransitTunnels)& GetTransitTunnels () const { return m_TransitTunnels; };
int GetQueueSize () { return m_Queue.GetSize (); };
int GetTunnelCreationSuccessRate () const // in percents
{
int totalNum = m_NumSuccesiveTunnelCreations + m_NumFailedTunnelCreations;
return totalNum ? m_NumSuccesiveTunnelCreations*100/totalNum : 0;
}
};
extern Tunnels tunnels;
}
extern Tunnels tunnels;
}
}
#endif

View file

@ -11,58 +11,58 @@ namespace i2p
{
namespace tunnel
{
const size_t TUNNEL_DATA_MSG_SIZE = 1028;
const size_t TUNNEL_DATA_ENCRYPTED_SIZE = 1008;
const size_t TUNNEL_DATA_MAX_PAYLOAD_SIZE = 1003;
enum TunnelDeliveryType
{
eDeliveryTypeLocal = 0,
eDeliveryTypeTunnel = 1,
eDeliveryTypeRouter = 2
};
struct TunnelMessageBlock
{
TunnelDeliveryType deliveryType;
i2p::data::IdentHash hash;
uint32_t tunnelID;
std::shared_ptr<I2NPMessage> data;
};
const size_t TUNNEL_DATA_MSG_SIZE = 1028;
const size_t TUNNEL_DATA_ENCRYPTED_SIZE = 1008;
const size_t TUNNEL_DATA_MAX_PAYLOAD_SIZE = 1003;
enum TunnelDeliveryType
{
eDeliveryTypeLocal = 0,
eDeliveryTypeTunnel = 1,
eDeliveryTypeRouter = 2
};
struct TunnelMessageBlock
{
TunnelDeliveryType deliveryType;
i2p::data::IdentHash hash;
uint32_t tunnelID;
std::shared_ptr<I2NPMessage> data;
};
class TunnelBase
{
public:
class TunnelBase
{
public:
//WARNING!!! GetSecondsSinceEpoch() return uint64_t
TunnelBase (): m_CreationTime (i2p::util::GetSecondsSinceEpoch ()) {};
virtual ~TunnelBase () {};
virtual void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg) = 0;
virtual void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg) = 0;
virtual void FlushTunnelDataMsgs () {};
virtual void EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out) = 0;
virtual uint32_t GetNextTunnelID () const = 0;
virtual const i2p::data::IdentHash& GetNextIdentHash () const = 0;
virtual uint32_t GetTunnelID () const = 0; // as known at our side
//WARNING!!! GetSecondsSinceEpoch() return uint64_t
TunnelBase (): m_CreationTime (i2p::util::GetSecondsSinceEpoch ()) {};
virtual ~TunnelBase () {};
virtual void HandleTunnelDataMsg (std::shared_ptr<const i2p::I2NPMessage> tunnelMsg) = 0;
virtual void SendTunnelDataMsg (std::shared_ptr<i2p::I2NPMessage> msg) = 0;
virtual void FlushTunnelDataMsgs () {};
virtual void EncryptTunnelMsg (std::shared_ptr<const I2NPMessage> in, std::shared_ptr<I2NPMessage> out) = 0;
virtual uint32_t GetNextTunnelID () const = 0;
virtual const i2p::data::IdentHash& GetNextIdentHash () const = 0;
virtual uint32_t GetTunnelID () const = 0; // as known at our side
uint32_t GetCreationTime () const { return m_CreationTime; };
void SetCreationTime (uint32_t t) { m_CreationTime = t; };
uint32_t GetCreationTime () const { return m_CreationTime; };
void SetCreationTime (uint32_t t) { m_CreationTime = t; };
private:
uint32_t m_CreationTime; // seconds since epoch
};
private:
uint32_t m_CreationTime; // seconds since epoch
};
struct TunnelCreationTimeCmp
{
bool operator() (std::shared_ptr<const TunnelBase> t1, std::shared_ptr<const TunnelBase> t2) const
{
if (t1->GetCreationTime () != t2->GetCreationTime ())
return t1->GetCreationTime () > t2->GetCreationTime ();
else
return t1 < t2;
};
};
struct TunnelCreationTimeCmp
{
bool operator() (std::shared_ptr<const TunnelBase> t1, std::shared_ptr<const TunnelBase> t2) const
{
if (t1->GetCreationTime () != t2->GetCreationTime ())
return t1->GetCreationTime () > t2->GetCreationTime ();
else
return t1 < t2;
};
};
}
}

View file

@ -14,220 +14,220 @@ namespace i2p
{
namespace tunnel
{
struct TunnelHopConfig
{
std::shared_ptr<const i2p::data::RouterInfo> router, nextRouter;
uint32_t tunnelID, nextTunnelID;
uint8_t layerKey[32];
uint8_t ivKey[32];
uint8_t replyKey[32];
uint8_t replyIV[16];
bool isGateway, isEndpoint;
TunnelHopConfig * next, * prev;
i2p::crypto::TunnelDecryption decryption;
int recordIndex; // record # in tunnel build message
TunnelHopConfig (std::shared_ptr<const i2p::data::RouterInfo> r)
{
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
rnd.GenerateBlock (layerKey, 32);
rnd.GenerateBlock (ivKey, 32);
rnd.GenerateBlock (replyIV, 16);
tunnelID = rnd.GenerateWord32 ();
isGateway = true;
isEndpoint = true;
router = r;
//nextRouter = nullptr;
nextTunnelID = 0;
struct TunnelHopConfig
{
std::shared_ptr<const i2p::data::RouterInfo> router, nextRouter;
uint32_t tunnelID, nextTunnelID;
uint8_t layerKey[32];
uint8_t ivKey[32];
uint8_t replyKey[32];
uint8_t replyIV[16];
bool isGateway, isEndpoint;
TunnelHopConfig * next, * prev;
i2p::crypto::TunnelDecryption decryption;
int recordIndex; // record # in tunnel build message
TunnelHopConfig (std::shared_ptr<const i2p::data::RouterInfo> r)
{
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
rnd.GenerateBlock (layerKey, 32);
rnd.GenerateBlock (ivKey, 32);
rnd.GenerateBlock (replyIV, 16);
tunnelID = rnd.GenerateWord32 ();
isGateway = true;
isEndpoint = true;
router = r;
//nextRouter = nullptr;
nextTunnelID = 0;
next = nullptr;
prev = nullptr;
}
next = nullptr;
prev = nullptr;
}
void SetNextRouter (std::shared_ptr<const i2p::data::RouterInfo> r)
{
nextRouter = r;
isEndpoint = false;
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
nextTunnelID = rnd.GenerateWord32 ();
}
void SetNextRouter (std::shared_ptr<const i2p::data::RouterInfo> r)
{
nextRouter = r;
isEndpoint = false;
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
nextTunnelID = rnd.GenerateWord32 ();
}
void SetReplyHop (const TunnelHopConfig * replyFirstHop)
{
nextRouter = replyFirstHop->router;
nextTunnelID = replyFirstHop->tunnelID;
isEndpoint = true;
}
void SetNext (TunnelHopConfig * n)
{
next = n;
if (next)
{
next->prev = this;
next->isGateway = false;
isEndpoint = false;
nextRouter = next->router;
nextTunnelID = next->tunnelID;
}
}
void SetReplyHop (const TunnelHopConfig * replyFirstHop)
{
nextRouter = replyFirstHop->router;
nextTunnelID = replyFirstHop->tunnelID;
isEndpoint = true;
}
void SetNext (TunnelHopConfig * n)
{
next = n;
if (next)
{
next->prev = this;
next->isGateway = false;
isEndpoint = false;
nextRouter = next->router;
nextTunnelID = next->tunnelID;
}
}
void SetPrev (TunnelHopConfig * p)
{
prev = p;
if (prev)
{
prev->next = this;
prev->isEndpoint = false;
isGateway = false;
}
}
void SetPrev (TunnelHopConfig * p)
{
prev = p;
if (prev)
{
prev->next = this;
prev->isEndpoint = false;
isGateway = false;
}
}
void CreateBuildRequestRecord (uint8_t * record, uint32_t replyMsgID) const
{
uint8_t clearText[BUILD_REQUEST_RECORD_CLEAR_TEXT_SIZE];
htobe32buf (clearText + BUILD_REQUEST_RECORD_RECEIVE_TUNNEL_OFFSET, tunnelID);
memcpy (clearText + BUILD_REQUEST_RECORD_OUR_IDENT_OFFSET, router->GetIdentHash (), 32);
htobe32buf (clearText + BUILD_REQUEST_RECORD_NEXT_TUNNEL_OFFSET, nextTunnelID);
memcpy (clearText + BUILD_REQUEST_RECORD_NEXT_IDENT_OFFSET, nextRouter->GetIdentHash (), 32);
memcpy (clearText + BUILD_REQUEST_RECORD_LAYER_KEY_OFFSET, layerKey, 32);
memcpy (clearText + BUILD_REQUEST_RECORD_IV_KEY_OFFSET, ivKey, 32);
memcpy (clearText + BUILD_REQUEST_RECORD_REPLY_KEY_OFFSET, replyKey, 32);
memcpy (clearText + BUILD_REQUEST_RECORD_REPLY_IV_OFFSET, replyIV, 16);
uint8_t flag = 0;
if (isGateway) flag |= 0x80;
if (isEndpoint) flag |= 0x40;
clearText[BUILD_REQUEST_RECORD_FLAG_OFFSET] = flag;
htobe32buf (clearText + BUILD_REQUEST_RECORD_REQUEST_TIME_OFFSET, i2p::util::GetHoursSinceEpoch ());
htobe32buf (clearText + BUILD_REQUEST_RECORD_SEND_MSG_ID_OFFSET, replyMsgID);
// TODO: fill padding
router->GetElGamalEncryption ()->Encrypt (clearText, BUILD_REQUEST_RECORD_CLEAR_TEXT_SIZE, record + BUILD_REQUEST_RECORD_ENCRYPTED_OFFSET);
memcpy (record + BUILD_REQUEST_RECORD_TO_PEER_OFFSET, (const uint8_t *)router->GetIdentHash (), 16);
}
};
void CreateBuildRequestRecord (uint8_t * record, uint32_t replyMsgID) const
{
uint8_t clearText[BUILD_REQUEST_RECORD_CLEAR_TEXT_SIZE] = {};
htobe32buf (clearText + BUILD_REQUEST_RECORD_RECEIVE_TUNNEL_OFFSET, tunnelID);
memcpy (clearText + BUILD_REQUEST_RECORD_OUR_IDENT_OFFSET, router->GetIdentHash (), 32);
htobe32buf (clearText + BUILD_REQUEST_RECORD_NEXT_TUNNEL_OFFSET, nextTunnelID);
memcpy (clearText + BUILD_REQUEST_RECORD_NEXT_IDENT_OFFSET, nextRouter->GetIdentHash (), 32);
memcpy (clearText + BUILD_REQUEST_RECORD_LAYER_KEY_OFFSET, layerKey, 32);
memcpy (clearText + BUILD_REQUEST_RECORD_IV_KEY_OFFSET, ivKey, 32);
memcpy (clearText + BUILD_REQUEST_RECORD_REPLY_KEY_OFFSET, replyKey, 32);
memcpy (clearText + BUILD_REQUEST_RECORD_REPLY_IV_OFFSET, replyIV, 16);
uint8_t flag = 0;
if (isGateway) flag |= 0x80;
if (isEndpoint) flag |= 0x40;
clearText[BUILD_REQUEST_RECORD_FLAG_OFFSET] = flag;
htobe32buf (clearText + BUILD_REQUEST_RECORD_REQUEST_TIME_OFFSET, i2p::util::GetHoursSinceEpoch ());
htobe32buf (clearText + BUILD_REQUEST_RECORD_SEND_MSG_ID_OFFSET, replyMsgID);
// TODO: fill padding
router->GetElGamalEncryption ()->Encrypt (clearText, BUILD_REQUEST_RECORD_CLEAR_TEXT_SIZE, record + BUILD_REQUEST_RECORD_ENCRYPTED_OFFSET);
memcpy (record + BUILD_REQUEST_RECORD_TO_PEER_OFFSET, (const uint8_t *)router->GetIdentHash (), 16);
}
};
class TunnelConfig: public std::enable_shared_from_this<TunnelConfig>
{
public:
class TunnelConfig: public std::enable_shared_from_this<TunnelConfig>
{
public:
TunnelConfig (std::vector<std::shared_ptr<const i2p::data::RouterInfo> > peers,
std::shared_ptr<const TunnelConfig> replyTunnelConfig = nullptr) // replyTunnelConfig=nullptr means inbound
{
TunnelHopConfig * prev = nullptr;
for (auto it: peers)
{
auto hop = new TunnelHopConfig (it);
if (prev)
prev->SetNext (hop);
else
m_FirstHop = hop;
prev = hop;
}
m_LastHop = prev;
if (replyTunnelConfig) // outbound
{
m_FirstHop->isGateway = false;
m_LastHop->SetReplyHop (replyTunnelConfig->GetFirstHop ());
}
else // inbound
m_LastHop->SetNextRouter (i2p::context.GetSharedRouterInfo ());
}
~TunnelConfig ()
{
TunnelHopConfig * hop = m_FirstHop;
while (hop)
{
auto tmp = hop;
hop = hop->next;
delete tmp;
}
}
TunnelHopConfig * GetFirstHop () const
{
return m_FirstHop;
}
TunnelConfig (std::vector<std::shared_ptr<const i2p::data::RouterInfo> > peers,
std::shared_ptr<const TunnelConfig> replyTunnelConfig = nullptr) // replyTunnelConfig=nullptr means inbound
{
TunnelHopConfig * prev = nullptr;
for (auto it: peers)
{
auto hop = new TunnelHopConfig (it);
if (prev)
prev->SetNext (hop);
else
m_FirstHop = hop;
prev = hop;
}
m_LastHop = prev;
if (replyTunnelConfig) // outbound
{
m_FirstHop->isGateway = false;
m_LastHop->SetReplyHop (replyTunnelConfig->GetFirstHop ());
}
else // inbound
m_LastHop->SetNextRouter (i2p::context.GetSharedRouterInfo ());
}
~TunnelConfig ()
{
TunnelHopConfig * hop = m_FirstHop;
while (hop)
{
auto tmp = hop;
hop = hop->next;
delete tmp;
}
}
TunnelHopConfig * GetFirstHop () const
{
return m_FirstHop;
}
TunnelHopConfig * GetLastHop () const
{
return m_LastHop;
}
TunnelHopConfig * GetLastHop () const
{
return m_LastHop;
}
int GetNumHops () const
{
int num = 0;
TunnelHopConfig * hop = m_FirstHop;
while (hop)
{
num++;
hop = hop->next;
}
return num;
}
int GetNumHops () const
{
int num = 0;
TunnelHopConfig * hop = m_FirstHop;
while (hop)
{
num++;
hop = hop->next;
}
return num;
}
bool IsInbound () const { return m_FirstHop->isGateway; }
bool IsInbound () const { return m_FirstHop->isGateway; }
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > GetPeers () const
{
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > peers;
TunnelHopConfig * hop = m_FirstHop;
while (hop)
{
peers.push_back (hop->router);
hop = hop->next;
}
return peers;
}
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > GetPeers () const
{
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > peers;
TunnelHopConfig * hop = m_FirstHop;
while (hop)
{
peers.push_back (hop->router);
hop = hop->next;
}
return peers;
}
void Print (std::stringstream& s) const
{
TunnelHopConfig * hop = m_FirstHop;
if (!IsInbound ()) // outbound
s << "me";
s << "-->" << m_FirstHop->tunnelID;
while (hop)
{
s << ":" << hop->router->GetIdentHashAbbreviation () << "-->";
if (!hop->isEndpoint)
s << hop->nextTunnelID;
else
return;
hop = hop->next;
}
// we didn't reach enpoint that mean we are last hop
s << ":me";
}
void Print (std::stringstream& s) const
{
TunnelHopConfig * hop = m_FirstHop;
if (!IsInbound ()) // outbound
s << "me";
s << "-->" << m_FirstHop->tunnelID;
while (hop)
{
s << ":" << hop->router->GetIdentHashAbbreviation () << "-->";
if (!hop->isEndpoint)
s << hop->nextTunnelID;
else
return;
hop = hop->next;
}
// we didn't reach enpoint that mean we are last hop
s << ":me";
}
std::shared_ptr<TunnelConfig> Invert () const
{
auto peers = GetPeers ();
std::reverse (peers.begin (), peers.end ());
// we use ourself as reply tunnel for outbound tunnel
return IsInbound () ? std::make_shared<TunnelConfig>(peers, shared_from_this ()) : std::make_shared<TunnelConfig>(peers);
}
std::shared_ptr<TunnelConfig> Invert () const
{
auto peers = GetPeers ();
std::reverse (peers.begin (), peers.end ());
// we use ourself as reply tunnel for outbound tunnel
return IsInbound () ? std::make_shared<TunnelConfig>(peers, shared_from_this ()) : std::make_shared<TunnelConfig>(peers);
}
std::shared_ptr<TunnelConfig> Clone (std::shared_ptr<const TunnelConfig> replyTunnelConfig = nullptr) const
{
return std::make_shared<TunnelConfig> (GetPeers (), replyTunnelConfig);
}
private:
std::shared_ptr<TunnelConfig> Clone (std::shared_ptr<const TunnelConfig> replyTunnelConfig = nullptr) const
{
return std::make_shared<TunnelConfig> (GetPeers (), replyTunnelConfig);
}
private:
// this constructor can't be called from outside
TunnelConfig (): m_FirstHop (nullptr), m_LastHop (nullptr)
{
}
private:
// this constructor can't be called from outside
TunnelConfig (): m_FirstHop (nullptr), m_LastHop (nullptr)
{
}
private:
TunnelHopConfig * m_FirstHop, * m_LastHop;
};
}
}
TunnelHopConfig * m_FirstHop, * m_LastHop;
};
}
}
#endif

View file

@ -11,249 +11,249 @@ namespace i2p
{
namespace tunnel
{
TunnelEndpoint::~TunnelEndpoint ()
{
}
void TunnelEndpoint::HandleDecryptedTunnelDataMsg (std::shared_ptr<I2NPMessage> msg)
{
m_NumReceivedBytes += TUNNEL_DATA_MSG_SIZE;
uint8_t * decrypted = msg->GetPayload () + 20; // 4 + 16
uint8_t * zero = (uint8_t *)memchr (decrypted + 4, 0, TUNNEL_DATA_ENCRYPTED_SIZE - 4); // witout 4-byte checksum
if (zero)
{
uint8_t * fragment = zero + 1;
// verify checksum
memcpy (msg->GetPayload () + TUNNEL_DATA_MSG_SIZE, msg->GetPayload () + 4, 16); // copy iv to the end
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, fragment, TUNNEL_DATA_MSG_SIZE -(fragment - msg->GetPayload ()) + 16); // payload + iv
if (memcmp (hash, decrypted, 4))
{
LogPrint (eLogError, "TunnelMessage: checksum verification failed");
return;
}
// process fragments
while (fragment < decrypted + TUNNEL_DATA_ENCRYPTED_SIZE)
{
uint8_t flag = fragment[0];
fragment++;
bool isFollowOnFragment = flag & 0x80, isLastFragment = true;
uint32_t msgID = 0;
int fragmentNum = 0;
TunnelMessageBlockEx m;
if (!isFollowOnFragment)
{
// first fragment
m.deliveryType = (TunnelDeliveryType)((flag >> 5) & 0x03);
switch (m.deliveryType)
{
case eDeliveryTypeLocal: // 0
break;
case eDeliveryTypeTunnel: // 1
m.tunnelID = bufbe32toh (fragment);
fragment += 4; // tunnelID
m.hash = i2p::data::IdentHash (fragment);
fragment += 32; // hash
break;
case eDeliveryTypeRouter: // 2
m.hash = i2p::data::IdentHash (fragment);
fragment += 32; // to hash
break;
default:
;
}
TunnelEndpoint::~TunnelEndpoint ()
{
}
void TunnelEndpoint::HandleDecryptedTunnelDataMsg (std::shared_ptr<I2NPMessage> msg)
{
m_NumReceivedBytes += TUNNEL_DATA_MSG_SIZE;
uint8_t * decrypted = msg->GetPayload () + 20; // 4 + 16
uint8_t * zero = (uint8_t *)memchr (decrypted + 4, 0, TUNNEL_DATA_ENCRYPTED_SIZE - 4); // witout 4-byte checksum
if (zero)
{
uint8_t * fragment = zero + 1;
// verify checksum
memcpy (msg->GetPayload () + TUNNEL_DATA_MSG_SIZE, msg->GetPayload () + 4, 16); // copy iv to the end
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, fragment, TUNNEL_DATA_MSG_SIZE -(fragment - msg->GetPayload ()) + 16); // payload + iv
if (memcmp (hash, decrypted, 4))
{
LogPrint (eLogError, "TunnelMessage: checksum verification failed");
return;
}
// process fragments
while (fragment < decrypted + TUNNEL_DATA_ENCRYPTED_SIZE)
{
uint8_t flag = fragment[0];
fragment++;
bool isFollowOnFragment = flag & 0x80, isLastFragment = true;
uint32_t msgID = 0;
int fragmentNum = 0;
TunnelMessageBlockEx m;
if (!isFollowOnFragment)
{
// first fragment
m.deliveryType = (TunnelDeliveryType)((flag >> 5) & 0x03);
switch (m.deliveryType)
{
case eDeliveryTypeLocal: // 0
break;
case eDeliveryTypeTunnel: // 1
m.tunnelID = bufbe32toh (fragment);
fragment += 4; // tunnelID
m.hash = i2p::data::IdentHash (fragment);
fragment += 32; // hash
break;
case eDeliveryTypeRouter: // 2
m.hash = i2p::data::IdentHash (fragment);
fragment += 32; // to hash
break;
default:
;
}
bool isFragmented = flag & 0x08;
if (isFragmented)
{
// Message ID
msgID = bufbe32toh (fragment);
fragment += 4;
isLastFragment = false;
}
}
else
{
// follow on
msgID = bufbe32toh (fragment); // MessageID
fragment += 4;
fragmentNum = (flag >> 1) & 0x3F; // 6 bits
isLastFragment = flag & 0x01;
}
uint16_t size = bufbe16toh (fragment);
fragment += 2;
bool isFragmented = flag & 0x08;
if (isFragmented)
{
// Message ID
msgID = bufbe32toh (fragment);
fragment += 4;
isLastFragment = false;
}
}
else
{
// follow on
msgID = bufbe32toh (fragment); // MessageID
fragment += 4;
fragmentNum = (flag >> 1) & 0x3F; // 6 bits
isLastFragment = flag & 0x01;
}
uint16_t size = bufbe16toh (fragment);
fragment += 2;
msg->offset = fragment - msg->buf;
msg->len = msg->offset + size;
if (fragment + size < decrypted + TUNNEL_DATA_ENCRYPTED_SIZE)
{
// this is not last message. we have to copy it
m.data = ToSharedI2NPMessage (NewI2NPShortMessage ());
m.data->offset += TUNNEL_GATEWAY_HEADER_SIZE; // reserve room for TunnelGateway header
m.data->len += TUNNEL_GATEWAY_HEADER_SIZE;
*(m.data) = *msg;
}
else
m.data = msg;
if (!isFollowOnFragment && isLastFragment)
HandleNextMessage (m);
else
{
if (msgID) // msgID is presented, assume message is fragmented
{
if (!isFollowOnFragment) // create new incomlete message
{
m.nextFragmentNum = 1;
auto ret = m_IncompleteMessages.insert (std::pair<uint32_t, TunnelMessageBlockEx>(msgID, m));
if (ret.second)
HandleOutOfSequenceFragment (msgID, ret.first->second);
else
LogPrint (eLogError, "Incomplete message ", msgID, "already exists");
}
else
{
m.nextFragmentNum = fragmentNum;
HandleFollowOnFragment (msgID, isLastFragment, m);
}
}
else
LogPrint (eLogError, "Message is fragmented, but msgID is not presented");
}
fragment += size;
}
}
else
LogPrint (eLogError, "TunnelMessage: zero not found");
}
msg->offset = fragment - msg->buf;
msg->len = msg->offset + size;
if (fragment + size < decrypted + TUNNEL_DATA_ENCRYPTED_SIZE)
{
// this is not last message. we have to copy it
m.data = ToSharedI2NPMessage (NewI2NPShortMessage ());
m.data->offset += TUNNEL_GATEWAY_HEADER_SIZE; // reserve room for TunnelGateway header
m.data->len += TUNNEL_GATEWAY_HEADER_SIZE;
*(m.data) = *msg;
}
else
m.data = msg;
if (!isFollowOnFragment && isLastFragment)
HandleNextMessage (m);
else
{
if (msgID) // msgID is presented, assume message is fragmented
{
if (!isFollowOnFragment) // create new incomlete message
{
m.nextFragmentNum = 1;
auto ret = m_IncompleteMessages.insert (std::pair<uint32_t, TunnelMessageBlockEx>(msgID, m));
if (ret.second)
HandleOutOfSequenceFragment (msgID, ret.first->second);
else
LogPrint (eLogError, "Incomplete message ", msgID, "already exists");
}
else
{
m.nextFragmentNum = fragmentNum;
HandleFollowOnFragment (msgID, isLastFragment, m);
}
}
else
LogPrint (eLogError, "Message is fragmented, but msgID is not presented");
}
fragment += size;
}
}
else
LogPrint (eLogError, "TunnelMessage: zero not found");
}
void TunnelEndpoint::HandleFollowOnFragment (uint32_t msgID, bool isLastFragment, const TunnelMessageBlockEx& m)
{
auto fragment = m.data->GetBuffer ();
auto size = m.data->GetLength ();
auto it = m_IncompleteMessages.find (msgID);
if (it != m_IncompleteMessages.end())
{
auto& msg = it->second;
if (m.nextFragmentNum == msg.nextFragmentNum)
{
if (msg.data->len + size < I2NP_MAX_MESSAGE_SIZE) // check if message is not too long
{
if (msg.data->len + size > msg.data->maxLen)
{
LogPrint (eLogInfo, "Tunnel endpoint I2NP message size ", msg.data->maxLen, " is not enough");
auto newMsg = ToSharedI2NPMessage (NewI2NPMessage ());
*newMsg = *(msg.data);
msg.data = newMsg;
}
memcpy (msg.data->buf + msg.data->len, fragment, size); // concatenate fragment
msg.data->len += size;
if (isLastFragment)
{
// message complete
HandleNextMessage (msg);
m_IncompleteMessages.erase (it);
}
else
{
msg.nextFragmentNum++;
HandleOutOfSequenceFragment (msgID, msg);
}
}
else
{
LogPrint (eLogError, "Fragment ", m.nextFragmentNum, " of message ", msgID, "exceeds max I2NP message size. Message dropped");
m_IncompleteMessages.erase (it);
}
}
else
{
LogPrint (eLogInfo, "Unexpected fragment ", (int)m.nextFragmentNum, " instead ", (int)msg.nextFragmentNum, " of message ", msgID, ". Saved");
AddOutOfSequenceFragment (msgID, m.nextFragmentNum, isLastFragment, m.data);
}
}
else
{
LogPrint (eLogInfo, "First fragment of message ", msgID, " not found. Saved");
AddOutOfSequenceFragment (msgID, m.nextFragmentNum, isLastFragment, m.data);
}
}
void TunnelEndpoint::HandleFollowOnFragment (uint32_t msgID, bool isLastFragment, const TunnelMessageBlockEx& m)
{
auto fragment = m.data->GetBuffer ();
auto size = m.data->GetLength ();
auto it = m_IncompleteMessages.find (msgID);
if (it != m_IncompleteMessages.end())
{
auto& msg = it->second;
if (m.nextFragmentNum == msg.nextFragmentNum)
{
if (msg.data->len + size < I2NP_MAX_MESSAGE_SIZE) // check if message is not too long
{
if (msg.data->len + size > msg.data->maxLen)
{
LogPrint (eLogInfo, "Tunnel endpoint I2NP message size ", msg.data->maxLen, " is not enough");
auto newMsg = ToSharedI2NPMessage (NewI2NPMessage ());
*newMsg = *(msg.data);
msg.data = newMsg;
}
memcpy (msg.data->buf + msg.data->len, fragment, size); // concatenate fragment
msg.data->len += size;
if (isLastFragment)
{
// message complete
HandleNextMessage (msg);
m_IncompleteMessages.erase (it);
}
else
{
msg.nextFragmentNum++;
HandleOutOfSequenceFragment (msgID, msg);
}
}
else
{
LogPrint (eLogError, "Fragment ", m.nextFragmentNum, " of message ", msgID, "exceeds max I2NP message size. Message dropped");
m_IncompleteMessages.erase (it);
}
}
else
{
LogPrint (eLogInfo, "Unexpected fragment ", (int)m.nextFragmentNum, " instead ", (int)msg.nextFragmentNum, " of message ", msgID, ". Saved");
AddOutOfSequenceFragment (msgID, m.nextFragmentNum, isLastFragment, m.data);
}
}
else
{
LogPrint (eLogInfo, "First fragment of message ", msgID, " not found. Saved");
AddOutOfSequenceFragment (msgID, m.nextFragmentNum, isLastFragment, m.data);
}
}
void TunnelEndpoint::AddOutOfSequenceFragment (uint32_t msgID, uint8_t fragmentNum, bool isLastFragment, std::shared_ptr<I2NPMessage> data)
{
auto it = m_OutOfSequenceFragments.find (msgID);
if (it == m_OutOfSequenceFragments.end ())
m_OutOfSequenceFragments.insert (std::pair<uint32_t, Fragment> (msgID, {fragmentNum, isLastFragment, data}));
}
void TunnelEndpoint::AddOutOfSequenceFragment (uint32_t msgID, uint8_t fragmentNum, bool isLastFragment, std::shared_ptr<I2NPMessage> data)
{
auto it = m_OutOfSequenceFragments.find (msgID);
if (it == m_OutOfSequenceFragments.end ())
m_OutOfSequenceFragments.insert (std::pair<uint32_t, Fragment> (msgID, {fragmentNum, isLastFragment, data}));
}
void TunnelEndpoint::HandleOutOfSequenceFragment (uint32_t msgID, TunnelMessageBlockEx& msg)
{
auto it = m_OutOfSequenceFragments.find (msgID);
if (it != m_OutOfSequenceFragments.end ())
{
if (it->second.fragmentNum == msg.nextFragmentNum)
{
LogPrint (eLogInfo, "Out-of-sequence fragment ", (int)it->second.fragmentNum, " of message ", msgID, " found");
auto size = it->second.data->GetLength ();
if (msg.data->len + size > msg.data->maxLen)
{
LogPrint (eLogInfo, "Tunnel endpoint I2NP message size ", msg.data->maxLen, " is not enough");
auto newMsg = ToSharedI2NPMessage (NewI2NPMessage ());
*newMsg = *(msg.data);
msg.data = newMsg;
}
memcpy (msg.data->buf + msg.data->len, it->second.data->GetBuffer (), size); // concatenate out-of-sync fragment
msg.data->len += size;
if (it->second.isLastFragment)
{
// message complete
HandleNextMessage (msg);
m_IncompleteMessages.erase (msgID);
}
else
msg.nextFragmentNum++;
m_OutOfSequenceFragments.erase (it);
}
}
}
void TunnelEndpoint::HandleNextMessage (const TunnelMessageBlock& msg)
{
LogPrint (eLogInfo, "TunnelMessage: handle fragment of ", msg.data->GetLength ()," bytes. Msg type ", (int)msg.data->GetTypeID ());
switch (msg.deliveryType)
{
case eDeliveryTypeLocal:
i2p::HandleI2NPMessage (msg.data);
break;
case eDeliveryTypeTunnel:
i2p::transport::transports.SendMessage (msg.hash, i2p::CreateTunnelGatewayMsg (msg.tunnelID, msg.data));
break;
case eDeliveryTypeRouter:
if (msg.hash == i2p::context.GetRouterInfo ().GetIdentHash ()) // check if message is sent to us
i2p::HandleI2NPMessage (msg.data);
else
{
// to somebody else
if (!m_IsInbound) // outbound transit tunnel
{
/* auto typeID = msg.data->GetTypeID ();
if (typeID == eI2NPDatabaseStore || typeID == eI2NPDatabaseSearchReply )
// catch RI or reply with new list of routers
i2p::data::netdb.PostI2NPMsg (msg.data);*/
i2p::transport::transports.SendMessage (msg.hash, msg.data);
}
else // we shouldn't send this message. possible leakage
LogPrint (eLogError, "Message to another router arrived from an inbound tunnel. Dropped");
}
break;
default:
LogPrint (eLogError, "TunnelMessage: Unknown delivery type ", (int)msg.deliveryType);
};
}
}
void TunnelEndpoint::HandleOutOfSequenceFragment (uint32_t msgID, TunnelMessageBlockEx& msg)
{
auto it = m_OutOfSequenceFragments.find (msgID);
if (it != m_OutOfSequenceFragments.end ())
{
if (it->second.fragmentNum == msg.nextFragmentNum)
{
LogPrint (eLogInfo, "Out-of-sequence fragment ", (int)it->second.fragmentNum, " of message ", msgID, " found");
auto size = it->second.data->GetLength ();
if (msg.data->len + size > msg.data->maxLen)
{
LogPrint (eLogInfo, "Tunnel endpoint I2NP message size ", msg.data->maxLen, " is not enough");
auto newMsg = ToSharedI2NPMessage (NewI2NPMessage ());
*newMsg = *(msg.data);
msg.data = newMsg;
}
memcpy (msg.data->buf + msg.data->len, it->second.data->GetBuffer (), size); // concatenate out-of-sync fragment
msg.data->len += size;
if (it->second.isLastFragment)
{
// message complete
HandleNextMessage (msg);
m_IncompleteMessages.erase (msgID);
}
else
msg.nextFragmentNum++;
m_OutOfSequenceFragments.erase (it);
}
}
}
void TunnelEndpoint::HandleNextMessage (const TunnelMessageBlock& msg)
{
LogPrint (eLogInfo, "TunnelMessage: handle fragment of ", msg.data->GetLength ()," bytes. Msg type ", (int)msg.data->GetTypeID ());
switch (msg.deliveryType)
{
case eDeliveryTypeLocal:
i2p::HandleI2NPMessage (msg.data);
break;
case eDeliveryTypeTunnel:
i2p::transport::transports.SendMessage (msg.hash, i2p::CreateTunnelGatewayMsg (msg.tunnelID, msg.data));
break;
case eDeliveryTypeRouter:
if (msg.hash == i2p::context.GetRouterInfo ().GetIdentHash ()) // check if message is sent to us
i2p::HandleI2NPMessage (msg.data);
else
{
// to somebody else
if (!m_IsInbound) // outbound transit tunnel
{
/* auto typeID = msg.data->GetTypeID ();
if (typeID == eI2NPDatabaseStore || typeID == eI2NPDatabaseSearchReply )
// catch RI or reply with new list of routers
i2p::data::netdb.PostI2NPMsg (msg.data);*/
i2p::transport::transports.SendMessage (msg.hash, msg.data);
}
else // we shouldn't send this message. possible leakage
LogPrint (eLogError, "Message to another router arrived from an inbound tunnel. Dropped");
}
break;
default:
LogPrint (eLogError, "TunnelMessage: Unknown delivery type ", (int)msg.deliveryType);
};
}
}
}

View file

@ -11,44 +11,44 @@ namespace i2p
{
namespace tunnel
{
class TunnelEndpoint
{
struct TunnelMessageBlockEx: public TunnelMessageBlock
{
uint8_t nextFragmentNum;
};
class TunnelEndpoint
{
struct TunnelMessageBlockEx: public TunnelMessageBlock
{
uint8_t nextFragmentNum;
};
struct Fragment
{
uint8_t fragmentNum;
bool isLastFragment;
std::shared_ptr<I2NPMessage> data;
};
public:
struct Fragment
{
uint8_t fragmentNum;
bool isLastFragment;
std::shared_ptr<I2NPMessage> data;
};
public:
TunnelEndpoint (bool isInbound): m_IsInbound (isInbound), m_NumReceivedBytes (0) {};
~TunnelEndpoint ();
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
void HandleDecryptedTunnelDataMsg (std::shared_ptr<I2NPMessage> msg);
TunnelEndpoint (bool isInbound): m_IsInbound (isInbound), m_NumReceivedBytes (0) {};
~TunnelEndpoint ();
size_t GetNumReceivedBytes () const { return m_NumReceivedBytes; };
void HandleDecryptedTunnelDataMsg (std::shared_ptr<I2NPMessage> msg);
private:
private:
void HandleFollowOnFragment (uint32_t msgID, bool isLastFragment, const TunnelMessageBlockEx& m);
void HandleNextMessage (const TunnelMessageBlock& msg);
void HandleFollowOnFragment (uint32_t msgID, bool isLastFragment, const TunnelMessageBlockEx& m);
void HandleNextMessage (const TunnelMessageBlock& msg);
void AddOutOfSequenceFragment (uint32_t msgID, uint8_t fragmentNum, bool isLastFragment, std::shared_ptr<I2NPMessage> data);
void HandleOutOfSequenceFragment (uint32_t msgID, TunnelMessageBlockEx& msg);
private:
void AddOutOfSequenceFragment (uint32_t msgID, uint8_t fragmentNum, bool isLastFragment, std::shared_ptr<I2NPMessage> data);
void HandleOutOfSequenceFragment (uint32_t msgID, TunnelMessageBlockEx& msg);
private:
std::map<uint32_t, TunnelMessageBlockEx> m_IncompleteMessages;
std::map<uint32_t, Fragment> m_OutOfSequenceFragments;
bool m_IsInbound;
size_t m_NumReceivedBytes;
};
}
std::map<uint32_t, TunnelMessageBlockEx> m_IncompleteMessages;
std::map<uint32_t, Fragment> m_OutOfSequenceFragments;
bool m_IsInbound;
size_t m_NumReceivedBytes;
};
}
}
#endif

View file

@ -10,203 +10,203 @@ namespace i2p
{
namespace tunnel
{
TunnelGatewayBuffer::TunnelGatewayBuffer (uint32_t tunnelID): m_TunnelID (tunnelID),
m_CurrentTunnelDataMsg (nullptr), m_RemainingSize (0)
{
context.GetRandomNumberGenerator ().GenerateBlock (m_NonZeroRandomBuffer, TUNNEL_DATA_MAX_PAYLOAD_SIZE);
for (size_t i = 0; i < TUNNEL_DATA_MAX_PAYLOAD_SIZE; i++)
if (!m_NonZeroRandomBuffer[i]) m_NonZeroRandomBuffer[i] = 1;
}
TunnelGatewayBuffer::TunnelGatewayBuffer (uint32_t tunnelID): m_TunnelID (tunnelID),
m_CurrentTunnelDataMsg (nullptr), m_RemainingSize (0)
{
context.GetRandomNumberGenerator ().GenerateBlock (m_NonZeroRandomBuffer, TUNNEL_DATA_MAX_PAYLOAD_SIZE);
for (size_t i = 0; i < TUNNEL_DATA_MAX_PAYLOAD_SIZE; i++)
if (!m_NonZeroRandomBuffer[i]) m_NonZeroRandomBuffer[i] = 1;
}
TunnelGatewayBuffer::~TunnelGatewayBuffer ()
{
}
void TunnelGatewayBuffer::PutI2NPMsg (const TunnelMessageBlock& block)
{
bool messageCreated = false;
if (!m_CurrentTunnelDataMsg)
{
CreateCurrentTunnelDataMessage ();
messageCreated = true;
}
TunnelGatewayBuffer::~TunnelGatewayBuffer ()
{
}
void TunnelGatewayBuffer::PutI2NPMsg (const TunnelMessageBlock& block)
{
bool messageCreated = false;
if (!m_CurrentTunnelDataMsg)
{
CreateCurrentTunnelDataMessage ();
messageCreated = true;
}
// create delivery instructions
uint8_t di[43]; // max delivery instruction length is 43 for tunnel
size_t diLen = 1;// flag
if (block.deliveryType != eDeliveryTypeLocal) // tunnel or router
{
if (block.deliveryType == eDeliveryTypeTunnel)
{
htobe32buf (di + diLen, block.tunnelID);
diLen += 4; // tunnelID
}
memcpy (di + diLen, block.hash, 32);
diLen += 32; //len
}
di[0] = block.deliveryType << 5; // set delivery type
// create delivery instructions
uint8_t di[43]; // max delivery instruction length is 43 for tunnel
size_t diLen = 1;// flag
if (block.deliveryType != eDeliveryTypeLocal) // tunnel or router
{
if (block.deliveryType == eDeliveryTypeTunnel)
{
htobe32buf (di + diLen, block.tunnelID);
diLen += 4; // tunnelID
}
memcpy (di + diLen, block.hash, 32);
diLen += 32; //len
}
di[0] = block.deliveryType << 5; // set delivery type
// create fragments
std::shared_ptr<I2NPMessage> msg = block.data;
auto fullMsgLen = diLen + msg->GetLength () + 2; // delivery instructions + payload + 2 bytes length
if (fullMsgLen <= m_RemainingSize)
{
// message fits. First and last fragment
htobe16buf (di + diLen, msg->GetLength ());
diLen += 2; // size
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len, di, diLen);
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len + diLen, msg->GetBuffer (), msg->GetLength ());
m_CurrentTunnelDataMsg->len += diLen + msg->GetLength ();
m_RemainingSize -= diLen + msg->GetLength ();
if (!m_RemainingSize)
CompleteCurrentTunnelDataMessage ();
}
else
{
if (!messageCreated) // check if we should complete previous message
{
auto numFollowOnFragments = fullMsgLen / TUNNEL_DATA_MAX_PAYLOAD_SIZE;
// length of bytes don't fit full tunnel message
// every follow-on fragment adds 7 bytes
auto nonFit = (fullMsgLen + numFollowOnFragments*7) % TUNNEL_DATA_MAX_PAYLOAD_SIZE;
if (!nonFit || nonFit > m_RemainingSize)
{
CompleteCurrentTunnelDataMessage ();
CreateCurrentTunnelDataMessage ();
}
}
if (diLen + 6 <= m_RemainingSize)
{
// delivery instructions fit
uint32_t msgID;
memcpy (&msgID, msg->GetHeader () + I2NP_HEADER_MSGID_OFFSET, 4); // in network bytes order
size_t size = m_RemainingSize - diLen - 6; // 6 = 4 (msgID) + 2 (size)
// create fragments
std::shared_ptr<I2NPMessage> msg = block.data;
auto fullMsgLen = diLen + msg->GetLength () + 2; // delivery instructions + payload + 2 bytes length
if (fullMsgLen <= m_RemainingSize)
{
// message fits. First and last fragment
htobe16buf (di + diLen, msg->GetLength ());
diLen += 2; // size
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len, di, diLen);
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len + diLen, msg->GetBuffer (), msg->GetLength ());
m_CurrentTunnelDataMsg->len += diLen + msg->GetLength ();
m_RemainingSize -= diLen + msg->GetLength ();
if (!m_RemainingSize)
CompleteCurrentTunnelDataMessage ();
}
else
{
if (!messageCreated) // check if we should complete previous message
{
auto numFollowOnFragments = fullMsgLen / TUNNEL_DATA_MAX_PAYLOAD_SIZE;
// length of bytes don't fit full tunnel message
// every follow-on fragment adds 7 bytes
auto nonFit = (fullMsgLen + numFollowOnFragments*7) % TUNNEL_DATA_MAX_PAYLOAD_SIZE;
if (!nonFit || nonFit > m_RemainingSize)
{
CompleteCurrentTunnelDataMessage ();
CreateCurrentTunnelDataMessage ();
}
}
if (diLen + 6 <= m_RemainingSize)
{
// delivery instructions fit
uint32_t msgID;
memcpy (&msgID, msg->GetHeader () + I2NP_HEADER_MSGID_OFFSET, 4); // in network bytes order
size_t size = m_RemainingSize - diLen - 6; // 6 = 4 (msgID) + 2 (size)
// first fragment
di[0] |= 0x08; // fragmented
htobuf32 (di + diLen, msgID);
diLen += 4; // Message ID
htobe16buf (di + diLen, size);
diLen += 2; // size
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len, di, diLen);
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len + diLen, msg->GetBuffer (), size);
m_CurrentTunnelDataMsg->len += diLen + size;
CompleteCurrentTunnelDataMessage ();
// follow on fragments
int fragmentNumber = 1;
while (size < msg->GetLength ())
{
CreateCurrentTunnelDataMessage ();
uint8_t * buf = m_CurrentTunnelDataMsg->GetBuffer ();
buf[0] = 0x80 | (fragmentNumber << 1); // frag
bool isLastFragment = false;
size_t s = msg->GetLength () - size;
if (s > TUNNEL_DATA_MAX_PAYLOAD_SIZE - 7) // 7 follow on instructions
s = TUNNEL_DATA_MAX_PAYLOAD_SIZE - 7;
else // last fragment
{
buf[0] |= 0x01;
isLastFragment = true;
}
htobuf32 (buf + 1, msgID); //Message ID
htobe16buf (buf + 5, s); // size
memcpy (buf + 7, msg->GetBuffer () + size, s);
m_CurrentTunnelDataMsg->len += s+7;
if (isLastFragment)
{
m_RemainingSize -= s+7;
if (!m_RemainingSize)
CompleteCurrentTunnelDataMessage ();
}
else
CompleteCurrentTunnelDataMessage ();
size += s;
fragmentNumber++;
}
}
else
{
// delivery instructions don't fit. Create new message
CompleteCurrentTunnelDataMessage ();
PutI2NPMsg (block);
// don't delete msg because it's taken care inside
}
}
}
void TunnelGatewayBuffer::ClearTunnelDataMsgs ()
{
m_TunnelDataMsgs.clear ();
}
// first fragment
di[0] |= 0x08; // fragmented
htobuf32 (di + diLen, msgID);
diLen += 4; // Message ID
htobe16buf (di + diLen, size);
diLen += 2; // size
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len, di, diLen);
memcpy (m_CurrentTunnelDataMsg->buf + m_CurrentTunnelDataMsg->len + diLen, msg->GetBuffer (), size);
m_CurrentTunnelDataMsg->len += diLen + size;
CompleteCurrentTunnelDataMessage ();
// follow on fragments
int fragmentNumber = 1;
while (size < msg->GetLength ())
{
CreateCurrentTunnelDataMessage ();
uint8_t * buf = m_CurrentTunnelDataMsg->GetBuffer ();
buf[0] = 0x80 | (fragmentNumber << 1); // frag
bool isLastFragment = false;
size_t s = msg->GetLength () - size;
if (s > TUNNEL_DATA_MAX_PAYLOAD_SIZE - 7) // 7 follow on instructions
s = TUNNEL_DATA_MAX_PAYLOAD_SIZE - 7;
else // last fragment
{
buf[0] |= 0x01;
isLastFragment = true;
}
htobuf32 (buf + 1, msgID); //Message ID
htobe16buf (buf + 5, s); // size
memcpy (buf + 7, msg->GetBuffer () + size, s);
m_CurrentTunnelDataMsg->len += s+7;
if (isLastFragment)
{
m_RemainingSize -= s+7;
if (!m_RemainingSize)
CompleteCurrentTunnelDataMessage ();
}
else
CompleteCurrentTunnelDataMessage ();
size += s;
fragmentNumber++;
}
}
else
{
// delivery instructions don't fit. Create new message
CompleteCurrentTunnelDataMessage ();
PutI2NPMsg (block);
// don't delete msg because it's taken care inside
}
}
}
void TunnelGatewayBuffer::ClearTunnelDataMsgs ()
{
m_TunnelDataMsgs.clear ();
}
void TunnelGatewayBuffer::CreateCurrentTunnelDataMessage ()
{
m_CurrentTunnelDataMsg = ToSharedI2NPMessage (NewI2NPShortMessage ());
m_CurrentTunnelDataMsg->Align (12);
// we reserve space for padding
m_CurrentTunnelDataMsg->offset += TUNNEL_DATA_MSG_SIZE + I2NP_HEADER_SIZE;
m_CurrentTunnelDataMsg->len = m_CurrentTunnelDataMsg->offset;
m_RemainingSize = TUNNEL_DATA_MAX_PAYLOAD_SIZE;
}
void TunnelGatewayBuffer::CompleteCurrentTunnelDataMessage ()
{
if (!m_CurrentTunnelDataMsg) return;
uint8_t * payload = m_CurrentTunnelDataMsg->GetBuffer ();
size_t size = m_CurrentTunnelDataMsg->len - m_CurrentTunnelDataMsg->offset;
m_CurrentTunnelDataMsg->offset = m_CurrentTunnelDataMsg->len - TUNNEL_DATA_MSG_SIZE - I2NP_HEADER_SIZE;
uint8_t * buf = m_CurrentTunnelDataMsg->GetPayload ();
htobe32buf (buf, m_TunnelID);
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
rnd.GenerateBlock (buf + 4, 16); // original IV
memcpy (payload + size, buf + 4, 16); // copy IV for checksum
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, payload, size+16);
memcpy (buf+20, hash, 4); // checksum
payload[-1] = 0; // zero
ptrdiff_t paddingSize = payload - buf - 25; // 25 = 24 + 1
if (paddingSize > 0)
{
// non-zero padding
auto randomOffset = rnd.GenerateWord32 (0, TUNNEL_DATA_MAX_PAYLOAD_SIZE - paddingSize);
memcpy (buf + 24, m_NonZeroRandomBuffer + randomOffset, paddingSize);
}
void TunnelGatewayBuffer::CreateCurrentTunnelDataMessage ()
{
m_CurrentTunnelDataMsg = ToSharedI2NPMessage (NewI2NPShortMessage ());
m_CurrentTunnelDataMsg->Align (12);
// we reserve space for padding
m_CurrentTunnelDataMsg->offset += TUNNEL_DATA_MSG_SIZE + I2NP_HEADER_SIZE;
m_CurrentTunnelDataMsg->len = m_CurrentTunnelDataMsg->offset;
m_RemainingSize = TUNNEL_DATA_MAX_PAYLOAD_SIZE;
}
void TunnelGatewayBuffer::CompleteCurrentTunnelDataMessage ()
{
if (!m_CurrentTunnelDataMsg) return;
uint8_t * payload = m_CurrentTunnelDataMsg->GetBuffer ();
size_t size = m_CurrentTunnelDataMsg->len - m_CurrentTunnelDataMsg->offset;
m_CurrentTunnelDataMsg->offset = m_CurrentTunnelDataMsg->len - TUNNEL_DATA_MSG_SIZE - I2NP_HEADER_SIZE;
uint8_t * buf = m_CurrentTunnelDataMsg->GetPayload ();
htobe32buf (buf, m_TunnelID);
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
rnd.GenerateBlock (buf + 4, 16); // original IV
memcpy (payload + size, buf + 4, 16); // copy IV for checksum
uint8_t hash[32];
CryptoPP::SHA256().CalculateDigest (hash, payload, size+16);
memcpy (buf+20, hash, 4); // checksum
payload[-1] = 0; // zero
ptrdiff_t paddingSize = payload - buf - 25; // 25 = 24 + 1
if (paddingSize > 0)
{
// non-zero padding
auto randomOffset = rnd.GenerateWord32 (0, TUNNEL_DATA_MAX_PAYLOAD_SIZE - paddingSize);
memcpy (buf + 24, m_NonZeroRandomBuffer + randomOffset, paddingSize);
}
// we can't fill message header yet because encryption is required
m_TunnelDataMsgs.push_back (m_CurrentTunnelDataMsg);
m_CurrentTunnelDataMsg = nullptr;
}
// we can't fill message header yet because encryption is required
m_TunnelDataMsgs.push_back (m_CurrentTunnelDataMsg);
m_CurrentTunnelDataMsg = nullptr;
}
void TunnelGateway::SendTunnelDataMsg (const TunnelMessageBlock& block)
{
if (block.data)
{
PutTunnelDataMsg (block);
SendBuffer ();
}
}
void TunnelGateway::SendTunnelDataMsg (const TunnelMessageBlock& block)
{
if (block.data)
{
PutTunnelDataMsg (block);
SendBuffer ();
}
}
void TunnelGateway::PutTunnelDataMsg (const TunnelMessageBlock& block)
{
if (block.data)
m_Buffer.PutI2NPMsg (block);
}
void TunnelGateway::PutTunnelDataMsg (const TunnelMessageBlock& block)
{
if (block.data)
m_Buffer.PutI2NPMsg (block);
}
void TunnelGateway::SendBuffer ()
{
m_Buffer.CompleteCurrentTunnelDataMessage ();
auto tunnelMsgs = m_Buffer.GetTunnelDataMsgs ();
for (auto tunnelMsg : tunnelMsgs)
{
m_Tunnel->EncryptTunnelMsg (tunnelMsg, tunnelMsg);
tunnelMsg->FillI2NPMessageHeader (eI2NPTunnelData);
m_NumSentBytes += TUNNEL_DATA_MSG_SIZE;
}
i2p::transport::transports.SendMessages (m_Tunnel->GetNextIdentHash (), tunnelMsgs);
m_Buffer.ClearTunnelDataMsgs ();
}
}
}
void TunnelGateway::SendBuffer ()
{
m_Buffer.CompleteCurrentTunnelDataMessage ();
auto tunnelMsgs = m_Buffer.GetTunnelDataMsgs ();
for (auto tunnelMsg : tunnelMsgs)
{
m_Tunnel->EncryptTunnelMsg (tunnelMsg, tunnelMsg);
tunnelMsg->FillI2NPMessageHeader (eI2NPTunnelData);
m_NumSentBytes += TUNNEL_DATA_MSG_SIZE;
}
i2p::transport::transports.SendMessages (m_Tunnel->GetNextIdentHash (), tunnelMsgs);
m_Buffer.ClearTunnelDataMsgs ();
}
}
}

View file

@ -11,47 +11,47 @@ namespace i2p
{
namespace tunnel
{
class TunnelGatewayBuffer
{
public:
TunnelGatewayBuffer (uint32_t tunnelID);
~TunnelGatewayBuffer ();
void PutI2NPMsg (const TunnelMessageBlock& block);
const std::vector<std::shared_ptr<I2NPMessage> >& GetTunnelDataMsgs () const { return m_TunnelDataMsgs; };
void ClearTunnelDataMsgs ();
void CompleteCurrentTunnelDataMessage ();
class TunnelGatewayBuffer
{
public:
TunnelGatewayBuffer (uint32_t tunnelID);
~TunnelGatewayBuffer ();
void PutI2NPMsg (const TunnelMessageBlock& block);
const std::vector<std::shared_ptr<I2NPMessage> >& GetTunnelDataMsgs () const { return m_TunnelDataMsgs; };
void ClearTunnelDataMsgs ();
void CompleteCurrentTunnelDataMessage ();
private:
private:
void CreateCurrentTunnelDataMessage ();
private:
void CreateCurrentTunnelDataMessage ();
private:
uint32_t m_TunnelID;
std::vector<std::shared_ptr<I2NPMessage> > m_TunnelDataMsgs;
std::shared_ptr<I2NPMessage> m_CurrentTunnelDataMsg;
size_t m_RemainingSize;
uint8_t m_NonZeroRandomBuffer[TUNNEL_DATA_MAX_PAYLOAD_SIZE];
};
uint32_t m_TunnelID;
std::vector<std::shared_ptr<I2NPMessage> > m_TunnelDataMsgs;
std::shared_ptr<I2NPMessage> m_CurrentTunnelDataMsg;
size_t m_RemainingSize;
uint8_t m_NonZeroRandomBuffer[TUNNEL_DATA_MAX_PAYLOAD_SIZE];
};
class TunnelGateway
{
public:
class TunnelGateway
{
public:
TunnelGateway (TunnelBase * tunnel):
m_Tunnel (tunnel), m_Buffer (tunnel->GetNextTunnelID ()), m_NumSentBytes (0) {};
void SendTunnelDataMsg (const TunnelMessageBlock& block);
void PutTunnelDataMsg (const TunnelMessageBlock& block);
void SendBuffer ();
size_t GetNumSentBytes () const { return m_NumSentBytes; };
private:
TunnelGateway (TunnelBase * tunnel):
m_Tunnel (tunnel), m_Buffer (tunnel->GetNextTunnelID ()), m_NumSentBytes (0) {};
void SendTunnelDataMsg (const TunnelMessageBlock& block);
void PutTunnelDataMsg (const TunnelMessageBlock& block);
void SendBuffer ();
size_t GetNumSentBytes () const { return m_NumSentBytes; };
private:
TunnelBase * m_Tunnel;
TunnelGatewayBuffer m_Buffer;
size_t m_NumSentBytes;
};
}
}
TunnelBase * m_Tunnel;
TunnelGatewayBuffer m_Buffer;
size_t m_NumSentBytes;
};
}
}
#endif

View file

@ -12,424 +12,424 @@ namespace i2p
{
namespace tunnel
{
TunnelPool::TunnelPool (i2p::garlic::GarlicDestination * localDestination, int numInboundHops, int numOutboundHops, int numInboundTunnels, int numOutboundTunnels):
m_LocalDestination (localDestination), m_NumInboundHops (numInboundHops), m_NumOutboundHops (numOutboundHops),
m_NumInboundTunnels (numInboundTunnels), m_NumOutboundTunnels (numOutboundTunnels), m_IsActive (true)
{
}
TunnelPool::TunnelPool (i2p::garlic::GarlicDestination * localDestination, int numInboundHops, int numOutboundHops, int numInboundTunnels, int numOutboundTunnels):
m_LocalDestination (localDestination), m_NumInboundHops (numInboundHops), m_NumOutboundHops (numOutboundHops),
m_NumInboundTunnels (numInboundTunnels), m_NumOutboundTunnels (numOutboundTunnels), m_IsActive (true)
{
}
TunnelPool::~TunnelPool ()
{
DetachTunnels ();
}
TunnelPool::~TunnelPool ()
{
DetachTunnels ();
}
void TunnelPool::SetExplicitPeers (std::shared_ptr<std::vector<i2p::data::IdentHash> > explicitPeers)
{
m_ExplicitPeers = explicitPeers;
if (m_ExplicitPeers)
{
int size = m_ExplicitPeers->size ();
if (m_NumInboundHops > size)
{
m_NumInboundHops = size;
LogPrint (eLogInfo, "Inbound tunnel length has beed adjusted to ", size, " for explicit peers");
}
if (m_NumOutboundHops > size)
{
m_NumOutboundHops = size;
LogPrint (eLogInfo, "Outbound tunnel length has beed adjusted to ", size, " for explicit peers");
}
m_NumInboundTunnels = 1;
m_NumOutboundTunnels = 1;
}
}
void TunnelPool::SetExplicitPeers (std::shared_ptr<std::vector<i2p::data::IdentHash> > explicitPeers)
{
m_ExplicitPeers = explicitPeers;
if (m_ExplicitPeers)
{
int size = m_ExplicitPeers->size ();
if (m_NumInboundHops > size)
{
m_NumInboundHops = size;
LogPrint (eLogInfo, "Inbound tunnel length has beed adjusted to ", size, " for explicit peers");
}
if (m_NumOutboundHops > size)
{
m_NumOutboundHops = size;
LogPrint (eLogInfo, "Outbound tunnel length has beed adjusted to ", size, " for explicit peers");
}
m_NumInboundTunnels = 1;
m_NumOutboundTunnels = 1;
}
}
void TunnelPool::DetachTunnels ()
{
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
for (auto it: m_InboundTunnels)
it->SetTunnelPool (nullptr);
m_InboundTunnels.clear ();
}
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
for (auto it: m_OutboundTunnels)
it->SetTunnelPool (nullptr);
m_OutboundTunnels.clear ();
}
m_Tests.clear ();
}
void TunnelPool::TunnelCreated (std::shared_ptr<InboundTunnel> createdTunnel)
{
if (!m_IsActive) return;
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
m_InboundTunnels.insert (createdTunnel);
}
if (m_LocalDestination)
m_LocalDestination->SetLeaseSetUpdated ();
}
void TunnelPool::DetachTunnels ()
{
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
for (auto it: m_InboundTunnels)
it->SetTunnelPool (nullptr);
m_InboundTunnels.clear ();
}
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
for (auto it: m_OutboundTunnels)
it->SetTunnelPool (nullptr);
m_OutboundTunnels.clear ();
}
m_Tests.clear ();
}
void TunnelPool::TunnelCreated (std::shared_ptr<InboundTunnel> createdTunnel)
{
if (!m_IsActive) return;
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
m_InboundTunnels.insert (createdTunnel);
}
if (m_LocalDestination)
m_LocalDestination->SetLeaseSetUpdated ();
}
void TunnelPool::TunnelExpired (std::shared_ptr<InboundTunnel> expiredTunnel)
{
if (expiredTunnel)
{
expiredTunnel->SetTunnelPool (nullptr);
for (auto it: m_Tests)
if (it.second.second == expiredTunnel) it.second.second = nullptr;
void TunnelPool::TunnelExpired (std::shared_ptr<InboundTunnel> expiredTunnel)
{
if (expiredTunnel)
{
expiredTunnel->SetTunnelPool (nullptr);
for (auto it: m_Tests)
if (it.second.second == expiredTunnel) it.second.second = nullptr;
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
m_InboundTunnels.erase (expiredTunnel);
}
}
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
m_InboundTunnels.erase (expiredTunnel);
}
}
void TunnelPool::TunnelCreated (std::shared_ptr<OutboundTunnel> createdTunnel)
{
if (!m_IsActive) return;
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
m_OutboundTunnels.insert (createdTunnel);
}
//CreatePairedInboundTunnel (createdTunnel);
}
void TunnelPool::TunnelCreated (std::shared_ptr<OutboundTunnel> createdTunnel)
{
if (!m_IsActive) return;
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
m_OutboundTunnels.insert (createdTunnel);
}
//CreatePairedInboundTunnel (createdTunnel);
}
void TunnelPool::TunnelExpired (std::shared_ptr<OutboundTunnel> expiredTunnel)
{
if (expiredTunnel)
{
expiredTunnel->SetTunnelPool (nullptr);
for (auto it: m_Tests)
if (it.second.first == expiredTunnel) it.second.first = nullptr;
void TunnelPool::TunnelExpired (std::shared_ptr<OutboundTunnel> expiredTunnel)
{
if (expiredTunnel)
{
expiredTunnel->SetTunnelPool (nullptr);
for (auto it: m_Tests)
if (it.second.first == expiredTunnel) it.second.first = nullptr;
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
m_OutboundTunnels.erase (expiredTunnel);
}
}
std::vector<std::shared_ptr<InboundTunnel> > TunnelPool::GetInboundTunnels (int num) const
{
std::vector<std::shared_ptr<InboundTunnel> > v;
int i = 0;
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
for (auto it : m_InboundTunnels)
{
if (i >= num) break;
if (it->IsEstablished ())
{
v.push_back (it);
i++;
}
}
return v;
}
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
m_OutboundTunnels.erase (expiredTunnel);
}
}
std::vector<std::shared_ptr<InboundTunnel> > TunnelPool::GetInboundTunnels (int num) const
{
std::vector<std::shared_ptr<InboundTunnel> > v;
int i = 0;
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
for (auto it : m_InboundTunnels)
{
if (i >= num) break;
if (it->IsEstablished ())
{
v.push_back (it);
i++;
}
}
return v;
}
std::shared_ptr<OutboundTunnel> TunnelPool::GetNextOutboundTunnel (std::shared_ptr<OutboundTunnel> excluded) const
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
return GetNextTunnel (m_OutboundTunnels, excluded);
}
std::shared_ptr<OutboundTunnel> TunnelPool::GetNextOutboundTunnel (std::shared_ptr<OutboundTunnel> excluded) const
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
return GetNextTunnel (m_OutboundTunnels, excluded);
}
std::shared_ptr<InboundTunnel> TunnelPool::GetNextInboundTunnel (std::shared_ptr<InboundTunnel> excluded) const
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
return GetNextTunnel (m_InboundTunnels, excluded);
}
std::shared_ptr<InboundTunnel> TunnelPool::GetNextInboundTunnel (std::shared_ptr<InboundTunnel> excluded) const
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
return GetNextTunnel (m_InboundTunnels, excluded);
}
template<class TTunnels>
typename TTunnels::value_type TunnelPool::GetNextTunnel (TTunnels& tunnels, typename TTunnels::value_type excluded) const
{
if (tunnels.empty ()) return nullptr;
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
uint32_t ind = rnd.GenerateWord32 (0, tunnels.size ()/2), i = 0;
typename TTunnels::value_type tunnel = nullptr;
for (auto it: tunnels)
{
if (it->IsEstablished () && it != excluded)
{
tunnel = it;
i++;
}
if (i > ind && tunnel) break;
}
if (!tunnel && excluded && excluded->IsEstablished ()) tunnel = excluded;
return tunnel;
}
template<class TTunnels>
typename TTunnels::value_type TunnelPool::GetNextTunnel (TTunnels& tunnels, typename TTunnels::value_type excluded) const
{
if (tunnels.empty ()) return nullptr;
CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator ();
uint32_t ind = rnd.GenerateWord32 (0, tunnels.size ()/2), i = 0;
typename TTunnels::value_type tunnel = nullptr;
for (auto it: tunnels)
{
if (it->IsEstablished () && it != excluded)
{
tunnel = it;
i++;
}
if (i > ind && tunnel) break;
}
if (!tunnel && excluded && excluded->IsEstablished ()) tunnel = excluded;
return tunnel;
}
std::shared_ptr<OutboundTunnel> TunnelPool::GetNewOutboundTunnel (std::shared_ptr<OutboundTunnel> old) const
{
if (old && old->IsEstablished ()) return old;
std::shared_ptr<OutboundTunnel> tunnel;
if (old)
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
for (auto it: m_OutboundTunnels)
if (it->IsEstablished () && old->GetEndpointRouter ()->GetIdentHash () == it->GetEndpointRouter ()->GetIdentHash ())
{
tunnel = it;
break;
}
}
if (!tunnel)
tunnel = GetNextOutboundTunnel ();
return tunnel;
}
std::shared_ptr<OutboundTunnel> TunnelPool::GetNewOutboundTunnel (std::shared_ptr<OutboundTunnel> old) const
{
if (old && old->IsEstablished ()) return old;
std::shared_ptr<OutboundTunnel> tunnel;
if (old)
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
for (auto it: m_OutboundTunnels)
if (it->IsEstablished () && old->GetEndpointRouter ()->GetIdentHash () == it->GetEndpointRouter ()->GetIdentHash ())
{
tunnel = it;
break;
}
}
if (!tunnel)
tunnel = GetNextOutboundTunnel ();
return tunnel;
}
void TunnelPool::CreateTunnels ()
{
int num = 0;
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
for (auto it : m_InboundTunnels)
if (it->IsEstablished ()) num++;
}
for (int i = num; i < m_NumInboundTunnels; i++)
CreateInboundTunnel ();
num = 0;
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
for (auto it : m_OutboundTunnels)
if (it->IsEstablished ()) num++;
}
for (int i = num; i < m_NumOutboundTunnels; i++)
CreateOutboundTunnel ();
}
void TunnelPool::CreateTunnels ()
{
int num = 0;
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
for (auto it : m_InboundTunnels)
if (it->IsEstablished ()) num++;
}
for (int i = num; i < m_NumInboundTunnels; i++)
CreateInboundTunnel ();
num = 0;
{
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
for (auto it : m_OutboundTunnels)
if (it->IsEstablished ()) num++;
}
for (int i = num; i < m_NumOutboundTunnels; i++)
CreateOutboundTunnel ();
}
void TunnelPool::TestTunnels ()
{
auto& rnd = i2p::context.GetRandomNumberGenerator ();
for (auto it: m_Tests)
{
LogPrint ("Tunnel test ", (int)it.first, " failed");
// if test failed again with another tunnel we consider it failed
if (it.second.first)
{
if (it.second.first->GetState () == eTunnelStateTestFailed)
{
it.second.first->SetState (eTunnelStateFailed);
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
m_OutboundTunnels.erase (it.second.first);
}
else
it.second.first->SetState (eTunnelStateTestFailed);
}
if (it.second.second)
{
if (it.second.second->GetState () == eTunnelStateTestFailed)
{
it.second.second->SetState (eTunnelStateFailed);
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
m_InboundTunnels.erase (it.second.second);
}
if (m_LocalDestination)
m_LocalDestination->SetLeaseSetUpdated ();
}
else
it.second.second->SetState (eTunnelStateTestFailed);
}
}
m_Tests.clear ();
// new tests
auto it1 = m_OutboundTunnels.begin ();
auto it2 = m_InboundTunnels.begin ();
while (it1 != m_OutboundTunnels.end () && it2 != m_InboundTunnels.end ())
{
bool failed = false;
if ((*it1)->IsFailed ())
{
failed = true;
it1++;
}
if ((*it2)->IsFailed ())
{
failed = true;
it2++;
}
if (!failed)
{
uint32_t msgID = rnd.GenerateWord32 ();
m_Tests[msgID] = std::make_pair (*it1, *it2);
(*it1)->SendTunnelDataMsg ((*it2)->GetNextIdentHash (), (*it2)->GetNextTunnelID (),
CreateDeliveryStatusMsg (msgID));
it1++; it2++;
}
}
}
void TunnelPool::TestTunnels ()
{
auto& rnd = i2p::context.GetRandomNumberGenerator ();
for (auto it: m_Tests)
{
LogPrint ("Tunnel test ", (int)it.first, " failed");
// if test failed again with another tunnel we consider it failed
if (it.second.first)
{
if (it.second.first->GetState () == eTunnelStateTestFailed)
{
it.second.first->SetState (eTunnelStateFailed);
std::unique_lock<std::mutex> l(m_OutboundTunnelsMutex);
m_OutboundTunnels.erase (it.second.first);
}
else
it.second.first->SetState (eTunnelStateTestFailed);
}
if (it.second.second)
{
if (it.second.second->GetState () == eTunnelStateTestFailed)
{
it.second.second->SetState (eTunnelStateFailed);
{
std::unique_lock<std::mutex> l(m_InboundTunnelsMutex);
m_InboundTunnels.erase (it.second.second);
}
if (m_LocalDestination)
m_LocalDestination->SetLeaseSetUpdated ();
}
else
it.second.second->SetState (eTunnelStateTestFailed);
}
}
m_Tests.clear ();
// new tests
auto it1 = m_OutboundTunnels.begin ();
auto it2 = m_InboundTunnels.begin ();
while (it1 != m_OutboundTunnels.end () && it2 != m_InboundTunnels.end ())
{
bool failed = false;
if ((*it1)->IsFailed ())
{
failed = true;
it1++;
}
if ((*it2)->IsFailed ())
{
failed = true;
it2++;
}
if (!failed)
{
uint32_t msgID = rnd.GenerateWord32 ();
m_Tests[msgID] = std::make_pair (*it1, *it2);
(*it1)->SendTunnelDataMsg ((*it2)->GetNextIdentHash (), (*it2)->GetNextTunnelID (),
CreateDeliveryStatusMsg (msgID));
it1++; it2++;
}
}
}
void TunnelPool::ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg)
{
if (m_LocalDestination)
m_LocalDestination->ProcessGarlicMessage (msg);
else
LogPrint (eLogWarning, "Local destination doesn't exist. Dropped");
}
void TunnelPool::ProcessDeliveryStatus (std::shared_ptr<I2NPMessage> msg)
{
const uint8_t * buf = msg->GetPayload ();
uint32_t msgID = bufbe32toh (buf);
buf += 4;
uint64_t timestamp = bufbe64toh (buf);
void TunnelPool::ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg)
{
if (m_LocalDestination)
m_LocalDestination->ProcessGarlicMessage (msg);
else
LogPrint (eLogWarning, "Local destination doesn't exist. Dropped");
}
void TunnelPool::ProcessDeliveryStatus (std::shared_ptr<I2NPMessage> msg)
{
const uint8_t * buf = msg->GetPayload ();
uint32_t msgID = bufbe32toh (buf);
buf += 4;
uint64_t timestamp = bufbe64toh (buf);
auto it = m_Tests.find (msgID);
if (it != m_Tests.end ())
{
// restore from test failed state if any
if (it->second.first->GetState () == eTunnelStateTestFailed)
it->second.first->SetState (eTunnelStateEstablished);
if (it->second.second->GetState () == eTunnelStateTestFailed)
it->second.second->SetState (eTunnelStateEstablished);
LogPrint ("Tunnel test ", it->first, " successive. ", i2p::util::GetMillisecondsSinceEpoch () - timestamp, " milliseconds");
m_Tests.erase (it);
}
else
{
if (m_LocalDestination)
m_LocalDestination->ProcessDeliveryStatusMessage (msg);
else
LogPrint (eLogWarning, "Local destination doesn't exist. Dropped");
}
}
auto it = m_Tests.find (msgID);
if (it != m_Tests.end ())
{
// restore from test failed state if any
if (it->second.first->GetState () == eTunnelStateTestFailed)
it->second.first->SetState (eTunnelStateEstablished);
if (it->second.second->GetState () == eTunnelStateTestFailed)
it->second.second->SetState (eTunnelStateEstablished);
LogPrint ("Tunnel test ", it->first, " successive. ", i2p::util::GetMillisecondsSinceEpoch () - timestamp, " milliseconds");
m_Tests.erase (it);
}
else
{
if (m_LocalDestination)
m_LocalDestination->ProcessDeliveryStatusMessage (msg);
else
LogPrint (eLogWarning, "Local destination doesn't exist. Dropped");
}
}
std::shared_ptr<const i2p::data::RouterInfo> TunnelPool::SelectNextHop (std::shared_ptr<const i2p::data::RouterInfo> prevHop) const
{
bool isExploratory = (m_LocalDestination == &i2p::context); // TODO: implement it better
auto hop = isExploratory ? i2p::data::netdb.GetRandomRouter (prevHop):
i2p::data::netdb.GetHighBandwidthRandomRouter (prevHop);
std::shared_ptr<const i2p::data::RouterInfo> TunnelPool::SelectNextHop (std::shared_ptr<const i2p::data::RouterInfo> prevHop) const
{
bool isExploratory = (m_LocalDestination == &i2p::context); // TODO: implement it better
auto hop = isExploratory ? i2p::data::netdb.GetRandomRouter (prevHop):
i2p::data::netdb.GetHighBandwidthRandomRouter (prevHop);
if (!hop || hop->GetProfile ()->IsBad ())
hop = i2p::data::netdb.GetRandomRouter ();
return hop;
}
if (!hop || hop->GetProfile ()->IsBad ())
hop = i2p::data::netdb.GetRandomRouter ();
return hop;
}
bool TunnelPool::SelectPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound)
{
if (m_ExplicitPeers) return SelectExplicitPeers (hops, isInbound);
auto prevHop = i2p::context.GetSharedRouterInfo ();
int numHops = isInbound ? m_NumInboundHops : m_NumOutboundHops;
if (i2p::transport::transports.GetNumPeers () > 25)
{
auto r = i2p::transport::transports.GetRandomPeer ();
if (r && !r->GetProfile ()->IsBad ())
{
prevHop = r;
hops.push_back (r);
numHops--;
}
}
for (int i = 0; i < numHops; i++)
{
auto hop = SelectNextHop (prevHop);
if (!hop)
{
LogPrint (eLogError, "Can't select next hop");
return false;
}
prevHop = hop;
hops.push_back (hop);
}
return true;
}
bool TunnelPool::SelectExplicitPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound)
{
int size = m_ExplicitPeers->size ();
std::vector<int> peerIndicies;
for (int i = 0; i < size; i++) peerIndicies.push_back(i);
std::random_shuffle (peerIndicies.begin(), peerIndicies.end());
int numHops = isInbound ? m_NumInboundHops : m_NumOutboundHops;
for (int i = 0; i < numHops; i++)
{
auto& ident = (*m_ExplicitPeers)[peerIndicies[i]];
auto r = i2p::data::netdb.FindRouter (ident);
if (r)
hops.push_back (r);
else
{
LogPrint (eLogInfo, "Can't find router for ", ident.ToBase64 ());
i2p::data::netdb.RequestDestination (ident);
return false;
}
}
return true;
}
void TunnelPool::CreateInboundTunnel ()
{
auto outboundTunnel = GetNextOutboundTunnel ();
if (!outboundTunnel)
outboundTunnel = tunnels.GetNextOutboundTunnel ();
LogPrint ("Creating destination inbound tunnel...");
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > hops;
if (SelectPeers (hops, true))
{
std::reverse (hops.begin (), hops.end ());
auto tunnel = tunnels.CreateTunnel<InboundTunnel> (std::make_shared<TunnelConfig> (hops), outboundTunnel);
tunnel->SetTunnelPool (shared_from_this ());
}
else
LogPrint (eLogError, "Can't create inbound tunnel. No peers available");
}
bool TunnelPool::SelectPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound)
{
if (m_ExplicitPeers) return SelectExplicitPeers (hops, isInbound);
auto prevHop = i2p::context.GetSharedRouterInfo ();
int numHops = isInbound ? m_NumInboundHops : m_NumOutboundHops;
if (i2p::transport::transports.GetNumPeers () > 25)
{
auto r = i2p::transport::transports.GetRandomPeer ();
if (r && !r->GetProfile ()->IsBad ())
{
prevHop = r;
hops.push_back (r);
numHops--;
}
}
for (int i = 0; i < numHops; i++)
{
auto hop = SelectNextHop (prevHop);
if (!hop)
{
LogPrint (eLogError, "Can't select next hop");
return false;
}
prevHop = hop;
hops.push_back (hop);
}
return true;
}
bool TunnelPool::SelectExplicitPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound)
{
int size = m_ExplicitPeers->size ();
std::vector<int> peerIndicies;
for (int i = 0; i < size; i++) peerIndicies.push_back(i);
std::random_shuffle (peerIndicies.begin(), peerIndicies.end());
int numHops = isInbound ? m_NumInboundHops : m_NumOutboundHops;
for (int i = 0; i < numHops; i++)
{
auto& ident = (*m_ExplicitPeers)[peerIndicies[i]];
auto r = i2p::data::netdb.FindRouter (ident);
if (r)
hops.push_back (r);
else
{
LogPrint (eLogInfo, "Can't find router for ", ident.ToBase64 ());
i2p::data::netdb.RequestDestination (ident);
return false;
}
}
return true;
}
void TunnelPool::CreateInboundTunnel ()
{
auto outboundTunnel = GetNextOutboundTunnel ();
if (!outboundTunnel)
outboundTunnel = tunnels.GetNextOutboundTunnel ();
LogPrint ("Creating destination inbound tunnel...");
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > hops;
if (SelectPeers (hops, true))
{
std::reverse (hops.begin (), hops.end ());
auto tunnel = tunnels.CreateTunnel<InboundTunnel> (std::make_shared<TunnelConfig> (hops), outboundTunnel);
tunnel->SetTunnelPool (shared_from_this ());
}
else
LogPrint (eLogError, "Can't create inbound tunnel. No peers available");
}
void TunnelPool::RecreateInboundTunnel (std::shared_ptr<InboundTunnel> tunnel)
{
auto outboundTunnel = GetNextOutboundTunnel ();
if (!outboundTunnel)
outboundTunnel = tunnels.GetNextOutboundTunnel ();
LogPrint ("Re-creating destination inbound tunnel...");
auto newTunnel = tunnels.CreateTunnel<InboundTunnel> (tunnel->GetTunnelConfig ()->Clone (), outboundTunnel);
newTunnel->SetTunnelPool (shared_from_this());
}
void TunnelPool::CreateOutboundTunnel ()
{
auto inboundTunnel = GetNextInboundTunnel ();
if (!inboundTunnel)
inboundTunnel = tunnels.GetNextInboundTunnel ();
if (inboundTunnel)
{
LogPrint ("Creating destination outbound tunnel...");
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > hops;
if (SelectPeers (hops, false))
{
auto tunnel = tunnels.CreateTunnel<OutboundTunnel> (
std::make_shared<TunnelConfig> (hops, inboundTunnel->GetTunnelConfig ()));
tunnel->SetTunnelPool (shared_from_this ());
}
else
LogPrint (eLogError, "Can't create outbound tunnel. No peers available");
}
else
LogPrint (eLogError, "Can't create outbound tunnel. No inbound tunnels found");
}
void TunnelPool::RecreateOutboundTunnel (std::shared_ptr<OutboundTunnel> tunnel)
{
auto inboundTunnel = GetNextInboundTunnel ();
if (!inboundTunnel)
inboundTunnel = tunnels.GetNextInboundTunnel ();
if (inboundTunnel)
{
LogPrint ("Re-creating destination outbound tunnel...");
auto newTunnel = tunnels.CreateTunnel<OutboundTunnel> (
tunnel->GetTunnelConfig ()->Clone (inboundTunnel->GetTunnelConfig ()));
newTunnel->SetTunnelPool (shared_from_this ());
}
else
LogPrint ("Can't re-create outbound tunnel. No inbound tunnels found");
}
void TunnelPool::RecreateInboundTunnel (std::shared_ptr<InboundTunnel> tunnel)
{
auto outboundTunnel = GetNextOutboundTunnel ();
if (!outboundTunnel)
outboundTunnel = tunnels.GetNextOutboundTunnel ();
LogPrint ("Re-creating destination inbound tunnel...");
auto newTunnel = tunnels.CreateTunnel<InboundTunnel> (tunnel->GetTunnelConfig ()->Clone (), outboundTunnel);
newTunnel->SetTunnelPool (shared_from_this());
}
void TunnelPool::CreateOutboundTunnel ()
{
auto inboundTunnel = GetNextInboundTunnel ();
if (!inboundTunnel)
inboundTunnel = tunnels.GetNextInboundTunnel ();
if (inboundTunnel)
{
LogPrint ("Creating destination outbound tunnel...");
std::vector<std::shared_ptr<const i2p::data::RouterInfo> > hops;
if (SelectPeers (hops, false))
{
auto tunnel = tunnels.CreateTunnel<OutboundTunnel> (
std::make_shared<TunnelConfig> (hops, inboundTunnel->GetTunnelConfig ()));
tunnel->SetTunnelPool (shared_from_this ());
}
else
LogPrint (eLogError, "Can't create outbound tunnel. No peers available");
}
else
LogPrint (eLogError, "Can't create outbound tunnel. No inbound tunnels found");
}
void TunnelPool::RecreateOutboundTunnel (std::shared_ptr<OutboundTunnel> tunnel)
{
auto inboundTunnel = GetNextInboundTunnel ();
if (!inboundTunnel)
inboundTunnel = tunnels.GetNextInboundTunnel ();
if (inboundTunnel)
{
LogPrint ("Re-creating destination outbound tunnel...");
auto newTunnel = tunnels.CreateTunnel<OutboundTunnel> (
tunnel->GetTunnelConfig ()->Clone (inboundTunnel->GetTunnelConfig ()));
newTunnel->SetTunnelPool (shared_from_this ());
}
else
LogPrint ("Can't re-create outbound tunnel. No inbound tunnels found");
}
void TunnelPool::CreatePairedInboundTunnel (std::shared_ptr<OutboundTunnel> outboundTunnel)
{
LogPrint (eLogInfo, "Creating paired inbound tunnel...");
auto tunnel = tunnels.CreateTunnel<InboundTunnel> (outboundTunnel->GetTunnelConfig ()->Invert (), outboundTunnel);
tunnel->SetTunnelPool (shared_from_this ());
}
void TunnelPool::CreatePairedInboundTunnel (std::shared_ptr<OutboundTunnel> outboundTunnel)
{
LogPrint (eLogInfo, "Creating paired inbound tunnel...");
auto tunnel = tunnels.CreateTunnel<InboundTunnel> (outboundTunnel->GetTunnelConfig ()->Invert (), outboundTunnel);
tunnel->SetTunnelPool (shared_from_this ());
}
}
}

View file

@ -19,71 +19,71 @@ namespace i2p
{
namespace tunnel
{
class Tunnel;
class InboundTunnel;
class OutboundTunnel;
class Tunnel;
class InboundTunnel;
class OutboundTunnel;
class TunnelPool: public std::enable_shared_from_this<TunnelPool> // per local destination
{
public:
class TunnelPool: public std::enable_shared_from_this<TunnelPool> // per local destination
{
public:
TunnelPool (i2p::garlic::GarlicDestination * localDestination, int numInboundHops, int numOutboundHops, int numInboundTunnels, int numOutboundTunnels);
~TunnelPool ();
i2p::garlic::GarlicDestination * GetLocalDestination () const { return m_LocalDestination; };
void SetLocalDestination (i2p::garlic::GarlicDestination * destination) { m_LocalDestination = destination; };
void SetExplicitPeers (std::shared_ptr<std::vector<i2p::data::IdentHash> > explicitPeers);
TunnelPool (i2p::garlic::GarlicDestination * localDestination, int numInboundHops, int numOutboundHops, int numInboundTunnels, int numOutboundTunnels);
~TunnelPool ();
i2p::garlic::GarlicDestination * GetLocalDestination () const { return m_LocalDestination; };
void SetLocalDestination (i2p::garlic::GarlicDestination * destination) { m_LocalDestination = destination; };
void SetExplicitPeers (std::shared_ptr<std::vector<i2p::data::IdentHash> > explicitPeers);
void CreateTunnels ();
void TunnelCreated (std::shared_ptr<InboundTunnel> createdTunnel);
void TunnelExpired (std::shared_ptr<InboundTunnel> expiredTunnel);
void TunnelCreated (std::shared_ptr<OutboundTunnel> createdTunnel);
void TunnelExpired (std::shared_ptr<OutboundTunnel> expiredTunnel);
void RecreateInboundTunnel (std::shared_ptr<InboundTunnel> tunnel);
void RecreateOutboundTunnel (std::shared_ptr<OutboundTunnel> tunnel);
std::vector<std::shared_ptr<InboundTunnel> > GetInboundTunnels (int num) const;
std::shared_ptr<OutboundTunnel> GetNextOutboundTunnel (std::shared_ptr<OutboundTunnel> excluded = nullptr) const;
std::shared_ptr<InboundTunnel> GetNextInboundTunnel (std::shared_ptr<InboundTunnel> excluded = nullptr) const;
std::shared_ptr<OutboundTunnel> GetNewOutboundTunnel (std::shared_ptr<OutboundTunnel> old) const;
void CreateTunnels ();
void TunnelCreated (std::shared_ptr<InboundTunnel> createdTunnel);
void TunnelExpired (std::shared_ptr<InboundTunnel> expiredTunnel);
void TunnelCreated (std::shared_ptr<OutboundTunnel> createdTunnel);
void TunnelExpired (std::shared_ptr<OutboundTunnel> expiredTunnel);
void RecreateInboundTunnel (std::shared_ptr<InboundTunnel> tunnel);
void RecreateOutboundTunnel (std::shared_ptr<OutboundTunnel> tunnel);
std::vector<std::shared_ptr<InboundTunnel> > GetInboundTunnels (int num) const;
std::shared_ptr<OutboundTunnel> GetNextOutboundTunnel (std::shared_ptr<OutboundTunnel> excluded = nullptr) const;
std::shared_ptr<InboundTunnel> GetNextInboundTunnel (std::shared_ptr<InboundTunnel> excluded = nullptr) const;
std::shared_ptr<OutboundTunnel> GetNewOutboundTunnel (std::shared_ptr<OutboundTunnel> old) const;
void TestTunnels ();
void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void ProcessDeliveryStatus (std::shared_ptr<I2NPMessage> msg);
void TestTunnels ();
void ProcessGarlicMessage (std::shared_ptr<I2NPMessage> msg);
void ProcessDeliveryStatus (std::shared_ptr<I2NPMessage> msg);
bool IsActive () const { return m_IsActive; };
void SetActive (bool isActive) { m_IsActive = isActive; };
void DetachTunnels ();
private:
bool IsActive () const { return m_IsActive; };
void SetActive (bool isActive) { m_IsActive = isActive; };
void DetachTunnels ();
private:
void CreateInboundTunnel ();
void CreateOutboundTunnel ();
void CreatePairedInboundTunnel (std::shared_ptr<OutboundTunnel> outboundTunnel);
template<class TTunnels>
typename TTunnels::value_type GetNextTunnel (TTunnels& tunnels, typename TTunnels::value_type excluded) const;
std::shared_ptr<const i2p::data::RouterInfo> SelectNextHop (std::shared_ptr<const i2p::data::RouterInfo> prevHop) const;
bool SelectPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound);
bool SelectExplicitPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound);
void CreateInboundTunnel ();
void CreateOutboundTunnel ();
void CreatePairedInboundTunnel (std::shared_ptr<OutboundTunnel> outboundTunnel);
template<class TTunnels>
typename TTunnels::value_type GetNextTunnel (TTunnels& tunnels, typename TTunnels::value_type excluded) const;
std::shared_ptr<const i2p::data::RouterInfo> SelectNextHop (std::shared_ptr<const i2p::data::RouterInfo> prevHop) const;
bool SelectPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound);
bool SelectExplicitPeers (std::vector<std::shared_ptr<const i2p::data::RouterInfo> >& hops, bool isInbound);
private:
private:
i2p::garlic::GarlicDestination * m_LocalDestination;
int m_NumInboundHops, m_NumOutboundHops, m_NumInboundTunnels, m_NumOutboundTunnels;
std::shared_ptr<std::vector<i2p::data::IdentHash> > m_ExplicitPeers;
mutable std::mutex m_InboundTunnelsMutex;
std::set<std::shared_ptr<InboundTunnel>, TunnelCreationTimeCmp> m_InboundTunnels; // recent tunnel appears first
mutable std::mutex m_OutboundTunnelsMutex;
std::set<std::shared_ptr<OutboundTunnel>, TunnelCreationTimeCmp> m_OutboundTunnels;
std::map<uint32_t, std::pair<std::shared_ptr<OutboundTunnel>, std::shared_ptr<InboundTunnel> > > m_Tests;
bool m_IsActive;
i2p::garlic::GarlicDestination * m_LocalDestination;
int m_NumInboundHops, m_NumOutboundHops, m_NumInboundTunnels, m_NumOutboundTunnels;
std::shared_ptr<std::vector<i2p::data::IdentHash> > m_ExplicitPeers;
mutable std::mutex m_InboundTunnelsMutex;
std::set<std::shared_ptr<InboundTunnel>, TunnelCreationTimeCmp> m_InboundTunnels; // recent tunnel appears first
mutable std::mutex m_OutboundTunnelsMutex;
std::set<std::shared_ptr<OutboundTunnel>, TunnelCreationTimeCmp> m_OutboundTunnels;
std::map<uint32_t, std::pair<std::shared_ptr<OutboundTunnel>, std::shared_ptr<InboundTunnel> > > m_Tests;
bool m_IsActive;
public:
public:
// for HTTP only
const decltype(m_OutboundTunnels)& GetOutboundTunnels () const { return m_OutboundTunnels; };
const decltype(m_InboundTunnels)& GetInboundTunnels () const { return m_InboundTunnels; };
// for HTTP only
const decltype(m_OutboundTunnels)& GetOutboundTunnels () const { return m_OutboundTunnels; };
const decltype(m_InboundTunnels)& GetInboundTunnels () const { return m_InboundTunnels; };
};
};
}
}

22
UPnP.h
View file

@ -21,22 +21,22 @@ namespace i2p
{
namespace transport
{
class UPnP
{
public:
class UPnP
{
public:
UPnP ();
~UPnP ();
UPnP ();
~UPnP ();
void Close ();
void Start ();
void Stop ();
void Discover ();
void TryPortMapping (int type, int port);
void CloseMapping (int type, int port);
private:
void Run ();
void Discover ();
void TryPortMapping (int type, int port);
void CloseMapping (int type, int port);
private:
void Run ();
std::thread * m_Thread;
struct UPNPUrls m_upnpUrls;
@ -54,7 +54,7 @@ namespace transport
#else
HINSTANCE m_Module;
#endif
};
};
}
}

622
aes.cpp
View file

@ -8,350 +8,350 @@ namespace crypto
{
#ifdef AESNI
#define KeyExpansion256(round0,round1) \
"pshufd $0xff, %%xmm2, %%xmm2 \n" \
"movaps %%xmm1, %%xmm4 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pxor %%xmm2, %%xmm1 \n" \
"movaps %%xmm1, "#round0"(%[sched]) \n" \
"aeskeygenassist $0, %%xmm1, %%xmm4 \n" \
"pshufd $0xaa, %%xmm4, %%xmm2 \n" \
"movaps %%xmm3, %%xmm4 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pxor %%xmm2, %%xmm3 \n" \
"movaps %%xmm3, "#round1"(%[sched]) \n"
#define KeyExpansion256(round0,round1) \
"pshufd $0xff, %%xmm2, %%xmm2 \n" \
"movaps %%xmm1, %%xmm4 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pxor %%xmm2, %%xmm1 \n" \
"movaps %%xmm1, "#round0"(%[sched]) \n" \
"aeskeygenassist $0, %%xmm1, %%xmm4 \n" \
"pshufd $0xaa, %%xmm4, %%xmm2 \n" \
"movaps %%xmm3, %%xmm4 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pxor %%xmm2, %%xmm3 \n" \
"movaps %%xmm3, "#round1"(%[sched]) \n"
void ECBCryptoAESNI::ExpandKey (const AESKey& key)
{
__asm__
(
"movups (%[key]), %%xmm1 \n"
"movups 16(%[key]), %%xmm3 \n"
"movaps %%xmm1, (%[sched]) \n"
"movaps %%xmm3, 16(%[sched]) \n"
"aeskeygenassist $1, %%xmm3, %%xmm2 \n"
KeyExpansion256(32,48)
"aeskeygenassist $2, %%xmm3, %%xmm2 \n"
KeyExpansion256(64,80)
"aeskeygenassist $4, %%xmm3, %%xmm2 \n"
KeyExpansion256(96,112)
"aeskeygenassist $8, %%xmm3, %%xmm2 \n"
KeyExpansion256(128,144)
"aeskeygenassist $16, %%xmm3, %%xmm2 \n"
KeyExpansion256(160,176)
"aeskeygenassist $32, %%xmm3, %%xmm2 \n"
KeyExpansion256(192,208)
"aeskeygenassist $64, %%xmm3, %%xmm2 \n"
// key expansion final
"pshufd $0xff, %%xmm2, %%xmm2 \n"
"movaps %%xmm1, %%xmm4 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pxor %%xmm2, %%xmm1 \n"
"movups %%xmm1, 224(%[sched]) \n"
: // output
: [key]"r"((const uint8_t *)key), [sched]"r"(GetKeySchedule ()) // input
: "%xmm1", "%xmm2", "%xmm3", "%xmm4", "memory" // clogged
);
}
void ECBCryptoAESNI::ExpandKey (const AESKey& key)
{
__asm__
(
"movups (%[key]), %%xmm1 \n"
"movups 16(%[key]), %%xmm3 \n"
"movaps %%xmm1, (%[sched]) \n"
"movaps %%xmm3, 16(%[sched]) \n"
"aeskeygenassist $1, %%xmm3, %%xmm2 \n"
KeyExpansion256(32,48)
"aeskeygenassist $2, %%xmm3, %%xmm2 \n"
KeyExpansion256(64,80)
"aeskeygenassist $4, %%xmm3, %%xmm2 \n"
KeyExpansion256(96,112)
"aeskeygenassist $8, %%xmm3, %%xmm2 \n"
KeyExpansion256(128,144)
"aeskeygenassist $16, %%xmm3, %%xmm2 \n"
KeyExpansion256(160,176)
"aeskeygenassist $32, %%xmm3, %%xmm2 \n"
KeyExpansion256(192,208)
"aeskeygenassist $64, %%xmm3, %%xmm2 \n"
// key expansion final
"pshufd $0xff, %%xmm2, %%xmm2 \n"
"movaps %%xmm1, %%xmm4 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pxor %%xmm2, %%xmm1 \n"
"movups %%xmm1, 224(%[sched]) \n"
: // output
: [key]"r"((const uint8_t *)key), [sched]"r"(GetKeySchedule ()) // input
: "%xmm1", "%xmm2", "%xmm3", "%xmm4", "memory" // clogged
);
}
#define EncryptAES256(sched) \
"pxor (%["#sched"]), %%xmm0 \n" \
"aesenc 16(%["#sched"]), %%xmm0 \n" \
"aesenc 32(%["#sched"]), %%xmm0 \n" \
"aesenc 48(%["#sched"]), %%xmm0 \n" \
"aesenc 64(%["#sched"]), %%xmm0 \n" \
"aesenc 80(%["#sched"]), %%xmm0 \n" \
"aesenc 96(%["#sched"]), %%xmm0 \n" \
"aesenc 112(%["#sched"]), %%xmm0 \n" \
"aesenc 128(%["#sched"]), %%xmm0 \n" \
"aesenc 144(%["#sched"]), %%xmm0 \n" \
"aesenc 160(%["#sched"]), %%xmm0 \n" \
"aesenc 176(%["#sched"]), %%xmm0 \n" \
"aesenc 192(%["#sched"]), %%xmm0 \n" \
"aesenc 208(%["#sched"]), %%xmm0 \n" \
"aesenclast 224(%["#sched"]), %%xmm0 \n"
void ECBEncryptionAESNI::Encrypt (const ChipherBlock * in, ChipherBlock * out)
{
__asm__
(
"movups (%[in]), %%xmm0 \n"
EncryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
);
}
#define EncryptAES256(sched) \
"pxor (%["#sched"]), %%xmm0 \n" \
"aesenc 16(%["#sched"]), %%xmm0 \n" \
"aesenc 32(%["#sched"]), %%xmm0 \n" \
"aesenc 48(%["#sched"]), %%xmm0 \n" \
"aesenc 64(%["#sched"]), %%xmm0 \n" \
"aesenc 80(%["#sched"]), %%xmm0 \n" \
"aesenc 96(%["#sched"]), %%xmm0 \n" \
"aesenc 112(%["#sched"]), %%xmm0 \n" \
"aesenc 128(%["#sched"]), %%xmm0 \n" \
"aesenc 144(%["#sched"]), %%xmm0 \n" \
"aesenc 160(%["#sched"]), %%xmm0 \n" \
"aesenc 176(%["#sched"]), %%xmm0 \n" \
"aesenc 192(%["#sched"]), %%xmm0 \n" \
"aesenc 208(%["#sched"]), %%xmm0 \n" \
"aesenclast 224(%["#sched"]), %%xmm0 \n"
void ECBEncryptionAESNI::Encrypt (const ChipherBlock * in, ChipherBlock * out)
{
__asm__
(
"movups (%[in]), %%xmm0 \n"
EncryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
);
}
#define DecryptAES256(sched) \
"pxor 224(%["#sched"]), %%xmm0 \n" \
"aesdec 208(%["#sched"]), %%xmm0 \n" \
"aesdec 192(%["#sched"]), %%xmm0 \n" \
"aesdec 176(%["#sched"]), %%xmm0 \n" \
"aesdec 160(%["#sched"]), %%xmm0 \n" \
"aesdec 144(%["#sched"]), %%xmm0 \n" \
"aesdec 128(%["#sched"]), %%xmm0 \n" \
"aesdec 112(%["#sched"]), %%xmm0 \n" \
"aesdec 96(%["#sched"]), %%xmm0 \n" \
"aesdec 80(%["#sched"]), %%xmm0 \n" \
"aesdec 64(%["#sched"]), %%xmm0 \n" \
"aesdec 48(%["#sched"]), %%xmm0 \n" \
"aesdec 32(%["#sched"]), %%xmm0 \n" \
"aesdec 16(%["#sched"]), %%xmm0 \n" \
"aesdeclast (%["#sched"]), %%xmm0 \n"
void ECBDecryptionAESNI::Decrypt (const ChipherBlock * in, ChipherBlock * out)
{
__asm__
(
"movups (%[in]), %%xmm0 \n"
DecryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
);
}
#define DecryptAES256(sched) \
"pxor 224(%["#sched"]), %%xmm0 \n" \
"aesdec 208(%["#sched"]), %%xmm0 \n" \
"aesdec 192(%["#sched"]), %%xmm0 \n" \
"aesdec 176(%["#sched"]), %%xmm0 \n" \
"aesdec 160(%["#sched"]), %%xmm0 \n" \
"aesdec 144(%["#sched"]), %%xmm0 \n" \
"aesdec 128(%["#sched"]), %%xmm0 \n" \
"aesdec 112(%["#sched"]), %%xmm0 \n" \
"aesdec 96(%["#sched"]), %%xmm0 \n" \
"aesdec 80(%["#sched"]), %%xmm0 \n" \
"aesdec 64(%["#sched"]), %%xmm0 \n" \
"aesdec 48(%["#sched"]), %%xmm0 \n" \
"aesdec 32(%["#sched"]), %%xmm0 \n" \
"aesdec 16(%["#sched"]), %%xmm0 \n" \
"aesdeclast (%["#sched"]), %%xmm0 \n"
void ECBDecryptionAESNI::Decrypt (const ChipherBlock * in, ChipherBlock * out)
{
__asm__
(
"movups (%[in]), %%xmm0 \n"
DecryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
);
}
#define CallAESIMC(offset) \
"movaps "#offset"(%[shed]), %%xmm0 \n" \
"aesimc %%xmm0, %%xmm0 \n" \
"movaps %%xmm0, "#offset"(%[shed]) \n"
#define CallAESIMC(offset) \
"movaps "#offset"(%[shed]), %%xmm0 \n" \
"aesimc %%xmm0, %%xmm0 \n" \
"movaps %%xmm0, "#offset"(%[shed]) \n"
void ECBDecryptionAESNI::SetKey (const AESKey& key)
{
ExpandKey (key); // expand encryption key first
// then invert it using aesimc
__asm__
(
CallAESIMC(16)
CallAESIMC(32)
CallAESIMC(48)
CallAESIMC(64)
CallAESIMC(80)
CallAESIMC(96)
CallAESIMC(112)
CallAESIMC(128)
CallAESIMC(144)
CallAESIMC(160)
CallAESIMC(176)
CallAESIMC(192)
CallAESIMC(208)
: : [shed]"r"(GetKeySchedule ()) : "%xmm0", "memory"
);
}
void ECBDecryptionAESNI::SetKey (const AESKey& key)
{
ExpandKey (key); // expand encryption key first
// then invert it using aesimc
__asm__
(
CallAESIMC(16)
CallAESIMC(32)
CallAESIMC(48)
CallAESIMC(64)
CallAESIMC(80)
CallAESIMC(96)
CallAESIMC(112)
CallAESIMC(128)
CallAESIMC(144)
CallAESIMC(160)
CallAESIMC(176)
CallAESIMC(192)
CallAESIMC(208)
: : [shed]"r"(GetKeySchedule ()) : "%xmm0", "memory"
);
}
#endif
#endif
void CBCEncryption::Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
{
void CBCEncryption::Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"1: \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched)
"movaps %%xmm0, %%xmm1 \n"
"movups %%xmm0, (%[out]) \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"dec %[num] \n"
"jnz 1b \n"
"movups %%xmm1, (%[iv]) \n"
:
: [iv]"r"(&m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
: "%xmm0", "%xmm1", "cc", "memory"
);
#else
for (int i = 0; i < numBlocks; i++)
{
m_LastBlock ^= in[i];
m_ECBEncryption.Encrypt (&m_LastBlock, &m_LastBlock);
out[i] = m_LastBlock;
}
#endif
}
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"1: \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched)
"movaps %%xmm0, %%xmm1 \n"
"movups %%xmm0, (%[out]) \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"dec %[num] \n"
"jnz 1b \n"
"movups %%xmm1, (%[iv]) \n"
:
: [iv]"r"(&m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
: "%xmm0", "%xmm1", "cc", "memory"
);
#else
for (int i = 0; i < numBlocks; i++)
{
m_LastBlock ^= in[i];
m_ECBEncryption.Encrypt (&m_LastBlock, &m_LastBlock);
out[i] = m_LastBlock;
}
#endif
}
void CBCEncryption::Encrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
// len/16
int numBlocks = len >> 4;
if (numBlocks > 0)
Encrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
}
void CBCEncryption::Encrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
// len/16
int numBlocks = len >> 4;
if (numBlocks > 0)
Encrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
}
void CBCEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
void CBCEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
"movups %%xmm0, (%[iv]) \n"
:
: [iv]"r"(&m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out)
: "%xmm0", "%xmm1", "memory"
);
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
"movups %%xmm0, (%[iv]) \n"
:
: [iv]"r"(&m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out)
: "%xmm0", "%xmm1", "memory"
);
#else
Encrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
Encrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
#endif
}
}
void CBCDecryption::Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
{
void CBCDecryption::Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"1: \n"
"movups (%[in]), %%xmm0 \n"
"movaps %%xmm0, %%xmm2 \n"
DecryptAES256(sched)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
"movaps %%xmm2, %%xmm1 \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"dec %[num] \n"
"jnz 1b \n"
"movups %%xmm1, (%[iv]) \n"
:
: [iv]"r"(&m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
);
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"1: \n"
"movups (%[in]), %%xmm0 \n"
"movaps %%xmm0, %%xmm2 \n"
DecryptAES256(sched)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
"movaps %%xmm2, %%xmm1 \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"dec %[num] \n"
"jnz 1b \n"
"movups %%xmm1, (%[iv]) \n"
:
: [iv]"r"(&m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
);
#else
for (int i = 0; i < numBlocks; i++)
{
ChipherBlock tmp = in[i];
m_ECBDecryption.Decrypt (in + i, out + i);
out[i] ^= m_IV;
m_IV = tmp;
}
for (int i = 0; i < numBlocks; i++)
{
ChipherBlock tmp = in[i];
m_ECBDecryption.Decrypt (in + i, out + i);
out[i] ^= m_IV;
m_IV = tmp;
}
#endif
}
}
void CBCDecryption::Decrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
int numBlocks = len >> 4;
if (numBlocks > 0)
Decrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
}
void CBCDecryption::Decrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
int numBlocks = len >> 4;
if (numBlocks > 0)
Decrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
}
void CBCDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
void CBCDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"movups (%[in]), %%xmm0 \n"
"movups %%xmm0, (%[iv]) \n"
DecryptAES256(sched)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
:
: [iv]"r"(&m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out)
: "%xmm0", "%xmm1", "memory"
);
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"movups (%[in]), %%xmm0 \n"
"movups %%xmm0, (%[iv]) \n"
DecryptAES256(sched)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
:
: [iv]"r"(&m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out)
: "%xmm0", "%xmm1", "memory"
);
#else
Decrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
Decrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
#endif
}
}
void TunnelEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
void TunnelEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
__asm__
(
// encrypt IV
"movups (%[in]), %%xmm0 \n"
EncryptAES256(sched_iv)
"movaps %%xmm0, %%xmm1 \n"
// double IV encryption
EncryptAES256(sched_iv)
"movups %%xmm0, (%[out]) \n"
// encrypt data, IV is xmm1
"1: \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched_l)
"movaps %%xmm0, %%xmm1 \n"
"movups %%xmm0, (%[out]) \n"
"dec %[num] \n"
"jnz 1b \n"
:
: [sched_iv]"r"(m_IVEncryption.GetKeySchedule ()), [sched_l]"r"(m_LayerEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
: "%xmm0", "%xmm1", "cc", "memory"
);
"movups (%[in]), %%xmm0 \n"
EncryptAES256(sched_iv)
"movaps %%xmm0, %%xmm1 \n"
// double IV encryption
EncryptAES256(sched_iv)
"movups %%xmm0, (%[out]) \n"
// encrypt data, IV is xmm1
"1: \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched_l)
"movaps %%xmm0, %%xmm1 \n"
"movups %%xmm0, (%[out]) \n"
"dec %[num] \n"
"jnz 1b \n"
:
: [sched_iv]"r"(m_IVEncryption.GetKeySchedule ()), [sched_l]"r"(m_LayerEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
: "%xmm0", "%xmm1", "cc", "memory"
);
#else
m_IVEncryption.Encrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
m_LayerEncryption.SetIV (out);
m_LayerEncryption.Encrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVEncryption.Encrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
m_IVEncryption.Encrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
m_LayerEncryption.SetIV (out);
m_LayerEncryption.Encrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVEncryption.Encrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
#endif
}
}
void TunnelDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
void TunnelDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
__asm__
(
// decrypt IV
"movups (%[in]), %%xmm0 \n"
DecryptAES256(sched_iv)
"movaps %%xmm0, %%xmm1 \n"
// double IV encryption
DecryptAES256(sched_iv)
"movups %%xmm0, (%[out]) \n"
// decrypt data, IV is xmm1
"1: \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"movups (%[in]), %%xmm0 \n"
"movaps %%xmm0, %%xmm2 \n"
DecryptAES256(sched_l)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
"movaps %%xmm2, %%xmm1 \n"
"dec %[num] \n"
"jnz 1b \n"
:
: [sched_iv]"r"(m_IVDecryption.GetKeySchedule ()), [sched_l]"r"(m_LayerDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
);
"movups (%[in]), %%xmm0 \n"
DecryptAES256(sched_iv)
"movaps %%xmm0, %%xmm1 \n"
// double IV encryption
DecryptAES256(sched_iv)
"movups %%xmm0, (%[out]) \n"
// decrypt data, IV is xmm1
"1: \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"movups (%[in]), %%xmm0 \n"
"movaps %%xmm0, %%xmm2 \n"
DecryptAES256(sched_l)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
"movaps %%xmm2, %%xmm1 \n"
"dec %[num] \n"
"jnz 1b \n"
:
: [sched_iv]"r"(m_IVDecryption.GetKeySchedule ()), [sched_l]"r"(m_LayerDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
);
#else
m_IVDecryption.Decrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
m_LayerDecryption.SetIV (out);
m_LayerDecryption.Decrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVDecryption.Decrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
m_IVDecryption.Decrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
m_LayerDecryption.SetIV (out);
m_LayerDecryption.Decrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVDecryption.Decrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
#endif
}
}
}
}

318
aes.h
View file

@ -9,215 +9,221 @@
namespace i2p
{
namespace crypto
{
struct ChipherBlock
{
uint8_t buf[16];
{
struct ChipherBlock
{
uint8_t buf[16];
void operator^=(const ChipherBlock& other) // XOR
{
void operator^=(const ChipherBlock& other) // XOR
{
#if defined(__x86_64__) // for Intel x64
__asm__
(
"movups (%[buf]), %%xmm0 \n"
"movups (%[other]), %%xmm1 \n"
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[buf]) \n"
:
: [buf]"r"(buf), [other]"r"(other.buf)
: "%xmm0", "%xmm1", "memory"
);
__asm__
(
"movups (%[buf]), %%xmm0 \n"
"movups (%[other]), %%xmm1 \n"
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[buf]) \n"
:
: [buf]"r"(buf), [other]"r"(other.buf)
: "%xmm0", "%xmm1", "memory"
);
#else
// TODO: implement it better
for (int i = 0; i < 16; i++)
buf[i] ^= other.buf[i];
// TODO: implement it better
for (int i = 0; i < 16; i++)
buf[i] ^= other.buf[i];
#endif
}
};
}
};
typedef i2p::data::Tag<32> AESKey;
template<size_t sz>
class AESAlignedBuffer // 16 bytes alignment
{
public:
AESAlignedBuffer ()
{
m_Buf = m_UnalignedBuffer;
uint8_t rem = ((size_t)m_Buf) & 0x0f;
if (rem)
m_Buf += (16 - rem);
}
operator uint8_t * () { return m_Buf; };
operator const uint8_t * () const { return m_Buf; };
typedef i2p::data::Tag<32> AESKey;
template<size_t sz>
class AESAlignedBuffer // 16 bytes alignment
{
public:
AESAlignedBuffer ()
{
m_Buf = m_UnalignedBuffer;
uint8_t rem = ((size_t)m_Buf) & 0x0f;
if (rem)
m_Buf += (16 - rem);
}
operator uint8_t * () { return m_Buf; };
operator const uint8_t * () const { return m_Buf; };
private:
private:
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment
uint8_t * m_Buf;
};
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment
uint8_t * m_Buf;
};
#ifdef AESNI
class ECBCryptoAESNI
{
public:
class ECBCryptoAESNI
{
public:
uint8_t * GetKeySchedule () { return m_KeySchedule; };
uint8_t * GetKeySchedule () { return m_KeySchedule; };
protected:
protected:
void ExpandKey (const AESKey& key);
private:
void ExpandKey (const AESKey& key);
private:
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes
};
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes
};
class ECBEncryptionAESNI: public ECBCryptoAESNI
{
public:
void SetKey (const AESKey& key) { ExpandKey (key); };
void Encrypt (const ChipherBlock * in, ChipherBlock * out);
};
class ECBEncryptionAESNI: public ECBCryptoAESNI
{
public:
void SetKey (const AESKey& key) { ExpandKey (key); };
void Encrypt (const ChipherBlock * in, ChipherBlock * out);
};
class ECBDecryptionAESNI: public ECBCryptoAESNI
{
public:
void SetKey (const AESKey& key);
void Decrypt (const ChipherBlock * in, ChipherBlock * out);
};
class ECBDecryptionAESNI: public ECBCryptoAESNI
{
public:
void SetKey (const AESKey& key);
void Decrypt (const ChipherBlock * in, ChipherBlock * out);
};
typedef ECBEncryptionAESNI ECBEncryption;
typedef ECBDecryptionAESNI ECBDecryption;
typedef ECBEncryptionAESNI ECBEncryption;
typedef ECBDecryptionAESNI ECBDecryption;
#else // use crypto++
class ECBEncryption
{
public:
void SetKey (const AESKey& key)
{
m_Encryption.SetKey (key, 32);
}
void Encrypt (const ChipherBlock * in, ChipherBlock * out)
{
m_Encryption.ProcessData (out->buf, in->buf, 16);
}
class ECBEncryption
{
public:
void SetKey (const AESKey& key)
{
m_Encryption.SetKey (key, 32);
}
void Encrypt (const ChipherBlock * in, ChipherBlock * out)
{
m_Encryption.ProcessData (out->buf, in->buf, 16);
}
private:
private:
CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption m_Encryption;
};
CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption m_Encryption;
};
class ECBDecryption
{
public:
void SetKey (const AESKey& key)
{
m_Decryption.SetKey (key, 32);
}
void Decrypt (const ChipherBlock * in, ChipherBlock * out)
{
m_Decryption.ProcessData (out->buf, in->buf, 16);
}
class ECBDecryption
{
public:
void SetKey (const AESKey& key)
{
m_Decryption.SetKey (key, 32);
}
void Decrypt (const ChipherBlock * in, ChipherBlock * out)
{
m_Decryption.ProcessData (out->buf, in->buf, 16);
}
private:
private:
CryptoPP::ECB_Mode<CryptoPP::AES>::Decryption m_Decryption;
};
CryptoPP::ECB_Mode<CryptoPP::AES>::Decryption m_Decryption;
};
#endif
#endif
class CBCEncryption
{
public:
CBCEncryption () { memset (m_LastBlock.buf, 0, 16); };
class CBCEncryption
{
public:
CBCEncryption () { memset (m_LastBlock.buf, 0, 16); };
CBCEncryption(const AESKey& key, const uint8_t* iv)
: CBCEncryption()
{
SetKey(key);
SetIV(iv);
};
void SetKey (const AESKey& key) { m_ECBEncryption.SetKey (key); }; // 32 bytes
void SetIV (const uint8_t * iv) { memcpy (m_LastBlock.buf, iv, 16); }; // 16 bytes
void SetKey (const AESKey& key) { m_ECBEncryption.SetKey (key); }; // 32 bytes
void SetIV (const uint8_t * iv) { memcpy (m_LastBlock.buf, iv, 16); }; // 16 bytes
void Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
void Encrypt (const uint8_t * in, std::size_t len, uint8_t * out);
void Encrypt (const uint8_t * in, uint8_t * out); // one block
void Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
void Encrypt (const uint8_t * in, std::size_t len, uint8_t * out);
void Encrypt (const uint8_t * in, uint8_t * out); // one block
private:
private:
ChipherBlock m_LastBlock;
ECBEncryption m_ECBEncryption;
};
ChipherBlock m_LastBlock;
ECBEncryption m_ECBEncryption;
};
class CBCDecryption
{
public:
CBCDecryption () { memset (m_IV.buf, 0, 16); };
class CBCDecryption
{
public:
CBCDecryption () { memset (m_IV.buf, 0, 16); };
void SetKey (const AESKey& key) { m_ECBDecryption.SetKey (key); }; // 32 bytes
void SetIV (const uint8_t * iv) { memcpy (m_IV.buf, iv, 16); }; // 16 bytes
void SetKey (const AESKey& key) { m_ECBDecryption.SetKey (key); }; // 32 bytes
void SetIV (const uint8_t * iv) { memcpy (m_IV.buf, iv, 16); }; // 16 bytes
void Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
void Decrypt (const uint8_t * in, std::size_t len, uint8_t * out);
void Decrypt (const uint8_t * in, uint8_t * out); // one block
void Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
void Decrypt (const uint8_t * in, std::size_t len, uint8_t * out);
void Decrypt (const uint8_t * in, uint8_t * out); // one block
private:
private:
ChipherBlock m_IV;
ECBDecryption m_ECBDecryption;
};
ChipherBlock m_IV;
ECBDecryption m_ECBDecryption;
};
class TunnelEncryption // with double IV encryption
{
public:
class TunnelEncryption // with double IV encryption
{
public:
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerEncryption.SetKey (layerKey);
m_IVEncryption.SetKey (ivKey);
}
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerEncryption.SetKey (layerKey);
m_IVEncryption.SetKey (ivKey);
}
void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
private:
private:
ECBEncryption m_IVEncryption;
ECBEncryption m_IVEncryption;
#ifdef AESNI
ECBEncryption m_LayerEncryption;
ECBEncryption m_LayerEncryption;
#else
CBCEncryption m_LayerEncryption;
CBCEncryption m_LayerEncryption;
#endif
};
};
class TunnelDecryption // with double IV encryption
{
public:
class TunnelDecryption // with double IV encryption
{
public:
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerDecryption.SetKey (layerKey);
m_IVDecryption.SetKey (ivKey);
}
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerDecryption.SetKey (layerKey);
m_IVDecryption.SetKey (ivKey);
}
void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
private:
private:
ECBDecryption m_IVDecryption;
ECBDecryption m_IVDecryption;
#ifdef AESNI
ECBDecryption m_LayerDecryption;
ECBDecryption m_LayerDecryption;
#else
CBCDecryption m_LayerDecryption;
CBCDecryption m_LayerDecryption;
#endif
};
};
}
}

168
api.cpp
View file

@ -14,99 +14,99 @@ namespace i2p
{
namespace api
{
void InitI2P (int argc, char* argv[], const char * appName)
{
i2p::util::filesystem::SetAppName (appName);
i2p::util::config::OptionParser(argc, argv);
i2p::context.Init ();
}
void InitI2P (int argc, char* argv[], const char * appName)
{
i2p::util::filesystem::SetAppName (appName);
i2p::util::config::OptionParser(argc, argv);
i2p::context.Init ();
}
void StartI2P (std::ostream * logStream)
{
if (logStream)
StartLog (logStream);
else
StartLog (i2p::util::filesystem::GetAppName () + ".log");
i2p::data::netdb.Start();
LogPrint("NetDB started");
i2p::transport::transports.Start();
LogPrint("Transports started");
i2p::tunnel::tunnels.Start();
LogPrint("Tunnels started");
}
void StartI2P (std::ostream * logStream)
{
if (logStream)
StartLog (logStream);
else
StartLog (i2p::util::filesystem::GetAppName () + ".log");
i2p::data::netdb.Start();
LogPrint("NetDB started");
i2p::transport::transports.Start();
LogPrint("Transports started");
i2p::tunnel::tunnels.Start();
LogPrint("Tunnels started");
}
void StopI2P ()
{
LogPrint("Shutdown started.");
i2p::tunnel::tunnels.Stop();
LogPrint("Tunnels stopped");
i2p::transport::transports.Stop();
LogPrint("Transports stopped");
i2p::data::netdb.Stop();
LogPrint("NetDB stopped");
StopLog ();
}
void StopI2P ()
{
LogPrint("Shutdown started.");
i2p::tunnel::tunnels.Stop();
LogPrint("Tunnels stopped");
i2p::transport::transports.Stop();
LogPrint("Transports stopped");
i2p::data::netdb.Stop();
LogPrint("NetDB stopped");
StopLog ();
}
i2p::client::ClientDestination * CreateLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic,
const std::map<std::string, std::string> * params)
{
auto localDestination = new i2p::client::ClientDestination (keys, isPublic, params);
localDestination->Start ();
return localDestination;
}
i2p::client::ClientDestination * CreateLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic,
const std::map<std::string, std::string> * params)
{
auto localDestination = new i2p::client::ClientDestination (keys, isPublic, params);
localDestination->Start ();
return localDestination;
}
i2p::client::ClientDestination * CreateLocalDestination (bool isPublic, i2p::data::SigningKeyType sigType,
const std::map<std::string, std::string> * params)
{
i2p::data::PrivateKeys keys = i2p::data::PrivateKeys::CreateRandomKeys (sigType);
auto localDestination = new i2p::client::ClientDestination (keys, isPublic, params);
localDestination->Start ();
return localDestination;
}
i2p::client::ClientDestination * CreateLocalDestination (bool isPublic, i2p::data::SigningKeyType sigType,
const std::map<std::string, std::string> * params)
{
i2p::data::PrivateKeys keys = i2p::data::PrivateKeys::CreateRandomKeys (sigType);
auto localDestination = new i2p::client::ClientDestination (keys, isPublic, params);
localDestination->Start ();
return localDestination;
}
void DestroyLocalDestination (i2p::client::ClientDestination * dest)
{
if (dest)
{
dest->Stop ();
delete dest;
}
}
void DestroyLocalDestination (i2p::client::ClientDestination * dest)
{
if (dest)
{
dest->Stop ();
delete dest;
}
}
void RequestLeaseSet (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote)
{
if (dest)
dest->RequestDestination (remote);
}
void RequestLeaseSet (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote)
{
if (dest)
dest->RequestDestination (remote);
}
std::shared_ptr<i2p::stream::Stream> CreateStream (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote)
{
if (!dest) return nullptr;
auto leaseSet = dest->FindLeaseSet (remote);
if (leaseSet)
{
auto stream = dest->CreateStream (leaseSet);
stream->Send (nullptr, 0); // connect
return stream;
}
else
{
RequestLeaseSet (dest, remote);
return nullptr;
}
}
std::shared_ptr<i2p::stream::Stream> CreateStream (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote)
{
if (!dest) return nullptr;
auto leaseSet = dest->FindLeaseSet (remote);
if (leaseSet)
{
auto stream = dest->CreateStream (leaseSet);
stream->Send (nullptr, 0); // connect
return stream;
}
else
{
RequestLeaseSet (dest, remote);
return nullptr;
}
}
void AcceptStream (i2p::client::ClientDestination * dest, const i2p::stream::StreamingDestination::Acceptor& acceptor)
{
if (dest)
dest->AcceptStreams (acceptor);
}
void AcceptStream (i2p::client::ClientDestination * dest, const i2p::stream::StreamingDestination::Acceptor& acceptor)
{
if (dest)
dest->AcceptStreams (acceptor);
}
void DestroyStream (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
stream->Close ();
}
void DestroyStream (std::shared_ptr<i2p::stream::Stream> stream)
{
if (stream)
stream->Close ();
}
}
}

32
api.h
View file

@ -11,24 +11,24 @@ namespace i2p
{
namespace api
{
// initialization start and stop
void InitI2P (int argc, char* argv[], const char * appName);
void StartI2P (std::ostream * logStream = nullptr);
// write system log to logStream, if not specified to <appName>.log in application's folder
void StopI2P ();
// initialization start and stop
void InitI2P (int argc, char* argv[], const char * appName);
void StartI2P (std::ostream * logStream = nullptr);
// write system log to logStream, if not specified to <appName>.log in application's folder
void StopI2P ();
// destinations
i2p::client::ClientDestination * CreateLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic = true,
const std::map<std::string, std::string> * params = nullptr);
i2p::client::ClientDestination * CreateLocalDestination (bool isPublic = false, i2p::data::SigningKeyType sigType = i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256,
const std::map<std::string, std::string> * params = nullptr); // transient destinations usually not published
void DestroyLocalDestination (i2p::client::ClientDestination * dest);
// destinations
i2p::client::ClientDestination * CreateLocalDestination (const i2p::data::PrivateKeys& keys, bool isPublic = true,
const std::map<std::string, std::string> * params = nullptr);
i2p::client::ClientDestination * CreateLocalDestination (bool isPublic = false, i2p::data::SigningKeyType sigType = i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256,
const std::map<std::string, std::string> * params = nullptr); // transient destinations usually not published
void DestroyLocalDestination (i2p::client::ClientDestination * dest);
// streams
void RequestLeaseSet (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote);
std::shared_ptr<i2p::stream::Stream> CreateStream (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote);
void AcceptStream (i2p::client::ClientDestination * dest, const i2p::stream::StreamingDestination::Acceptor& acceptor);
void DestroyStream (std::shared_ptr<i2p::stream::Stream> stream);
// streams
void RequestLeaseSet (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote);
std::shared_ptr<i2p::stream::Stream> CreateStream (i2p::client::ClientDestination * dest, const i2p::data::IdentHash& remote);
void AcceptStream (i2p::client::ClientDestination * dest, const i2p::stream::StreamingDestination::Acceptor& acceptor);
void DestroyStream (std::shared_ptr<i2p::stream::Stream> stream);
}
}

View file

@ -6,264 +6,264 @@ namespace i2p
namespace data
{
static void iT64Build(void);
static void iT64Build(void);
/*
*
* BASE64 Substitution Table
* -------------------------
*
* Direct Substitution Table
*/
/*
*
* BASE64 Substitution Table
* -------------------------
*
* Direct Substitution Table
*/
static char T64[64] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '-', '~'
};
static char T64[64] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '-', '~'
};
const char * GetBase64SubstitutionTable ()
{
return T64;
}
/*
* Reverse Substitution Table (built in run time)
*/
const char * GetBase64SubstitutionTable ()
{
return T64;
}
/*
* Reverse Substitution Table (built in run time)
*/
static char iT64[256];
static int isFirstTime = 1;
static char iT64[256];
static int isFirstTime = 1;
/*
* Padding
*/
/*
* Padding
*/
static char P64 = '=';
static char P64 = '=';
/*
*
* ByteStreamToBase64
* ------------------
*
* Converts binary encoded data to BASE64 format.
*
*/
/*
*
* ByteStreamToBase64
* ------------------
*
* Converts binary encoded data to BASE64 format.
*
*/
size_t /* Number of bytes in the encoded buffer */
ByteStreamToBase64 (
const uint8_t * InBuffer, /* Input buffer, binary data */
size_t InCount, /* Number of bytes in the input buffer */
char * OutBuffer, /* output buffer */
size_t len /* length of output buffer */
)
size_t /* Number of bytes in the encoded buffer */
ByteStreamToBase64 (
const uint8_t * InBuffer, /* Input buffer, binary data */
size_t InCount, /* Number of bytes in the input buffer */
char * OutBuffer, /* output buffer */
size_t len /* length of output buffer */
)
{
unsigned char * ps;
unsigned char * pd;
unsigned char acc_1;
unsigned char acc_2;
int i;
int n;
int m;
size_t outCount;
{
unsigned char * ps;
unsigned char * pd;
unsigned char acc_1;
unsigned char acc_2;
int i;
int n;
int m;
size_t outCount;
ps = (unsigned char *)InBuffer;
n = InCount/3;
m = InCount%3;
if (!m)
outCount = 4*n;
else
outCount = 4*(n+1);
if (outCount > len) return 0;
pd = (unsigned char *)OutBuffer;
for ( i = 0; i<n; i++ ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x30;
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
acc_1 = *ps++;
acc_2 |= acc_1 >> 4; /* base64 digit #2 */
*pd++ = T64[acc_2];
acc_1 &= 0x0f;
acc_1 <<=2;
acc_2 = *ps++;
acc_1 |= acc_2>>6; /* base64 digit #3 */
*pd++ = T64[acc_1];
acc_2 &= 0x3f; /* base64 digit #4 */
*pd++ = T64[acc_2];
}
if ( m == 1 ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x3f; /* base64 digit #2 */
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
*pd++ = T64[acc_2];
*pd++ = P64;
*pd++ = P64;
ps = (unsigned char *)InBuffer;
n = InCount/3;
m = InCount%3;
if (!m)
outCount = 4*n;
else
outCount = 4*(n+1);
if (outCount > len) return 0;
pd = (unsigned char *)OutBuffer;
for ( i = 0; i<n; i++ ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x30;
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
acc_1 = *ps++;
acc_2 |= acc_1 >> 4; /* base64 digit #2 */
*pd++ = T64[acc_2];
acc_1 &= 0x0f;
acc_1 <<=2;
acc_2 = *ps++;
acc_1 |= acc_2>>6; /* base64 digit #3 */
*pd++ = T64[acc_1];
acc_2 &= 0x3f; /* base64 digit #4 */
*pd++ = T64[acc_2];
}
if ( m == 1 ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x3f; /* base64 digit #2 */
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
*pd++ = T64[acc_2];
*pd++ = P64;
*pd++ = P64;
}
else if ( m == 2 ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x3f;
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
acc_1 = *ps++;
acc_2 |= acc_1 >> 4; /* base64 digit #2 */
*pd++ = T64[acc_2];
acc_1 &= 0x0f;
acc_1 <<=2; /* base64 digit #3 */
*pd++ = T64[acc_1];
*pd++ = P64;
}
return outCount;
}
}
else if ( m == 2 ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x3f;
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
acc_1 = *ps++;
acc_2 |= acc_1 >> 4; /* base64 digit #2 */
*pd++ = T64[acc_2];
acc_1 &= 0x0f;
acc_1 <<=2; /* base64 digit #3 */
*pd++ = T64[acc_1];
*pd++ = P64;
}
return outCount;
}
/*
*
* Base64ToByteStream
* ------------------
*
* Converts BASE64 encoded data to binary format. If input buffer is
* not properly padded, buffer of negative length is returned
*
*/
/*
*
* Base64ToByteStream
* ------------------
*
* Converts BASE64 encoded data to binary format. If input buffer is
* not properly padded, buffer of negative length is returned
*
*/
size_t /* Number of output bytes */
Base64ToByteStream (
const char * InBuffer, /* BASE64 encoded buffer */
size_t InCount, /* Number of input bytes */
uint8_t * OutBuffer, /* output buffer length */
size_t len /* length of output buffer */
)
{
unsigned char * ps;
unsigned char * pd;
unsigned char acc_1;
unsigned char acc_2;
int i;
int n;
int m;
size_t outCount;
size_t /* Number of output bytes */
Base64ToByteStream (
const char * InBuffer, /* BASE64 encoded buffer */
size_t InCount, /* Number of input bytes */
uint8_t * OutBuffer, /* output buffer length */
size_t len /* length of output buffer */
)
{
unsigned char * ps;
unsigned char * pd;
unsigned char acc_1;
unsigned char acc_2;
int i;
int n;
int m;
size_t outCount;
if (isFirstTime) iT64Build();
n = InCount/4;
m = InCount%4;
if (!m)
outCount = 3*n;
else {
outCount = 0;
return 0;
}
ps = (unsigned char *)(InBuffer + InCount - 1);
while ( *ps-- == P64 ) outCount--;
ps = (unsigned char *)InBuffer;
if (outCount > len) return -1;
pd = OutBuffer;
auto endOfOutBuffer = OutBuffer + outCount;
for ( i = 0; i < n; i++ ){
acc_1 = iT64[*ps++];
acc_2 = iT64[*ps++];
acc_1 <<= 2;
acc_1 |= acc_2>>4;
*pd++ = acc_1;
if (pd >= endOfOutBuffer) break;
if (isFirstTime) iT64Build();
n = InCount/4;
m = InCount%4;
if (!m)
outCount = 3*n;
else {
outCount = 0;
return 0;
}
ps = (unsigned char *)(InBuffer + InCount - 1);
while ( *ps-- == P64 ) outCount--;
ps = (unsigned char *)InBuffer;
if (outCount > len) return -1;
pd = OutBuffer;
auto endOfOutBuffer = OutBuffer + outCount;
for ( i = 0; i < n; i++ ){
acc_1 = iT64[*ps++];
acc_2 = iT64[*ps++];
acc_1 <<= 2;
acc_1 |= acc_2>>4;
*pd++ = acc_1;
if (pd >= endOfOutBuffer) break;
acc_2 <<= 4;
acc_1 = iT64[*ps++];
acc_2 |= acc_1 >> 2;
*pd++ = acc_2;
if (pd >= endOfOutBuffer) break;
acc_2 <<= 4;
acc_1 = iT64[*ps++];
acc_2 |= acc_1 >> 2;
*pd++ = acc_2;
if (pd >= endOfOutBuffer) break;
acc_2 = iT64[*ps++];
acc_2 |= acc_1 << 6;
*pd++ = acc_2;
}
acc_2 = iT64[*ps++];
acc_2 |= acc_1 << 6;
*pd++ = acc_2;
}
return outCount;
}
return outCount;
}
/*
*
* iT64
* ----
* Reverse table builder. P64 character is replaced with 0
*
*
*/
/*
*
* iT64
* ----
* Reverse table builder. P64 character is replaced with 0
*
*
*/
static void iT64Build()
{
int i;
isFirstTime = 0;
for ( i=0; i<256; i++ ) iT64[i] = -1;
for ( i=0; i<64; i++ ) iT64[(int)T64[i]] = i;
iT64[(int)P64] = 0;
}
static void iT64Build()
{
int i;
isFirstTime = 0;
for ( i=0; i<256; i++ ) iT64[i] = -1;
for ( i=0; i<64; i++ ) iT64[(int)T64[i]] = i;
iT64[(int)P64] = 0;
}
size_t Base32ToByteStream (const char * inBuf, size_t len, uint8_t * outBuf, size_t outLen)
{
int tmp = 0, bits = 0;
size_t ret = 0;
for (size_t i = 0; i < len; i++)
{
char ch = inBuf[i];
if (ch >= '2' && ch <= '7') // digit
ch = (ch - '2') + 26; // 26 means a-z
else if (ch >= 'a' && ch <= 'z')
ch = ch - 'a'; // a = 0
else
return 0; // unexpected character
tmp |= ch;
bits += 5;
if (bits >= 8)
{
if (ret >= outLen) return ret;
outBuf[ret] = tmp >> (bits - 8);
bits -= 8;
ret++;
}
tmp <<= 5;
}
return ret;
}
size_t Base32ToByteStream (const char * inBuf, size_t len, uint8_t * outBuf, size_t outLen)
{
int tmp = 0, bits = 0;
size_t ret = 0;
for (size_t i = 0; i < len; i++)
{
char ch = inBuf[i];
if (ch >= '2' && ch <= '7') // digit
ch = (ch - '2') + 26; // 26 means a-z
else if (ch >= 'a' && ch <= 'z')
ch = ch - 'a'; // a = 0
else
return 0; // unexpected character
tmp |= ch;
bits += 5;
if (bits >= 8)
{
if (ret >= outLen) return ret;
outBuf[ret] = tmp >> (bits - 8);
bits -= 8;
ret++;
}
tmp <<= 5;
}
return ret;
}
size_t ByteStreamToBase32 (const uint8_t * inBuf, size_t len, char * outBuf, size_t outLen)
{
size_t ret = 0, pos = 1;
int bits = 8, tmp = inBuf[0];
while (ret < outLen && (bits > 0 || pos < len))
{
if (bits < 5)
{
if (pos < len)
{
tmp <<= 8;
tmp |= inBuf[pos] & 0xFF;
pos++;
bits += 8;
}
else // last byte
{
tmp <<= (5 - bits);
bits = 5;
}
}
bits -= 5;
int ind = (tmp >> bits) & 0x1F;
outBuf[ret] = (ind < 26) ? (ind + 'a') : ((ind - 26) + '2');
ret++;
}
return ret;
}
size_t ByteStreamToBase32 (const uint8_t * inBuf, size_t len, char * outBuf, size_t outLen)
{
size_t ret = 0, pos = 1;
int bits = 8, tmp = inBuf[0];
while (ret < outLen && (bits > 0 || pos < len))
{
if (bits < 5)
{
if (pos < len)
{
tmp <<= 8;
tmp |= inBuf[pos] & 0xFF;
pos++;
bits += 8;
}
else // last byte
{
tmp <<= (5 - bits);
bits = 5;
}
}
bits -= 5;
int ind = (tmp >> bits) & 0x1F;
outBuf[ret] = (ind < 26) ? (ind + 'a') : ((ind - 26) + '2');
ret++;
}
return ret;
}
}
}

View file

@ -9,12 +9,12 @@ namespace i2p
namespace data
{
size_t ByteStreamToBase64 (const uint8_t * InBuffer, size_t InCount, char * OutBuffer, size_t len);
size_t Base64ToByteStream (const char * InBuffer, size_t InCount, uint8_t * OutBuffer, size_t len );
const char * GetBase64SubstitutionTable ();
size_t Base32ToByteStream (const char * inBuf, size_t len, uint8_t * outBuf, size_t outLen);
size_t ByteStreamToBase32 (const uint8_t * InBuf, size_t len, char * outBuf, size_t outLen);
size_t ByteStreamToBase64 (const uint8_t * InBuffer, size_t InCount, char * OutBuffer, size_t len);
size_t Base64ToByteStream (const char * InBuffer, size_t InCount, uint8_t * OutBuffer, size_t len );
const char * GetBase64SubstitutionTable ();
size_t Base32ToByteStream (const char * inBuf, size_t len, uint8_t * outBuf, size_t outLen);
size_t ByteStreamToBase32 (const uint8_t * InBuf, size_t len, char * outBuf, size_t outLen);
}
}

View file

@ -23,3 +23,6 @@ DAEMON_SRC = $(COMMON_SRC) \
LIB_SRC := $(COMMON_SRC) \
api.cpp
TESTS_SRC := $(COMMON_SRC) \
tests/Utility.cpp tests/Identity.cpp

85
hmac.h
View file

@ -11,51 +11,50 @@ namespace i2p
{
namespace crypto
{
const uint64_t IPAD = 0x3636363636363636;
const uint64_t OPAD = 0x5C5C5C5C5C5C5C5C;
const uint64_t IPAD = 0x3636363636363636;
const uint64_t OPAD = 0x5C5C5C5C5C5C5C5C;
typedef i2p::data::Tag<32> MACKey;
inline void HMACMD5Digest (uint8_t * msg, size_t len, const MACKey& key, uint8_t * digest)
// key is 32 bytes
// digest is 16 bytes
// block size is 64 bytes
{
uint64_t buf[256];
// ikeypad
buf[0] = key.GetLL ()[0] ^ IPAD;
buf[1] = key.GetLL ()[1] ^ IPAD;
buf[2] = key.GetLL ()[2] ^ IPAD;
buf[3] = key.GetLL ()[3] ^ IPAD;
buf[4] = IPAD;
buf[5] = IPAD;
buf[6] = IPAD;
buf[7] = IPAD;
// concatenate with msg
memcpy (buf + 8, msg, len);
// calculate first hash
uint8_t hash[16]; // MD5
CryptoPP::Weak1::MD5().CalculateDigest (hash, (uint8_t *)buf, len + 64);
// okeypad
buf[0] = key.GetLL ()[0] ^ OPAD;
buf[1] = key.GetLL ()[1] ^ OPAD;
buf[2] = key.GetLL ()[2] ^ OPAD;
buf[3] = key.GetLL ()[3] ^ OPAD;
buf[4] = OPAD;
buf[5] = OPAD;
buf[6] = OPAD;
buf[7] = OPAD;
// copy first hash after okeypad
memcpy (buf + 8, hash, 16);
// fill next 16 bytes with zeros (first hash size assumed 32 bytes in I2P)
memset (buf + 10, 0, 16);
// calculate digest
CryptoPP::Weak1::MD5().CalculateDigest (digest, (uint8_t *)buf, 96);
}
typedef i2p::data::Tag<32> MACKey;
inline void HMACMD5Digest (uint8_t * msg, size_t len, const MACKey& key, uint8_t * digest)
// key is 32 bytes
// digest is 16 bytes
// block size is 64 bytes
{
uint64_t buf[256];
// ikeypad
buf[0] = key.GetLL ()[0] ^ IPAD;
buf[1] = key.GetLL ()[1] ^ IPAD;
buf[2] = key.GetLL ()[2] ^ IPAD;
buf[3] = key.GetLL ()[3] ^ IPAD;
buf[4] = IPAD;
buf[5] = IPAD;
buf[6] = IPAD;
buf[7] = IPAD;
// concatenate with msg
memcpy (buf + 8, msg, len);
// calculate first hash
uint8_t hash[16]; // MD5
CryptoPP::Weak1::MD5().CalculateDigest (hash, (uint8_t *)buf, len + 64);
// okeypad
buf[0] = key.GetLL ()[0] ^ OPAD;
buf[1] = key.GetLL ()[1] ^ OPAD;
buf[2] = key.GetLL ()[2] ^ OPAD;
buf[3] = key.GetLL ()[3] ^ OPAD;
buf[4] = OPAD;
buf[5] = OPAD;
buf[6] = OPAD;
buf[7] = OPAD;
// copy first hash after okeypad
memcpy (buf + 8, hash, 16);
// fill next 16 bytes with zeros (first hash size assumed 32 bytes in I2P)
memset (buf + 10, 0, 16);
// calculate digest
CryptoPP::Weak1::MD5().CalculateDigest (digest, (uint8_t *)buf, 96);
}
}
}
#endif

Some files were not shown because too many files have changed in this diff Show more